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Abstract—In this paper, self inductance for a conductor with
rectangular cross section is investigated. Using the three-dimensional
Fredholm’s integral equation of the second kind with weakly singular
kernel we obtain an equation for the complex voltage drop in the
conductor. Self impedance appearing in the equation is expressed in
the form of integral relation for any current density distribution. The
imaginary part of this impedance divided by angular frequency is the
self inductance of a conductor of any shape and finite length. In the
case of direct current (DC), low frequency (LF) or thin strip conductor
of rectangular cross section the formulae for the self inductances are
given for any length and for length much greater than the other
dimensions.

1. INTRODUCTION

The real lumped isolated conductor can be modeled as a connection,
in series or in parallel, of a resistance and a self inductance. Self
inductance plays an important role not only in power circuits, but also
in transmission lines, interconnections in many microwave and digital
printed circuit board (PCB) lands and striplines [1–11].

Formulae for self inductances of conductors of rectangular cross-
section are the subject of many electrical papers and books. As for
DC, power frequency or a thin isolated rectangular conductor with
width a, thickness b, and length l as shown in Fig. 1, there are many
formulae for its self inductance. The most significant are: Grover’s
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given in [2, 3, 12, 13], Bueno and Assis’ shown in [10], FastHenry’s
introduced in [13], Ruehli’s presented in [3, 11, 13] as well as Hoer and
Love’s shown in [3, 13, 14].

In general cases, there are two methods to calculate self
inductance: the first one is the calculation of inductance of a current-
carrying closed loop and the second is the calculation of induction of a
segment of a current loop using the concept of partial inductance [3]. In
this paper, a new method for calculating self inductance is presented.
The method results in the Fredholm’s integral equation. We compare
our formulae with several well-known ones given in the literature.

2. INTEGRAL EQUATION

In case of a rectilinear conductor with length l, conductivity σ, cross
section S with sinusoidal current input function with angular frequency
ω and complex value I (Fig. 1), the vector of current density has one
component along the Oz axis, that is J (X) = azJ (X). Then the
vector magnetic potential A (X) = azA (X) and total electric field
E (X) = azE (X).

The total electric field may be presented [15–17] in the form of
two electric fields sum

E (X) = E st (X) + E in (X) (1)
where E st (X) is the so-called quasi-static source whilst E in (X) is an
induced electric field.
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Figure 1. A conductor of rectangular cross section with width a,
thickness b, length l, conductivity σ and complex current I.
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The quasi-static source electric field
E st (X) = −gradϕ(z) (2)

where ϕ(z) is the complex scalar electric potential along a straight
conductor of rectangular cross section of length l (Fig. 1). This
potential must satisfy Laplace’s equation

d2ϕ (z)
dz2

= 0 (3)

the solution of which is [15–17]

ϕ (z) =
ϕ (0)− ϕ (l)

l
z + ϕ (0) (4)

By introducing a unit voltage drop (in V ·m−1) in a conductor

u =
ϕ (l)− ϕ (0)

l
(5)

we obtain from the formula (4)
ϕ (z) = −u z + ϕ (0) (6)

then from it and from the formula (2)

E st (X) = − dϕ(z)
dz

= u (7)

The induced electric field E in (X) is determined by E in (X) =
−jωA (X), where A (X) is a vector magnetic potential and

A (X) =
µ0

4π

∫

v

J (Y )
ρXY

dx2 dy2 dz2 (8)

where: X = X(x1, y1, z1) is the point of observation and X ∈ R3,
Y = Y (x2, y2, z2) is the source point and Y ∈ S, v — conductor’s

volume, ρXY =
√

r2
XY + (z2 − z1)2 is the distance between the point

of observation X and the source point Y (Fig. 1), where rXY =√
(x2 − x1)2 + (y2 − y1)2.

