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Abstract—An acceleration technique for the MoM solution of
large-area metamaterial arrays is proposed that relies on numerical
extraction of the modal profile associated with the individual array
elements followed by projection of the global system equations onto a
judiciously constructed reduced solution space. To further enhance the
performance of the underlying MoM computations an IE-FFT engine
is developed that is adapted for the underlying JMCFIE formulation
and higher order quadrilateral discretization. A number of large-area
metamaterial arrays are solved and the computational statistics are
presented to reflect the advantage of the the proposed methodology.

1. INTRODUCTION

The art of metamaterial design is based on judicious configuration
of repeated sub-wavelength sized structures consisting of various
materials and geometries often regarded as unit cells or building
blocks. Obviously the design relies on our understanding of the physics
involved in the function of the building blocks. The design process
usually begins with analysis of isolated blocks and proceeds with
proper configurations to achieve novel physics. While equivalent bulk
properties such as doubly negative material indices are the aim goal,
such properties can only be guaranteed through careful design and
analysis of the individual and the integrated building blocks. Most
recently, large-area metamaterials are finding interesting applications
on platforms such as solar cells, aircrafts and planar antenna fixtures,
antenna radomes and optical sensors. This, further enhances the
need for efficient design tools for such large-area metamaterial arrays.
Hence, availability of suitable computational tools is of paramount
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importance to the successful design and analysis of metamaterials.
While a large variety of computational methods exist that can
potentially address the requirements of metamaterial design, in this
work the focus shall remain on method of moments (MoM) and a
projection based acceleration of MoM.

Barebone implementation of MoM would clearly be insufficient
for any problem of practical interest due to its O(N2)/O(N3)
memory/flops requirement. A variety of (often) interrelated meth-
ods have been used to enhance the performance of MoM all
of which exploit the low rank nature of the coupling matri-
ces defined between well separated groups of source and obser-
vation regions. Examples include fast multipole method (FMM)
(O(N log(N))/O(N log(N))) [1], integral equation fast Fourier trans-
form (IE-FFT) (O(N1.5 log(N))/O(N1.5 log(N))) method [2] and other
similar variants most of which are based on the assumption of iterative
system matrix solver. Another breed of MoM accelerators are based
on solution of a reduced system of equations [3–8]. Such methods will
yield O(N log(N))/O(N log(N)) or O(N2)/O(N3) depending on the
choice of an iterative or direct matrix solver. The difficulty with the
choice of an iterative solver is the fact that a strong preconditioner
might be needed before rapid convergence of the solver can be guaran-
teed. While the implementation of an efficient preconditioner can be
a complicated task, a good preconditioner can also lead to undesirable
computational times and memory requirements.

On the other hand, projection methods lead to significant
reductions in the effective N , hence allowing for the use of a direct
solver and eliminating the need for preconditioners even in the presence
of large problems. Moreover, although the use of a direct solver
may seem to be computationally more expensive, it significantly
reduces the computational cost when the solutions to large number
of excitations are required. This is typical to the study of large-area
metamaterial problems where the temporal response of the system to
a large collection of angles is desired. With these considerations, the
current article is based on the choice of a direct solver based projection
method.

A projection based acceleration method, as it will be detailed later
on, is based on the projection of the system equations onto a reduced
vector space and results in often dramatic reductions in the size of the
linear system to be solved. Such reduction, from approximation theory
point of view, falls into the category of loss compression techniques.
Obviously, one must beware that blind application of such compression
techniques may lead to undesirable loss of accuracy. In other words,
the key to successful implementation of a projection method lies in the
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proper generation of the projection space.
Some popular families of projection methods have been around

in the computational electromagnetics (CEM) society and have been
regarded with different terminologies such as characteristic basis
function method (CBFM) [4–8], synthetic basis function method
(SBFM) [3] and macro-basis function method (MBFM) [9] owing to the
different techniques used in the process of constructing the projection
space. These methods, have been applied to the solution of a variety
of problems involving non-penetrable, i.e., perfect electric conductor
(PEC), and penetrable (dielectric) materials and have been found to
be effective particularly when repetition is involved in the problem
of interest. Practical examples of such problems include antenna
arrays, finite periodic scatterers and two dimensional (2D) and three
dimensional (3D) metamaterial array structures. The concept has also
been applied to effectively reduce the system matrix obtained from a
wire-grid MoM model for plasmonic nanorods [9]. As a continuation
to these works, this article focuses on applying a projection method to
the surface integral equation (SIE) solution of complex 3D composites
made from penetrable dielectric and plasmonic building blocks. As it
was mentioned, the key to the successful implementation lies in the
proper generation of the projection space and this will be elaborated
in detail in Subsection 2.4 and Subsection 2.5. Lastly, some unique
physical properties are discussed in Section 3.

