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Abstract—Standard radar detection process requires that the sensor
output is compared to a predetermined threshold. The threshold
is selected based on a-priori knowledge available and/or certain
assumptions. However, any knowledge and/or assumptions become
inadequate due to the presence of multiple targets with varying
signal return and usually non stationary background. Thus, any
fixed predefined threshold may result in either increased false alarm
rate or increased track loss. Even approaches where the threshold
is adaptively varied will not perform well in situations when the
signal return from the target of interest is too low compared to
the average level of the background. Track-before-detect techniques
eliminate the need for a detection threshold and provide detecting
and tracking targets with lower signal-to-noise ratios than standard
methods. However, although track-before-detect techniques eliminate
the need for detection threshold at sensor’s signal processing stage,
they often use tuning thresholds at the output of the filtering stage.
This paper presents a Hidden Markov Model based target detection
method that avoids any thresholding at any stage of the detection
process. Moreover, since the proposed Hidden Markov Model method
is based on the target motion models, the output of the detection
process can easily be employed for maneuvering target tracking.

1. INTRODUCTION

The purpose of target detection is to detect all objects of interest within
the area of observation. Generally speaking, target detection would
be an easy task if the targets were located in front of an otherwise
clear or empty background. In such a case, the echo signal can
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simply be compared to a fixed threshold, and targets are detected
whenever the signal exceeds this threshold. In real life applications,
however, the target practically always appears before a background
filled with clutter and frequently the location of this background
clutter is, additionally, subject to variations in strength, time and
position. Therefore, using a fixed threshold may cause problems. For
instance if the threshold is selected too low the false alarm rate will
increase whereas a too high threshold will result in an increased level of
misdetection. This fact calls for adaptive signal processing techniques
operating with a variable detection threshold to be determined in
accordance to the local clutter situation. However, in the presence of
multiple targets and/or where the echo signal is below the local clutter
information obtained in a window around the radar test cell, even
varying the threshold level may not perform well. Track-before-detect
(TBD) techniques eliminate the need for a detection threshold and
help detecting and tracking targets with lower signal-to-noise ratios.

Numerous studies can be found on TBD techniques in the
literature. Most of TBD algorithms have been proposed to detect
and track small moving objects in optical images corrupted by high
cluttered noise [1, 2]. Dynamic Programming (DP) and particle filter
based implementations are the most well-known techniques. In [3–5],
DP based TBD methods were proposed for detecting and tracking low
SNR targets. The analysis in [3] showed that the tracking performance
of the DP algorithm is poor, even though detection performance is good
and track separation phenomenon is one of the factors that deteriorate
the tracking performance. An alternative approach is the Particle
Filtering (PF), which has been used extensively for TBD [6, 7]. It is a
numerical approximation technique that uses randomly placed samples
to solve the non-linear function of the target state, which describes
target’s kinematic evolution. Although, PF based TBD approximation
produce good results, it was reported that reducing the number of
particles degrades performance too much [8].

Although TBD techniques eliminate the need for detection
threshold at sensor’s signal processing stage, they often use tuning
thresholds at the output of the filtering stage. It is the motivation
in this work to propose a novel method for detection which does
not use any thresholding at any stage. In this paper, we propose a
methodology for applying Hidden Markov Model (HMM) to detection
of targets from unprocessed radar data available at the output of the
sensor. HMM is a doubly stochastic process where an underlying
stochastic (and Markovian) process that is not directly observable
(i.e., “hidden”) is observed through another set of symbols which
are also stochastic processes. Discrete HMM corresponds to the
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particular case where the number of possible states is finite. In recent
years, HMM based methods have become indispensable in applied
mathematics and modern pattern recognition. HMMs are especially
known for their application in temporal pattern recognition such as
speech, sound, handwriting and image recognition. In fact the use
of HMMs is an obvious choice for complex, nonstationary stochastic
processes that produce time sequence of random observations. In
most cases remote sensor outputs fit the description given above very
well. Therefore, there are many examples of HMMs being employed in
detection, tracking and identification using the observations obtained
by remote sensors such as radar and sonar. For instance in [9]
the problem of frequency line tracking is tackled by employing
HMMs and in [10] the problem is extended to multiple frequency
line tracking with ambiguous detections in which the problem was
formulated in terms of HMM to produce MAP track estimates via
the Viterbi algorithm. Tracking and target motion analysis (TMA)
were performed in [11] by discretizing the target states in a grid of
possible positions and speeds where the target state evolutions were
assumed to be stochastic. In [12] a new strategy, in which wave fronts
and resonances are used simultaneously, was presented and wave-based
matched-pursuits algorithm was employed in the context of a HMM for
target identification.