Finally (1) becomes
E (X) + jωA (X) = u (9)

and from it, after substituting E (X) = J(X)
σ and A (X) from (8), for

X ∈ v we have
J (X)

σ
+ jω

µ0

4π

∫

v

J (Y )
ρXY

dx2 dy2 dz2 = u (10)

Equation (10) is a three-dimensional Fredholm’s integral equation
of a second type with a weak-singular kernel 1

ρXY
and it has an

unequivocal solution for any (not only constant) right side [16, 17].
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3. DEFINITION OF SELF INDUCTANCE

We multiply (10) by the complex conjugate value J∗ (X) and integrate
over the volume v of this conductor. Assuming that J (X) does not
depend on the variable z and taking into consideration that U = u l is
the voltage drop in the conductor (in V) as well as that I2 = I I∗, we
may divide both sides of the final equation by I∗. Then we obtain the
equation

U = Z I = (R + j ωL) I (11)
where the self-inductance of the conductor

L =
1
ω

Im Z =
µ0

4πI2

∫

v

∫

v

J (Y ) J∗ (X)
ρXY

dv dv (12)

One can see from (12) that the self inductance of the conductor
depends on the distribution of the current density in this conductor.
The formula (12) specifies the self-inductance of a solid conductor as
a parameter standing next to jω in (11) which specifies the voltage
drop and from the point of theory of circuits it is called [16, 17] self
inductance. It may not be associated with a closed loop (according to
the classical view of self-inductance of a closed circuit) but it should be
merely considered as a quantity helpful in calculating self inductances
of real closed electrical circuits. The above formula can be also deduced
from the magnetic energy of a loop carrying current I [5].

If a conductor has a constant cross-sectional area S along its length
and in the case of DC, low frequency or for a thin strip conductor
we can assume that the current density is uniform and given as
J(X) = I /S and then, from (12), we obtain the self inductance of
a straight conductor

L =
µ0

4πS2

∫

v

∫

v

1
ρXY

dv dv (13)

4. SELF INDUCTANCE OF A CONDUCTOR OF
RECTANGULAR CROSS SECTION

The self inductance of a rectangular conductor of dimensions a× b× l
shown in Fig. 1 is given by the formula

L =
µ0

4π

1
a2b2

F (14)

where

F =

l∫

0

l∫

0

b∫

0

b∫

0

a∫

0

a∫

0

1
ρXY

dx1 dx2 dy1 dy2 dz1 dz2 (15)
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is a sixtuple definite integral of an integrable function ρ−1
XY of six

variables (x1, x2, y1, y2, z1, z2). In general cases this integral is very
difficult to calculate. But in our case we can put x = x2 − x1,
y = y2−y1, z = z2−z1 and first calculate a sixtuple indefinite integral

F (x, y, z) =
∫∫ ∫∫ ∫∫

1
ρXY (x, y, z)

dxdxdy dy dz dz (16)

of a function
ρ−1
XY (x, y, z) =

(
x2 + y2 + z2

)− 1
2 (17)

of three variables (x, y, z) — twice with respect to x, twice with respect
to y and twice with respect to z. After each double integration we omit
terms which depend only on one or two variables — they are constants
with respect to the considered variable.

If two variables, for example x1 and x2, can be replaced with
only one variable x = x2 − x1 then a double definite integral can be
calculated from following formula

H =

s4∫

s3

s2∫

s1

f(x2 − x1, y, z)dx2 dx1

= H(s4 − s1)−H(s4 − s2) + H(s3 − s2)−H(s3 − s1)

= [H(x)]
s4−s1,s3−s2

(x)
s4−s2,s3−s1

= [H(x)]
p1, p3

(x)
p2,p4

=
i=4∑

i=1

(−1)i+1 H(pk) (18)

where
H(x, y, z) =

∫∫
f(x, y, z)dxdx (19)

is an indefinite integral of f(x, y, z). So in (16), we can also omit terms
proportional to one variable like H(x, y, z) = xg(y, z). Finally, after a
lengthy integration, (16) yields an expression for the sixtuple indefinite
integral

F (x, y, z) =
∫∫ ∫∫ ∫∫

1
ρXY (x, y, z)

dxdxdy dy dz dz

=
∫∫ ∫∫ ∫∫

1√
x2 + y2 + z2

dxdxdy dy dz dz
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=
1
72





6
5

(
x4+y4+z4−3x2y2−3x2z2−3y2z2

)√
x2+y2+z2

−12xyz

(
z2 tan−1 xy

z
√

x2+y2+z2

+y2 tan−1 xz

y
√

x2+y2+z2
+ x2 tan−1 yz

x
√

x2+y2+z2

)

−3x(y4 − 6y2z2 + z4) ln
(
x +

√
x2 + y2 + z2

)

−3y(x4 − 6x2z2 + z4) ln
(
y +

√
x2 + y2 + z2

)