2. BRIEF FORMULATION

2.1. Integral Equation Formulation

A variety of integral equation (IE) formulations for penetrable object
problems exist in the literature. Most formulations rely on the well
known Stratton-Chu field representation formulas [10]. The results
reported in this article are obtained using the JMCFIE formulation as
it is reflected in (1) [11, 12].

[
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In (1), J and M represent the equivalent electrical and magnetic
surface currents on the material interface separating two homogeneous
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material regions while E inc
i and Hinc

i stand for the incident fields in
region i. At the same time, L and K are the integral operators used in
the field representation formulas and are defined in (2) and (3).
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2.2. Discretization

The integral equation formulation of Subsection 2.1 needs to be
discretized to yield a linear system of equations before it can be solved
on a digital computer. This is achieved via a discretization of the
geometry followed by assignment of a set of basis functions and a
Galerkin trial and testing procedure [11, 12]. The implementation
details of the process are well beyond the scope of this article and such
techniques are well documented in CEM literature. Here, we suffice to
mention that in all our examples a mesh of curvilinear quadrilateral
elements along with hierarchical divergence conforming basis functions
has been used [13]. Also, since a critical part of such implementation
lies in the proper evaluation of the singular integrals associated with
the IE operators we hint that an adaptive quadrature method along
with proper singularity treatment has been implemented based on [14].

2.3. Vector Space Reduction

The CBFM and the SBFM are probably the two most popular
projection based methods reported in electrical engineering literature.
Details of these projection methods can be found in numerous
articles [3–9] and we shall not repeat what is already documented in
the literature. For the sake of consistency we suffice to mention that
the original MoM system of equations has the form ZNxNXN×1 =
YN×1 where Z is the system (impedance) matrix while X and Y
respectively denote the solution and the right hand side vectors.
Instead of solving ZX = Y , one can seek an approximate solution
by projecting the problem onto a reduced vector space spanned by
U = [X1, X2, . . . , Xn]N×n by solving (UT ZU)n×nxn×1 = UT

n×NYN×1

and substituting X = Ux afterwards. The solution X obtained in this
fashion is an approximate solution to the original N × N problem
and its accuracy depends on the proper choice of the projection
space {X1, X2, . . . , Xn}. As it will be explained in the next section,
the discrete nature of the building blocks is exploited for efficient
construction of the projection space. However, it must be noted
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that similar techniques can be applied to problems with continuous
geometries as it has been reported in [4, 6, 7].

2.4. Projection Space

The unknowns in a metamaterial problem can be grouped in
accordance to the individual building blocks. Consider a 2×1 array as
depicted in Figure 1, the resulting linear problem may be written as:

[
Z11 Z12

Z21 Z22

][
I1

I2

]
=

[
F1

F2

]
(4)

The grouping of the problem unknowns as it is reflected in (4)
becomes a necessity in the way the projection spaces are constructed
in this work. The process for the generation of the projection space
can be itemized as follows:

i) Excite the individual blokes by various excitations, i.e., different
plane-waves or near field sources and populate the list of solutions
due to these excitations.

ii) Perform a truncated singular value decomposition (SVD) on the
above-mentioned population of individual block solutions. The
SVD guarantees linear independence of the resulting spanning
vectors and provides a means for controlling the size of the
projection space and the resulting reduction in problem unknowns.

It is worth mentioning that when identical building blocks are
used in the array, the above process needs to be performed only once,
hence resulting in significant reduction in the computational cost.