This paper presents a HMM based target detection method for
employing with TBD techniques. HMM is a powerful statistical
method to characterize the observed data samples of a discrete time
series. The underlying assumption of the HMM is that the data
samples can be well characterized as a parametric random process
and the parameters of the stochastic process can be estimated in a
well-defined framework. In addition to detection of existence of a
target, the proposed algorithm also detects target maneuver which
plays an important role in target tracking applications. Tracking of
maneuvering targets is an important problem in air surveillance and
traffic control applications and it has received considerable attention
for many years [13, 14]. Maneuver detection is one of the key points
for tracking of maneuvering targets because, an early and accurate
detection of the target maneuver leads to a better result in tracking.
In the proposed HMM based method clutter and target models have
been constructed, in which, in order to detect the target maneuver, the
target model is divided into 3 sub models as Coordinated Turn (CT),
White Noise Acceleration (WNA) and Wiener Process Acceleration
(WPA). The radar coverage area is assumed to be consisted of
4096× 4096 resolution cells, which were grouped into 128× 128 blocks
corresponding to observation sequences. Therefore, the search over all
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the cells is narrowed into a much smaller area and detection process
performed only on the corresponding blocks between subsequent scans.
The size of the blocks is chosen assuming that target remains in the
same block during six consecutive radar scans. Clutter and target
models have been trained by Baum-Welch algorithm with sufficient
amount of observation data. Finally, detection process was performed
on radar observations by using Viterbi algorithm.

The rest of the paper is organized as follows: The following section
gives a brief overview of HMM whereas Section 3 details how the HMM
is applied to radar target tracking. Section 4 outlines the measurement
and motion models employed in the study and the HMM structure used
in the study is explained in Section 5. Performance of the proposed
model is discussed compared to the PF approach in Section 6. Finally
some conclusions are given in the last section.

2. BRIEF REVIEW OF HMM

HMM is a model of a stochastic process that characterizes a sequence
of random observation vectors at discrete times according to an
underlying Markov chain. HMM consists of a set of N states, each
of which is associated with a set of M possible observations. At each
observation time, the Markov chain may be in one of the states and,
given that the chain is in a certain state, there are probabilities of
moving to other states. These probabilities are called the transition
probabilities.

The word “hidden” in hidden Markov models comes from the
fact that the states are hidden or not directly observable. Given an
observation vector at time, there are probabilities that the chain is
in each state. The actual state is described by a probability density
function, which can either be continuous or discrete. The probability
density functions describing the states define the probabilities of the
observations conditioned upon the chain being in the associated state.
Initial state probabilities are also assigned.

Thus, HMM is characterized by three sets of probability density
functions: the transition probabilities, the state probability density
functions, and the initial probabilities. Furthermore, HMM is
called continuous if the observation probability density functions are
continuous and discrete if the observation probability density functions
are discrete. The parameters of the HMM include:

• An initial matrix, π, of state probabilities whose elements, πi;
i ∈ [1, N ] describe the position distribution probabilities of the
target over the initial state set at the beginning when time t = 1.
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• A transition matrix A, whose elements aij ; i, j ∈ [1, N ] are the
transition probabilities from state i to state j.