−3z(x4 − 6x2y2 + y4) ln
(
z +

√
x2 + y2 + z2

)





(20)

and the self inductance of the conductor of rectangular cross section is
given by following formula

L =
µ0

4π

1
a2b2

[[
[F (x, y, z)]

a,−a

(x)
0,0

]
b, - b

(y)
0,0

]
l,−l

(z)
0,0

=
µ0

4π

1
a2b2

i=4∑

i=1

j=4∑

j=1

k=4∑

k=1

(−1)i+j+k+1 F (pi, qj , rk) (21)

where p1 = a, p3 = −a, q1 = b, q3 = −b, r1 = l, r3 = −l and
p2 = p4 = q2 = q4 = r2 = r4 = 0.

On the basis of (21), we have an analytical formula for the self
inductance of the straight conductor of rectangular cross section

L =
µ0

120πa2b2



4
(
a5 + b5 + l5

)− 4
(
a4 − 3a2b2 + b4

)√
a2 + b2

−4
(
a4 − 3a2l2 + l4

)√
a2 + l2 − 4

(
b4 − 3b2l2 + l4

)√
b2 + l2

+4(a4 + b4 + l4 − 3a2b2 − 3a2l2 − 3b2l2)
√

a2 + b2 + l2

−40abl
[
a2tan−1 bl

a
√

a2+b2+l2
+b2tan−1 al

b
√

a2+b2+l2
+l2tan−1 ab

l
√

a2+b2+l2

]

+30abl
[
ab ln l+

√
a2+b2+l2

−l+
√

a2+b2+l2
+al ln b+

√
a2+b2+l2

−b+
√

a2+b2+l2
+ bl ln a+

√
a2+b2+l2

−a+
√

a2+b2+l2

]





+
µ0

120πa2b2



−5a

[
b4 ln(−a+

√
a2+b2)(a+

√
a2+b2+l2)

(a+
√

a2+b2)(−a+
√

a2+b2+l2)+l4 ln(−a+
√

a2+l2)(a+
√

a2+b2+l2)
(a+

√
a2+l2)(−a+

√
a2+b2+l2)

]

−5b

[
a4 ln(−b+

√
a2+b2)(b+

√
a2+b2+l2)

(b+
√

a2+b2)(−b+
√

a2+b2+l2)+l4 ln (−b+
√

b2+l2)(b+
√

a2+b2+l2)
(b+

√
b2+l2)(−b+

√
a2+b2+l2)

]

−5l

[
a4 ln (−l+

√
a2+l2)(l+

√
a2+b2+l2)

(l+
√

a2+l2)(−l+
√

a2+b2+l2)+b4 ln (−l+
√

b2+l2)(l+
√

a2+b2+l2)
(l+

√
b2+l2)(−l+

√
a2+b2+l2)

]





(22)
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5. SELF INDUCTANCE OF A THIN TAPE

The self inductance of a thin tape of width a, thickness b ≈ 0 and
length l is given by formula

L =
µ0

4π

1
a2

F (23)

where

F =

l∫

0

l∫

0

a∫

0

a∫

0

dx1dx2dz1dz2√
(x2 − x1)2 + (z2 − z1)2

(24)

is a quadruple definite integral of four variables (x1, x2, z1, z2). Now
we can put x = x2−x1 and z = z2− z1 and first calculate a quadruple
indefinite integral

F (x, z) =
∫∫ ∫∫

dxdx dz dz√
x2 + z2

(25)

twice with respect to x and twice with respect to z. Finally, after a
lengthy integration, (25) yields an expression for quadruple indefinite
integral

F (x, z) =
1
2

[
− 3

2
z

(
x2 + z2

)− 1
3

(
x2 + z2

)3/2

+xz2 ln
(
x +

√
x2 + z2

)
+ x2z ln

(
z +

√
x2 + z2

)]
(26)

So the self inductance of the thin tape is given by the following
formula

L =
µ0

4π

1
a2

[
[F (x, z)]

a,−a

(x)
0,0

]
l,−l

(z)
0,0

=
µ0

4π

1
a2

i=4∑

i=1

k=4∑

k=1

(−1)i+k F (pi, rk) (27)

On the basis of (27) we have an analytical formula for the self
inductance of the thin tape

L =
µ0

6πa2

[
3a2l ln

l +
√

l2 + a2

a
− (

l2 + a2
)3/2

+3al2 ln
a +

√
l2 + a2

l
+ l3 + a3

]
(28)