2.5. The Pool of Block Excitations and Block Solutions

As mentioned in the previous section, a pool of solutions needs to
be generated for the individual building blocks. It is of paramount
importance for the pool of block solutions to be able to efficiently

Ω Ω1 2

Figure 1. Partition of the array problem DoF in accordance to the
building blocks.
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reproduce the actual array solution. In other words, the resulting
projection space must simultaneously satisfy two requirements:

i) Be as small as possible.
ii) Be able to accurately reproduce the final solution of the individual

blocks as they appear in the actual array.
It is not easy to devise a general mathematical recipe that meets

the above-mentioned requirements regardless of the geometry and the
structure of the problem at hand. This is where physical intuition and
engineering experience can be incorporated into the problem solution.
It is understood that the solution of an individual block , as it appears
in the array problem, is a response to the interaction of the block with
the primary excitation as well as the secondary, the tertiary and the
other higher order sources particularly those in a close neighborhood
of the block. Hence, inspired by the Huygens principle and considering
the array nature of the metamaterial problem, the following approach
is proposed for the generation of the desired pool of block solutions.

i) Excite the building block by means of a properly distributed
spectrum of plane waves and the associated solutions. These are
often regarded as the primary solutions [6].

ii) Excite the building block by induced currents on its neighbors due
to excitations mentioned in item i) . These will be regarded as
the secondary solutions.

iii) Excite the building block by induced currents on its neighbors due
to excitations mentioned in item ii) . These will be regarded as
the tertiary solutions.
The above list can be extended to include quaternary, quinary and

other higher order effects. However, it is our experience that solutions
up the secondary level will be sufficient for the generation of the desired
projection space for the problems encountered in this work. Figure 2
schematically depicts the process by means of which the primary, the
secondary and the ternary solutions are generated followed by an SVD
truncation for the purpose of generating the block projection matrix
U1.

Figure 2. Schematic visualization of the macrobasis function
generation process.
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2.6. Array Redundancies

In metamaterial design, the interest in the solution of large finite arrays
stems from the need to obtain material properties from the operation
of large clusters of building blocks. Hence, it is important to exploit
the existing redundancies in the arrays.

Suppose an array of Nx×Ny×Nz identical building blocks is given
and suppose that each building block is associated with n unknowns.
It is clear that NxNyNzn unknowns are involved in the problem and
that N2

xN2
y N2

z block matrices should be calculated, which is in O(N2)
proportion to the number of problem unknowns if a direct MoM
formalism is adopted. However, if identical building blocks are used
across the array, the couplings in the array can be classified according
to the array displacement between individual blocks. For example,
as it is shown in Figure 3, the coupling block required for coupling
a block to its immediate neighbour on the right, i.e., Z12, occurred
twelve times across the 4×4 array while the coupling block responsible
for coupling a block to a block two steps on the right occurred eight
times in the 4 × 4 array of Figure 3. Considering these redundancies
the number of block matrices that need to be calculated reduces to
(2Nx+1)(2Ny+1)(2Nz+1) which is in linear proportion to the number
of unknowns in the problem (note that the Zij block would be different
from the Zji block).

Figure 3. Array redundancies listed for block coupling matrices Z21

and Z31.
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2.7. IE-FFT Acceleration of Far-field Interactions

As discussed in Subsection 2.6, the coupling blocks in the global
matrix can be classified in accordance to the respective distance and
orientation of the coupling on the array and the same concept applies to
the reduced version of these blocks. On the other hand, the generation
of the reduced coupling blocks requires the application of the non
reduced matrix blocks on the collection of MBFs. In this work, except
for the coupling blocks that correspond to near neighbour to neighbour
interactions, a variant of the IE-FFT accelerated MoM matrix-vector
multiplier [2] and has been implemented. The implementation details
of the accelerator are beyond this article but we suffice to mention
that the method has been adapted for efficient operation on arrays
and has been extended to include the integral operators involved in
the JMCFIE formulation for penetrable objects.