• An observation matrix B, whose elements bim are the probabilities
of observing symbol m ∈ [1, M ] given that the system is at the
state i ∈ [1, N ].

The HMM parameter set is denoted by λ = (A, B, π). The transition
probabilities express which type the model is, i.e., ergodic, left-right or
coupled. Three basic problems have to be address with the HMM [15]:

• Evaluation problem: What is the probability of the observation
O, given the model λ, i.e., P (O|λ) =?

• Decoding problem: What is the most likely state sequence given
the observation O, i.e., args [maxP (O|λ)] =?

• Estimation problem: How can one estimate the parameters given
the training observation sequences, λ∗ = argλ [maxP (O|λ)] =?

3. HIDDEN MARKOV MODELS FOR TARGET
DETECTION

In the proposed method, the HMM is used to detect not only targets
but also its maneuver in the presence of clutter. Both detecting the
existence of a target and its maneuver are of great importance as
each detection scheme is usually followed by a tracking mechanism.
Thus, the proposed method not only distinguishes targets in a highly
cluttered environment but also provides an input to the tracking
algorithm that would help reduce estimation errors.

Let each radar measurements be represented by a sequence of
measurement vector or observations O, defined as

O = o1, o2, . . . , oT (1)

The target detection problem can then be regarded as that of
computing

arg max
i
{P (wi |O )} (2)

where wi is the ith detection. In this study, detections are divided
into two main classes as clutter and target. In order to detect target
maneuver model, target class is divided into three subclasses as CT,
WPA and WNA. If needed, more subclasses can be constructed. For
example, clutter class can be divided into sea and land clutter. The
probability given in Eq. (2) is not computable directly; however, Bayes’
Rule yields

P (wi |O ) =
P (O |wi )P (wi)

P (O)
(3)
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Thus, for a given set of prior probabilities P (wi), the most
probable detection depends only on the likelihood P (O|wi). If the
dimensionality of the observation sequence O is considered, the direct
estimation of the joint conditional probability P (o1, o2, . . .|wi) from
examples of radar measurements is not practical. However, if a
parametric model of the radar measurement production (such as a
Markov model) is assumed, then estimation from data is possible since
the problem of estimating the class conditional observation densities
P (O|wi) is replaced by the much simpler problem of estimating the
Markov model parameters [16].

In HMM based target detection, it is assumed that the sequences
of observed radar measurement vectors corresponding to each detection
are generated by a Markov model as shown in Fig. 1. A Markov
model is a finite state machine which changes state once every time
unit (in this application time unit is a radar scan) and each time t
that a state j is entered, a radar measurement vector is generated
from the probability density bj (ot). Furthermore, the transition from
state i to state j is also probabilistic and represented by the discrete
probability aij . The joint probability that O is generated by the model
M moving through the state sequence X is calculated as the product
of the transition probabilities and the output probabilities. So, for the
state sequence X given in Fig. 1.

P (O, X |M ) = a12b2(o1)a22b2(o2)a23b3(o3) . . . (4)

In practice, only the observation sequence O is known and the
underlying state sequence X is hidden.

Given that X is unknown; the required likelihood is computed by
taking the sum over all possible state sequences (Bayesian approach)

2 1 3 4 5 6 7 8 

              
   

 
    

            
  

a a a a a
22 33 44 55 66

a a a a a a12 23 34 45 56 67 a78

a a a a a
13 24 46 5735

a
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a
77

Figure 1. The Markov generation model.
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X = x (1) , x (2) , . . . , x (T ), that is

P (O |M ) =
∑

X

ax(0)x(1)

T∏

t=1

bx(t)(ot)ax(t)x(t+1) (5)

where x (0) is constrained to be the model entry state and x (T + 1) is
constrained to be the model exit state.