It is exactly the Hoer’s formula for the thin tape given in [14].
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6. CASE OF LENGTH OF CONDUCTOR MUCH
GREATER THAN THE OTHER DIMENSIONS

The double definite integral is

f(x, y)=

l∫

0

l∫

0

1
ρXY

dz1 dz2 =2l


ln

l+
√

l2+r2
XY

rXY
−

√
l2+r2

XY

l
+

rXY

l


(29)

If l À rXY the function f(x, y) becomes

f(x, y) = 2l

(
ln

2l

rXY
− 1

)
(30)

and the self inductance of the rectangular conductor is expressed by
the formula

L =
µ0l

2π
[ln (2l)− 1 + G] (31)

where

G = − 1
2a2b2

b∫

0

b∫

0

a∫

0

a∫

0

ln
[
(x2 − x1)

2 + (y2 − y1)
2
]
dx1dx2dy1dy2 (32)

After calculating quadruple indefinite integral

G(x, y) = − 1
2a2b2

∫∫ ∫∫
ln

[
x2 + y2

]
dxdxdy dy

=
1

288a2b2

{
150x2y2 − 6

[
8xy3 tan−1 x

y
+ 8x3y tan−1 y

x

− (
x4 − 6x2y2 + y4

)
ln

(
x2 + y2

) ]}
(33)

we determine the self inductance of the long conductor of rectangular
cross section

L =
µ0l

2π

{
ln (2l)− 1 +

[
[G(x, y)]

a,−a

(x)
0, 0

]
b, - b

(y)
0,0

}

=
µ0l

2π



ln (2l)− 1 +

i=4∑

i=1

j=4∑

j=1

(−1)i+j G(pi, qj)



 (34)

On the basis of (34) we have the analytical formulae for the self
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inductance of the straight long conductor of rectangular cross section

L =
µ0l

2π

{
ln

2l

a
+

13
12
− 2

3

[
b

a
tan−1 a

b
+

a

b
tan−1 b

a

]

+
1
12

[(a

b

)2
−6+

(
b

a

)2
]
ln

[
1+

(a

b

)2
]
+

1
6

[
6−

(a

b

)2
]
ln

a

b

}
(35)

or

L =
µ0l

2π

{
ln

2l

b
+

13
12
− 2

3

[
b

a
tan−1 a

b
+

a

b
tan−1 b

a

]

+
1
12

[(a

b

)2
−6+

(
b

a

)2
]
ln

[
1+

(
b

a

)2
]
+

1
6

[
6−

(
b

a

)2
]
ln

b

a

}
(36)

as well as

L =
µ0l

2π

{
ln

2l

a+b
+

13
12
− 2

3

[
b

a
tan−1 a

b
+

a

b
tan−1 b

a

]
+

1
2

ln

[
1+

a

b

2

1+
(

a
b

)2

]

+
1
12

[(a

b

)2
ln

[
1 +

(
b

a

)2
]

+
(

b

a

)2

ln
[
1 +

(a

b

)2
]]}

(37)

7. COMPUTATIONAL RESULTS

For fast digital computations the following normalizations are
introduced: u = l/a and w = b/a. From (22) the per-unit-length
self inductance of the straight conductor of rectangular cross section is
then

L

l
=

µ0

π





1
30




(
1

uw2 + w3

u + u4

w2

)
−

(
1

uw2 − 3 1
u + w2

u

)
A2

−
(

1
uw2 − 3 u

w2 + u3

w2

)
A1 −

(
w2

u − 3u + u3

w2

)
A3

+
(

1
uw2 + w2

u + u3

w2 − 3 1
u − 3 u

w2 − 3u
)

A4




−1
3

(
1
w tan−1 uw

A4
+ w tan−1 u

wA4
+ u2

w tan−1 w
uA4

)

+1
4

(
ln u+A4
−u+A4

+ u
w ln w+A4

−w+A4
+ u ln 1+A4

−1+A4

)

− 1
24




w2

u ln (−1+A2)(1+A4)
(1+A2)(−1+A4) + u3

w2 ln (−1+A1)(1+A4)
(1+A1)(−1+A4)

+ 1
uw ln (−w+A2)(w+A4)

(w+A2)(−w+A4) + u3

w ln (−w+A3)(w+A4)
(w+A3)(−w+A4)