3. NUMERICAL RESULTS

The results of the proposed macrobasis approach are reported in the
following sections and cover a number of dielectric and plasmonic
metamaterials. As a sanity check, the preceding two examples include
comparisons against direct MoM solutions. It is our experience that
far field quantities such as radiation pattern can hide potentially
existing inaccuracies in near field results. Hence, for the sake of
stronger verification we have chosen to study the frequency response
of the surface tangent field energies, i.e.,

∫
S ‖ n̂ × E × n̂ ‖2 dS and

η0

∫
S ‖ n̂ × H × n̂ ‖2 dS. Note that the term energy is here used

in the mathematical sense. Both dielectric and plasmonic materials
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Figure 4. The Drude model characterization of the real and imaginary
parts of the relative dielectric constant for (a) silver and (b) ITO.
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are present in our examples. The plasmonic material used in the
presented examples is either silver or indium tin oxide (ITO). For these
materials, a Drude characterization compatible with that of [15] is used
in accordance to which the actual dielectric constants have been plotted
in Figure 4.

It is necessary to clarify that due to the limitations of human eye
and computer graphics we have decided to crop the near field plots (for
the 40× 40 arrays) into the 5× 5 central part of the array. All surface
plots visualize either the electrical or the magnetic field on the surface
of the scatterer. Each MBFs, as it occurs in the MoM formulation,
represents an electrical and a magnetic current distribution, i.e., J
and M. However, these can be easily converted to scattered fields E
and H through H = J × n̂ and E = n̂ ×M. Hence, we have chosen
to visualize E and H in all figures including scattered field plots and
MBF plots. Lastly, one must note that all figures have the same 3D
view angle and the orientation of the x, y, and z axes is consistent to
the elaboration of Figure 7(b).

Last but not least, some computational statistics are reported in
this article and compared against those of the commercial solver, CST.
Nevertheless, note that a one-to-one comparison (specially on memory
usage) will not be logical simply because CST’s results are obtained
using an iterative solver while the present method is based on a direct
solver. Also, these statistics are for the problem solution at a single
frequency point.

3.1. Dielectric Spheroid

The first example discussed here consist of a planar array of dielectric
spheroids with radius of 36 nm and a dielectric constant of εr = 30. The
lattice constant, i.e., the center to center spacing of the array elements,
is 150 nm. The structure becomes resonant at around 745THz as it can
be seen from the frequency responses in Figure 5 which is in agreement
to what is obtained by means of Mie theory [16]. Figure 5(a) studies
the agreement between MoM and the proposed macrobasis approach
for the solution of a 5 × 5 array. This is followed by the frequency
responses for the 40 × 40 array obtained by means of the proposed
method in Figure 5(b).

Figure 6 lists the first six macrobasis functions obtained using
the methodology discussed in Subsection 2.4 and Subsection 2.5. In
Figure 6 one observes that the first three modes consist of pure
magnetic dipoles, i.e., H0 through H2 followed by an electric dipole
and another two mixed modes. In [17, 18], it is mentioned that the
first resonance of dielectric sphere is a magnetic dipole mode while
the second one is an electric dipole mode and other higher order
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Figure 5. Dielectric spheroid. The frequency response of the surface
field energy in response to E = x̂e− k0ẑ·~r. MBFM and Itr respectively
refer to MBFM and iterative MoM. The E and H in the legends
respectively refer to the electrical and magnetic surface energies. At
the same time Ex and Kz indicate that the incident wave is polarized
along x̂ and propagates along ẑ. (a) Comparing MBFM results to
iterative MoM for 5× 5 array. (b) MBFM results for 40× 40 array.
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Figure 6. Dielectric spheroid. The real part of the tangential field due
to the first six MBFs generated for the array at f = 745 THz. The Ei

and the Hi captions signify electrical and magnetic field representation
of the ith MBF.

modes follow afterwards. The macrobasis plots presented here clearly
demonstrate the same concept. The near field results at the resonance
(f = 745 THz) are plotted in Figures 7, 8, 9 and 10, from which one
observes the similarity between the field on the central element(s) with
that of the third macrobasis function depicted in Figures 6(c) and 6(i).

The unit cell in this problem was discretized with 96 curvilinear
quadrilateral elements supporting a total of 3840 unknowns. This, for
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(a) (b)

Figure 7. Dielectric spheroid. Real part of the solution of the
tangential field 5×5 array at f = 745THz in response to E = x̂e− k0ẑ·~r.
E/H signifies the tangential electric/magnetic field. (a) E . (b) E on
the central element.