As an alternative to Eq. (5), the likelihood can be approximated
by considering the most likely state sequence that is (Viterbi approach)

P̂ (O |M ) = max
X

{
ax(0)x(1)

T∏

t=1

bx(t)(ot)ax(t)x(t+1)

}
(6)

Given a set of models, Mi, corresponding to detections wi, Eq. (2) is
solved by using Eq. (3) and assuming that

P (O |wi ) = P (O |Mi ) (7)

(a)

(b)

Figure 2. Using HMMs for target detection.
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Given sufficient number of training examples of each detection, a HMM
can be constructed which implicitly models all of the many sources of
variability inherent in real radar measurements. Fig. 2 summarizes the
use of HMMs for target detection. Firstly, a HMM is trained for each
detection using a number of examples of that detection. In this case,
four detection models: “clutter”, “CT”, “WPA” and “WNA” models
are used. Secondly, to detect some unknown radar measurements, the
likelihood of each model generating that measurement is calculated
and the most likely model identifies the detection.

4. MEASUREMENT AND MOTION MODELS

4.1. Measurement Model

Each radar scan contains 4096× 4096 resolution cells whose rows and
columns are assumed to be bearing and range cells respectively where
each cell contains a signal originated either from clutter or target.
The measurement in each cell at time k, z

(i,j)
k , is assumed to be the

magnitude of a windowed complex sinusoid in Gaussian noise. Thus,
the measurement signal will be Ricean distributed if there is a target
present, or Rayleigh distributed if there is no target. Then the pdf for
measurements is,

p
(

z
(i,j)
k

∣∣∣ xk

)

=
2z

(i,j)
k

σ2
exp


−

[
z
(i,j)
k

]2
+ h(i,j)(xk)2

σ2


×I0

(
2z

(i,j)
k h(i,j)(xk)

σ2

)
(8)

If the target is present, or

p
(
z
(i,j)
k

)
=

2z
(i,j)
k

σ2
exp


−

[
z
(i,j)
k

]2

σ2


 (9)

if there is no target, where σ2 is the variance of the measurement
noise. The term h(i,j)(xk) is the contribution in cell i, j from the
target, which depends on the point spread function of the window, the
target location and the target signal amplitude. I0(·) is the modified
Bessel function [8].

4.2. White Noise Acceleration (WNA) Motion Model

White noise acceleration model is the basic model for the target motion
where the target acceleration is assumed to be white Gaussian with zero
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mean and known variance. This model is also called the nearly constant
velocity model and considered as the nominal motion model [14]. Any
deviation from this model is classified as a maneuver.

xk+1 = Fxk + Gwk (10)

F =
[

1 T
0 1

]
, G =

[
T 2/2

T

]
(11)

where T is the sampling period and wk the constant acceleration at
time k.

4.3. Wiener Process Acceleration (WPA) Motion Model

In this model acceleration is assumed as a Wiener process. This model
is also known as constant acceleration model.

xk+1 = Fxk + Gwk (12)

F =




1 T T 2/2
0 1 T
0 0 1


 , G =




T 2/2
T
1


 (13)

where T is the sampling period and wk is the acceleration at time k
and assumed as zero mean white noise.

4.4. Coordinated Turn (CT) Motion Model

In this model target moves constant velocity v and turns with constant
angular velocity ω.

ẋ(t) =




ẋ(t)
−ωẏ(t)

ẏ(t)
ωẋ(t)


 + Bw(t) = A(ω)x(t) + Bw(t) (14)

A(ω) =




0 1 0 0
0 0 0 −ω
0 0 0 1
0 ω 0 0


 , B =




0 0
1 0
0 0
0 1


 (15)

Discrete time state equation defined as,

xk+1 = Fct(ω)xk + wk =




1 sin ωT
ω 0 −1−cos ωT

ω
0 cosωT 0 − sinωT
0 1−cos ωT

ω 1 sin ωT
ω

0 sinωT 0 cos ωT


xk + wk (16)
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5. HMM STRUCTURE FOR DETECTION

The measurements, feature set and HMM structure determine the
overall performance of the detection system designed. Signal strength
measurements from the target as well as range and bearing have been
used as feature vectors.