+ 1
w2 ln (−u+A1)(u+A4)

(u+A1)(−u+A4) + w2 ln (−u+A3)(u+A4)
(u+A3)(−u+A4)








(38)

where A1 =
√

1 + u2, A2 =
√

1 + w2, A3 =
√

u2 + w2 and A4 =√
1 + u2 + w2.
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From (28) the per-unit-length self inductance of the thin tape is
given by following formula

L

l
=

µ0

6π

[
3 ln

(
u+

√
1+u2

)
− 1

u

(
1+u2

)3/2+3u ln
1+
√

1+u2

u
+u2+

1
u

]
(39)

From (35), (36) and (37) the per-unit-length self inductance of
the straight long conductor of rectangular cross section is given by
following formulae

L

l
=

µ0

2π

[
ln 2u +

13
12
− 2

3

(
w tan−1 1

w
+

1
w

tan−1 w

)

+
1
12

(
1

w2
− 6 + w2

)
ln

(
1 +

1
w2

)
+

1
6

(
6− 1

w2

)
ln

1
w

]
(40)

or
L

l
=

µ0

2π

[
ln

2u

w
+

13
12
− 2

3

(
w tan−1 1

w
+

1
w

tan−1 w

)

+
1
12

(
1

w2
− 6 + w2

)
ln

(
1 + w2

)
+

1
6

(
6− w2

)
ln w

]
(41)

as well as
L

l
=

µ0

2π

{
ln

2u

1 + w
+

13
12
− 2

3

(
w tan−1 1

w
+

1
w

tan−1 w

)

+
1
2

ln
(
1+

2w

1+w2

)
+

1
12

[
1

w2
ln

(
1+w2

)
+w2 ln

(
1 +

1
w2

)]}
(42)

For given rations u = l/a and w = b/a the per-unit-length self
inductance is independent of the values of width a and thickness b.

Table 1. Per-unit-length self inductance of a rectangular conductor
for normalized length for DC or low frequency.

w = b/a = 0.1

u =

l/a

Grover
L
l

(
nH
m

) Bueno
L
l

(
nH
m

) FastHenry
L
l

(
nH
m

) Ruehli
L
l

(
nH
m

) Hoer∗

L
l

(
nH
m

) Eq. (38)
L
l

(
nH
m

) Eq. (39)
L
l

(
nH
m

) Eq. (40)
L
l

(
nH
m

)

0.01 negative negative 6.863510 6.863510 6.863510 6.863510 11.60329 negative

0.10 negative negative 57.04253 57.04253 57.04253 57.04253 70.57298 negative

1.00 170.3974 219.1475 278.7982 278.7982 278.7982 278.7982 297.3209 219.1475

10.0 675.1674 679.6645 686.3510 686.3510 686.3510 686.3510 705.7298 679.6645

100 1140.109 1140.1816 1140.857 1140.857 1140.857 1140.857 1160.329 1140.181

1000 1601.069 1600.698 1600.766 1600.764 1600.346 1600.441 1620.247 1600.698

*According to Eq. (20) from [14].
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For the chosen ratio w = b/a and different normalized lengths
of the straight conductor of rectangular cross section the calculations
of its per-unit-length self inductance have been made according to all
previous, shown above, formulae — Table 1.

8. CONCLUSIONS

In this paper, we have presented a new method for calculating self
inductance of an isolated conductor of rectangular cross section. We
have defined the self inductance of conductor of any shape and finite
length given by sixtuple definite integral. In the case of DC or
low frequency we have given general formulae for self inductance of
conductors of rectangular cross section of any dimensions including
thin tapes and “very long” conductors. By computations we have
shown that our formulae give the same results as FastHenry’s, Ruehli’s
and all Hoer’s formulae (21) and (22) for all dimensions of a conductor.
But computational results show that our formulae are numerically
more stable and accurate for all dimensions of a conductor, particularly
for long on-chip interconnections, than the others. In addition we have
also obtained analytical forms of all formulae, which are more useful
than general ones. Of course they give the same results as the general
formulae.

Our formulae are analytically simple and can also replace the
traditional working ones or tables.

These formulae can be used in the methods of numerical
calculation of AC self inductance of a rectangular conductor. Then
the cross section of the conductor is divided into rectangular subbars
(elementary bars) in which the current is assumed to be uniformly
distributed over the cross section of each subbar.
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