(a) (b)

Figure 8. Dielectric spheroid. Real part of the solution of the
tangential field 5×5 array at f = 745THz in response to E = x̂e− k0ẑ·~r.
E/H signifies the tangential electric/magnetic field. (a) H. (b) H on
the central element.

the 40 × 40 array leads to a total of 6.144 million unknowns. The
computational statistics for f = 700THz are reflected in Table 1.
For other frequencies, the number of MBFs is less than or equal to
that of f = 700THz and hence the statistics in Table 1 reflect the
worst case scenario for the dielectric spheroid problem. All of the
computational statistics reported Table 1 were obtained on a dual
Intel Xeon workstation. However, all parts of the computation were
carried out using a single thread ignoring the parallel capabilities of
the workstation. Obviously, much better times can be obtained if
an efficient parallelization is carried. Note that all computations are
carried out in double precision floating point arithmetics while the
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(a) (b)

Figure 9. Dielectric spheroid. Real part of the tangential field solution
of the 40×40 array at f = 745THz in response to E = x̂e− k0ẑ·~r. E/H
signifies the tangential electric/magnetic field.

(a) (b)

Figure 10. Dielectric spheroid. Real part of the tangential field
solution of the 40 × 40 array at f = 745THz in response to E =
x̂e− k0ẑ·~r. E/H signifies the tangential electric/magnetic field.

data reported for CST is based on a single precision floating point
arithmetics. Thus, for any meaningful comparison with CST, CST
memory usage and CPU times must be scaled accordingly. Hence,
from Table 1, it is clear that the proposed MBF approach can be very
efficient for the analysis of large-area metamaterial arrays. As such,
our model can provide a fast and accurate analysis for the performance
characterization of large metamaterial arrays. In addition, the method
allows for direct observation of the modal profile associated with the
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Table 1. Computational statistics for the dielectric spheroid problem
at f = 700THz. In the first part, from left to right, the table lists:
Array dimensions, number of quadrilateral elements, total number of
DoF, IE-FFT time spent on calculation of reduced far field blocks,
computation time for near field integrals, MBFS’ SVD threshold,
number of MBFs, computation time for MBFS, LU factorization time
for the reduced global matrix and peak memory usage dictated by the
reduce global matrix plus other overheads. The second part lists CST
statistics for the 10× 10 array.

MBFM (double precision)

Dim. Elements DoF IE-FFT NF MBF (T/N/time) LU Peak Mem.

1×1 96 3840 23 s 5221 s 0.025/16/183 s 0.01 s 4096B+0.7GB

10×10 9.6K 384K 111 s 5221 s 0.025/16/183 s 0.8 s 39.06MB+1.GB

40×40 153.6K 6.144 M 1832 s 5221 s 0.025/16/183 s 3721 s 9.76GB+1.2GB

CST (single precision)

Dim. Elements DoF CPU Time Peak Mem.

10×10 83.6 K 250.8K 33587 s 21.01GB

Figure 11. A mass-spring analogy to plasmonic resonance.

building blocks of the system. This, in return, allows for a more
intuitive tailoring of the intended physical properties of metamaterials.

3.2. Plasmonic Spheroid

This example shares the same geometry and dimensions with that
of the dielectric spheroid of previous section. The difference here
is that the spheroids are made from silver which, according to the
Drude model, behaves as a plasmonic material having a negative
dielectric constant. In [19], it has been documented that the resonant
frequency of plasmonic particles can be associated with aspect ratio
of the particle along the direction of the polarization of the incident
electrical field. Considering the Columbian nature of the electrostatic
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forces and assuming that ρm and ρe are the mass and charge density of
the free charge carriers in the particle system depicted in Figure 11, an
analogy can be drawn between the stiffness k of the mass-spring system
and ρ2

eA
2/h = ρ2

eπ
2r4/h as a stiffness parameter of the plasmonic

particle while the mass of the free charge carriers can be approximated
by ρmAh = ρmπr2h. Hence, using a mass and spring analogy, the
resonance of the system should occur at ω2

r = ρ2
eA

ρmh2 = ρ2
eπr2

ρmh2 ∝ r/h [20].
Hence, the electro-mechanical nature of the plasmonic resonance
explains why it can be at achieved with sub-wavelength structures
while it is revealed that the aspect ratio of the particle along the
incident polarization axis is a main driving factor that determines the
frequency of the resonance.