5.1. Training Set

In order to train the HMM models, a radar model must be designed
to create target and clutter measurements.

The training set comprises;

• Clutter measurements for 50 radar scans.
• Target measurements whose signal level is above the average

clutter level. 300 different target trajectories have been used for
each target maneuver model for training purposes. 100 different
target trajectories have been created for test purposes.

Target initial positions were randomly assigned between 1–120 km in
range and 0–359◦ in bearing. Angular velocity for the CT maneuver
model and the acceleration for the WPA motion model are randomly
assigned between 0–5 ◦/sec and 0.01–0.05 m/sec2 respectively where
the target velocities are also randomly assigned between −500 to
500m/sec. The process noise used in CT, WPA and WNA kinematic
models are 0.1, 1 and 0.01 respectively.

5.2. HMM Topology

To determine the number of states in the HMM numerous tests have
been performed and it was found that state number is closely related
with the number of consecutive radar scans used for detection. As it is
seen from Fig. 3, best detection accuracy is obtained if six consecutive
radar scans are utilized for detection. For this reason, each clutter
and target detections were modeled by an 8 state HMM as shown in
Fig. 1, where states 1 and 8 are entry and exit states of the HMM
respectively. Also, states 2–7 are the emitting states that correspond
to measurements obtained from sequential radar scans.

Clutter and target maneuver models were trained separately in
which the feature set consists of signal strength, range and bearing
values that are collected at each radar scan interval. Although these
measurements are sufficient for separating clutter from target [17], they
are inadequate for determining maneuver models. For this reason in
addition to the feature set mentioned above, their delta, acceleration
and third differential coefficients are also used which gives a total of 12
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coefficients. Delta, acceleration and third differential coefficients are
calculated through

dt=
∑Θ

θ=1 θ(ct+θ−ct−θ)

2
∑Θ

θ=1 θ2
(17)

where dt is a delta coefficient at time t and Θ the window size.
The same formula is applied to the delta coefficients to obtain the
acceleration coefficients.

Finally, the measurements that were used for training were not
used for testing and the HTK toolkit [16] was used to perform HMM
training and testing processes.

Figure 3. Effect of number of consecutive radar scans employed on
detection performance.

(a) (b)

Figure 4. Sample observation sequence. (a) Clutter. (b) Target.
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6. SIMULATION RESULTS

Detection process starts with forming the observation sequence, that
is, by collecting six consecutive radar scans. There is no assumption
as to which part of the target trajectory is sampled in the observation
sequence and the aim of the HMM detection is to perceive the target
trajectory through observation sequences. Each radar scan is assumed
to have 4096 × 4096 range and bearing bins whose size is determined
by radar’s range and bearing resolution. In order to narrow down the
search space, the 4096 × 4096 matrix is divided into 128 × 128 grids.
Each observation sequence comprises 6 of these smaller 128×128 grids
across consecutive scans, where it is assumed that the target remains
within this grid while processing the observation sequence. Through
this, trajectory search over all 4096×4096 cells is narrowed into a much
smaller area and detection process performed only in the corresponding
grids between sequential scans. Each cell in the observation sequence
is assumed to contain information, thus, there are 16384 measurements
in a grid and since we assume this is a single target tracking application
with a unity probability of detection† (PD), only one of them is target
originated. Fig. 4 shows clutter and target only cells which were
decided by the proposed method based on the strongest signal selection
criteria described above.

Once the six consecutive radar scans are accumulated then at each
time, a radar scan is added in a sliding window fashion while the oldest
scan is discarded. The size of the grid can be adjusted for different
types of targets performing different target motions, for instance for
a highly maneuvering target a bigger grid size may be needed. As
each grid contains a vast amount of clutter measurements, reduction
for these measurements is needed. It is assumed that, measurements
originated from the target of interest have a signal level above average
clutter level. This assumption gives an opportunity to reduce the
measurement number in each grid which is, measurements from only
the biggest signal level in each scan interval is considered. Then, HMM
detection was applied on these grids from scan to scan. Detection was
performed by applying the Viterbi algorithm on these grids to find
the most likelihood model, i.e., whether the measurement has been
originated from a target or from clutter, then at the end of the detection
process measurements in each grid is marked as clutter or target.

100 different maneuvering targets, which had not been used for
training, were selected for testing the proposed method. Strongest
† Unity PD assumption stems from the fact that with this study we aim to demonstrate
the applicability of the HMM to radar detection without any thresholding. However, unity
PD assumption can easily be relaxed with inclusion of a simple scheme to handle less than
perfect detection conditions.
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(a) (b)

Figure 5. Variation of the signal power in a selected observation
sequence. (a) Clutter. (b) Target.

Table 1. Maneuver detection performance of the HMM approach.

Models Clutter WNA WPA CT
Clutter 100% 0 0 0
WNA 0 100% 0 0
WPA 0 0 56.66% 43.34%
CT 0 0 0 100%

signals in each observation sequence have been determined and applied
to the Viterbi algorithm in order to declare whether this sequence
belongs to a target or it is clutter originated. Fig. 5 depicts sequences of
clutter and target originated measurements in an observation sequence
and as it can be seen, clutter is a noise like signal and has no apparent
relation from scan to scan, whereas measurements from a target, which
moves according to WNA maneuver model, display strong relation as
we move along the radar scans.

In order to test the reliability of the Viterbi decision making, a
whole radar scan consisting of only clutter measurements have been fed
to the proposed algorithm. As expected the proposed algorithm has
correctly labeled each measurement as clutter. Finally, Fig. 6 gives the
range and bearing variation of the detected target whose signal power
variation is shown in Fig. 5(b). Both range and bearing variation in
Fig. 6 suggests that that the detected target obeys the WNA motion
model. Simulation results have revealed that the proposed method has
successfully detected the target of interest in heavy clutter without
employing any thresholding.
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(b)(a)

Figure 6. Range and bearing variation of the detected target.
(a) Range. (b) Bearing.

Moreover, the proposed method not only detects targets in clutter
using raw radar data but also it provides information pertaining to the
type of the maneuver that the target is performing at the time of
detection. Maneuvering information is of particular information as the
performance of any tracking algorithm that follows detection process
will be greatly improved by using this information. Since this work
mainly focuses on the detection performance of the HMM approach
we shall not further discuss how the tracking performance is improved.
However, Table 1 summarizes the maneuver detection performance of
the proposed method.

As it can be seen from Table 1, the proposed method can perfectly
label clutter and benign motion (WNA model) measurements. On
the other hand the method has difficulty differentiating measurements
obeying WPA motion model from measurements obeying CT motion
model. However, as far as detecting the maneuver is concerned, this
does not constitute a problem as the maneuver is labeled is correctly.

Particle filtering (PF) is a commonly used method for target
detection [19, 20] and tracking [21, 22] in radar applications. When
particle filters are used for detection, like the proposed method, the raw
radar data is utilized. In this respect the PF method constitutes a good
candidate for performance comparison. The idea behind the PF, is to
approximate the posterior pdf, p(xk |Zk ), by a set of random samples,{
xi, qi

}M

i=1
, where

{
xi

}M

i=1
is the set of support points, called particles,{

qi
}M

i=1
is a set of corresponding “weights”, i.e., probability masses,

and M is the number of particles used in the approximation [18]. Here
a very brief discussion of the PF method is given and the reader
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is referred to numerous comprehensive publications for details. In
particle filtering the posterior pdf can be approximated as

p
(
xk

∣∣∣Zk
)
≈

M∑

i=1

qiδ
(
xk − xi

k

)
(18)

where the state xk is assumed to be a nonlinear function of the state
from the previous scan xk−1 and the process noise wk. Also the
measurements yk are assumed to be a nonlinear function of the state
and the measurements noise vk. The PF algorithm can be simply
outlined as follows [19]:

Step 1: Draw samples
{
wi

k−1

}M

i=1
according to the initial

distribution of the state and compute
{
xi

k

}M

i=1
.