As it can be seen from the frequency responses in Figure 5, the
plasmonic array becomes resonant at around 837 THz. This is of course
in agreement with Mie theory [16] predictions. Figure 12(a) studies
the agreement between MoM and the proposed macrobasis approach
for the solution of a 5 × 5 array. This is followed by the frequency
response for the 40 × 40 array obtained by means of the proposed
method in Figure 12(b).

Figure 13 lists the first six macrobasis functions associated with
the plasmonic array. As can be seen, the modes here begin with

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

2.5e+07

750 800 850 900 950

E,Itr,Ex,Kz

E,MBFM,Ex,Kz

H,Itr,Ex,Kz

H,MBFM,Ex,Kz

0.0e+00

2.0e+08

4.0e+08

6.0e+08

8.0e+08

1.0e+09

1.2e+09

1.4e+09

1.6e+09

750 800 850 900 950

S
y
st

em
 E

n
er

g
y

E,MBFM,Ex,Kz

H,MBFM,Ex,Kz

S
y
st

em
 E

n
er

g
y

Frequency (THz) Frequency (THz)

(a) (b)

Figure 12. Plasmonic spheroid. The frequency response of the surface
field energy in response to E = x̂e− k0ẑ·~r. MBFM and Itr respectively
refer to MBFM and iterative MoM. The E and H in the legends
respectively refer to the electrical and magnetic surface energies. At
the same time Ex and Kz indicate that the incident wave was polarized
along x̂ and propagated along ẑ. The arrow pointing to the peak of the
curve indicates the actual value of the plasmonic εr at the resonance
frequency. (a) Comparing MBFM results to iterative MoM for 5 × 5
array. (b) MBFM result for 40× 40 array.
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(a) (b) (c) (d) (e) (f)E EEE E0 1 2 3 4 5E

(g) (h) (i) (j) (k) (l)H H H H HH0 1 2 3 4 5

Figure 13. Plasmonic spheroid. The real part of the tangential field
due to the first six MBFs generated for the array at f = 837.5THz.
The Ei and the Hi captions signify electrical and magnetic field
representation of the ith MBF.

(b)(a)

Figure 14. Plasmonic spheroid. Real part of the tangential field
solution of the 5 × 5 array at f = 837.5THz in response to E =
x̂e− k0ẑ·~r. E/H signifies the tangential electric/magnetic field. (a) E .
(b) E on the central element.

distributions that are more like quadrupoles while the dipolar modes
occur further down in the sixth macrobasis function and afterwards.
The first and the sixth mode are dielectric dipole modes as one expects
from the analysis of isolated plasmonic particles. However, as it can
been seen here, strong interactions have occurred between the array
elements exciting the higher order modes resulting in a mixed mode
profile. The near field results are plotted in Figure 14, Figure 15,
Figure 16 and Figure 17 where one immediately observes the similarity
between the field on the central element(s) with that of the third
macrobasis function depicted in Figure 6(d) and Figure 6(j).
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(a) (b)

Figure 15. Plasmonic spheroid. Real part of the tangential field
solution of the 5 × 5 array at f = 837.5THz in response to E =
x̂e− k0ẑ·~r. E/H signifies the tangential electric/magnetic field. (a) H.
(b) H on the central element.

(a) (b)

Figure 16. Plasmonic spheroid. Real part of the tangential field
solution of the 40 × 40 array at f = 837.5THz in response to
E = x̂e− k0ẑ·~r. E/H signifies the tangential electric/magnetic field.
(a) E on the central 5× 5 section. (b) E on the central element.

The two examples presented in Subsection 3.2 and Subsection 3.1
demonstrate the ability of our model in fast and accurate prediction
of the behaviour and the physics of metamaterial arrays.