Step 2: Compute weights q∗t = p(yk

∣∣xi
k ), i = 1, . . . , M and

qi
k = q∗i

/
M∑
i=1

q∗i.

Step 3: Resample M times from p̂(xk

∣∣Zk ) =
M∑
i=1

qi
kδ(xk − xi

k)

and obtain {xk}M
i=1 to construct p̂(xk

∣∣Zk ) =
M∑
i=1

1
M δ(xk − xi

k).

Step 4: Go to Step 1.
In the PF approach detection is performed using the output and

likelihood ratio
L(yk) =

p(yk |H1 )
p(yk |H0 )

(19)

(a)
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(b)

(c)

Figure 7. Presence of a target during 3 consecutive radar scans.
(a) 100 particles. (b) 200 particles. (c) 300 particles.

where p(yk |H1 ) ≈ 1
M

M∑
i=1

q∗ik and H0 and H1 represent the absence or

presence of the target, respectively. A signal is declared to be present
whenever the likelihood, L(yk) exceeds a predetermined threshold τ
where the choice of the threshold is a compromise between false alarms
and probability of detection [20]. In Eq. (19), p (yk|H0) is the pdf of
the measurement noise, i.e., no target present, and is assumed known,
then the likelihood function depends only on the variation of p (yk|H1)
which renders the computation of particle weights an important factor
for the detection process when using the PF approach. Particle weights
are directly affected by accuracy of the system dynamic models, clutter
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density and target maneuver. Thus, mis-modeling the target motion
and/or varying clutter density between scans will lead to less accurate
particle weights which will deteriorate the performance in return.

PF based simulations intend to display the dependence of the
approach on the number of particles used as well as the difficulty
in selecting the right threshold for the optimum performance. For
this purpose similar to the HMM scenario, a single target that moves
according to the WNA model is used. Like in the proposed method,
the resolution area consists of 4096 × 4096 cells; however, since only
target detection is intended, in order to reduce the computational load,
measurements are grouped into a smaller size of 8 × 8 grids and the
observation sequence comprises three 8×8 grids from three consecutive
radar scans. The PF algorithm is then set to declare a target present
if the likelihood ratio is above the predetermined threshold for three
consecutive radar scans. Dependence of the particle weights on so
many factors will make the p (yk|H1), hence the likelihood ratio, vary
from scan to scan making it rather hard to determine an appropriate
threshold value. In the simulations it is assumed that we know the
target motion and clutter density does not change from scan to scan.

Figure 7 shows the calculated particle weights for 100, 200 and
300 particles. As it is seen from the figure, particle weights from scan
to scan and also as the number of particles change. This would require
that the threshold for target detection should be varied as well for
improved performance.

Note that although the PF method employed in this paper is the
basic one and modifications to it have been proposed for improved
performance [20], even the improved PF method requires utilization of
a threshold in which the problems related to thresholding still prevails.

7. CONCLUSION

In this paper a HMM based target detection method, that is suitable
to be used TBD applications, was presented. The proposed method
detects target existence without any prior knowledge on the target
dynamics or the clutter as long as the return from the target is
above the average clutter level. Simulations showed that proposed
method not only has a potential to detect targets in heavily cluttered
environments but also detect target maneuver type which is an
important aspect in target tracking. Proposed algorithm successively
separates the grids consisting of target measurements from clutter only
grids. Performance of the proposed algorithm has been compared to
that of a PF based method and it has been shown that the detection
performance of the PF based algorithm heavily depends on the a-
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priori knowledge regarding the system dynamics is available and when
selection of the threshold has been carried out accordingly.
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