3.3. Plasmonic Ellipsoid

A quick glance at the results of Figure 5(b) and Figure 12(b) reveals
that the resonance occurring in Figure 5(b) is magnetically dominant
while the resonance occurring in Figure 12(b) is more of electrical
nature. In metamaterial design, it is often a necessity to obtain various
kinds of resonances at given frequencies. One way to achieve this
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with plasmonic particles, is to control the effective aspect ratio of the
resonant building blocks. In [19], the controllability of the plasmonic
resonances based on the aspect ratio of the particle with respect to the
incident field has been discussed. To further demonstrate this effect,
a plasmonic ellipsoid with axis dimensions of ax = 32 nm, ay = 20nm
and az = 20nm is considered as the building block of the array. The
lattice constant d equals to 150 nm and the structure is excited by plane
waves propagating along z axis. To demonstrate the effect of the aspect
ratio versus polarization, plane wave with two different polarizations,

(a) (b)

Figure 17. Plasmonic spheroid. Real part of the tangential field
solution of the 40 × 40 array at f = 837.5THz in response to
E = x̂e− k0ẑ·~r. E/H signifies the tangential electric/magnetic field.
(a) H on the central 5× 5 section. (b) H on the central element.
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Figure 18. Plasmonic ellipsoid. The frequency response of the surface
field energy on the 40 × 40 array in response to E = x̂e− k0ẑ·~r and
E = ŷe− k0ẑ·~r. The Ex and Ey and Kz in the legend corresponds to
the polarization and propagation direction of the incident fields. The
arrow pointing to the peak of the curves indicates the actual value of
the plasmonic εr at the resonance frequencies.
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i.e., x̂ and ŷ, are considered.
Evident from Figure 18 is that with x̂ polarized incident field

the resonance shifts down 725 THz while with a ŷ polarized incident
field the resonance occurs at around 837.5THz. At both 725THz and
827.5 THz the dominant macrobasis functions begin electrical dipoles
as one can observe from Figure 19 and Figure 20. Again, the near
field plots are given Figure 21, Figure 22, Figure 23 and Figure 24.
Comparing Figure 21 and Figure 22 with Figure 19 indicates that the
resonance at 725 THZ is dominated by the first electrical dipole mode
listed in Figure 19. A similar conclusion can be made by comparing
Figure 23 and Figure 24 with Figure 20.

(g) (h) (i) (j) (k) (l)H H H H HH0 1 2 3 4 5

(a) (b) (c) (d) (e) (f)E EEE E0 1 2 3 4 5E

Figure 19. Plasmonic ellipsoid. The real part of the tangential field
due to the first six MBFs generated for the array at f = 725 THz.
The Ei and the Hi captions signify electrical and magnetic field
representation of the ith MBF.

(a) (b) (c) (d) (e) (f)E EEE E0 1 2 3 4 5E

(g) (h) (i) (j) (k) (l)H H H H HH0 1 2 3 4 5

Figure 20. Plasmonic ellipsoid. The real part of the tangential field
due to the first six MBFs generated for the array at f = 837.5THz.
The Ei and the Hi captions signify electrical and magnetic field
representation of the ith MBF.
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3.4. Core-shell

So far we have considered examples consisting of a pure dielectric or
plasmonic building block and we have observed that these structures
can exhibit electrically or magnetically dominant resonances at certain
frequencies. Nevertheless, in metamaterial design, doubly negative
materials can be realized by means of structures that exhibit
simultaneous electrical and magnetic resonances. A typical example
of such structures is the core-shell consisting of a dielectric spheroidal
core coated with certain thickness of a plasmonic material. It can

(a) (b)

Figure 21. Plasmonic ellipsoid. Real part of the tangential field
solution of the 40× 40 array in response to E = x̂e− k0ẑ·~r at 725THz.
E/H signifies the tangential electric/magnetic field. (a) E on the
central 5× 5 section. (b) E on the central element.

(b)(a)

Figure 22. Plasmonic ellipsoid. Real part of the tangential field
solution of the 40 × 40 array in response to E = x̂e− k0ẑ·~rat 725 THz.
E/H signifies the tangential electric/magnetic field. (a) H on the
central 5× 5 section. (b) H on the central element.
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(a) (b)

Figure 23. Plasmonic ellipsoid. Real part of the tangential field
solution of the 40×40 array in response to E = ŷe− k0ẑ·~r at 837.5THz.
E/H signifies the tangential electric/magnetic field. (a) E on the
central 5× 5 section. (b) E on the central element.

(a) (b)

Figure 24. Plasmonic ellipsoid. Real part of the tangential field
solution of the 40×40 array in response to E = ŷe− k0ẑ·~r at 837.5THz.
E/H signifies the tangential electric/magnetic field. (a) H on the
central 5× 5 section. (b) H on the central element.

be shown that such structures can exhibit double negative (DNG)
material properties. The core-shell structure discussed here is designed
to exhibit simultaneous electric and magnetic resonance at around
195THz. Thus, with an ITO plasmonic shell and a dielectric core with
a dielectric constant of εr = 20, the radius of the core is determined
to be 172.5 nm while the outer radius of the shell is determined to be
225 nm. The lattice constant in this case is chosen to be equals to
1000 nm and the dielectric constant of the ITO shell is characterized
via an appropriate Drude model as it has been discussed in Section 3
and depicted in Figure 4(b).
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Figure 25. Core-shell. The frequency response of the surface field
energy on the 40 × 40 array in response to E = x̂e− k0ẑ·~r. The
Ex and Kz in the legend signify the polarization and propagation
direction of the incident field. The arrow pointing to the peak of the
curve indicates the actual value of the plasmonic εr at the resonance
frequency. (a) Shell. (b) Core.

(g) (h) (i) (j) (k) (l) Core E0 1 2 3 4 5Core E Core E Core E Core E Core E

(a) (b) (c) (d) (e) (f)Shell E0 1 2 3 4 5Shell E Shell E Shell E Shell E Shell E

Figure 26. Core-shell. The real part of the tangential electric field
due to the first six MBFs generated for the array at f = 190 THz. The
Ei captions signify electrical and magnetic field representation of the
ith MBF.

Figure 25 shows the frequency response of the surface energies for
both the core and shell exterior surfaces, i.e., respectively the surface
separating the core from the shell and the surface separating the shell
from air. The first six macrobasis functions for the core-shell structure
are plotted in Figure 26 and Figure 27. Interesting enough, is the
fact that on both core and shell interfaces the first six modes appear
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(a) (b) (c) (d) (e) (f)Shell H0 1 2 3 4 5Shell H Shell H Shell H Shell H Shell H

(g) (h) (i) (j) (k) (l) Core H0 1 2 3 4 5Core H Core H Core H Core H Core H

Figure 27. Core-shell. The real part of the tangential magnetic field
due to the first six MBFs generated at f = 190THz. The Hi captions
signify electrical and magnetic field representation of the ith MBF.

(a) (b)

Figure 28. Core-shell. Real part of the tangential field solution of
the 40 × 40 array in response to E inc = x̂e− k0ẑ·~r. E/H signifies the
tangential electric/magnetic field. (a) E on the central 5 × 5 section.
(b) E on the central element.

to consist of three simple magnetic dipole modes followed by another
three electrical dipole modes. This, demonstrates the potential of the
core-shell structure for realization of a DNG medium. The near field
results for the 40 × 40 array are plotted in Figure 28 and Figure 29
where a combination of electric and magnetic modes is observed.
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(b)(a)

Figure 29. Core-shell. Real part of the tangential field solution of
the 40 × 40 array in response to E inc = x̂e− k0ẑ·~r. E/H signifies the
tangential electric/magnetic field. (a) H on the central 5 × 5 section.
(b) H on the central element.
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Figure 30. Plasmonic ring. The frequency response of the surface field
energy on the 40 × 40 array. The Ex, Ey, Kx and Kz in the legend
signify the polarization and propagation direction of the incident field.
The arrow pointing to the peak of the curve indicates the actual value of
the plasmonic εr around the resonance frequency. (a) E inc = ŷe− k0x̂·~r.
(b) E inc = x̂e− k0ẑ·~r.

3.5. Plasmonic Ring

As last example, we consider a plasmonic ring as the metamaterial
building. It has a more complex configuration for computational
modeling but provides unique features to control the underlying
physics resonances. It has be shown that the behaviour of the loop
structure can be successfully controlled by means of controlling the
the aspect ratios associated with the geometry in the transverse and
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vertical planes [21]. The plasmonic ring discussed here is a ring with
internal radius of 20 nm, external radius of 40 nm and thickness of
30 nm. The lattice constant of the array structure is chosen to be
equal to 300 nm. Similar to the plasmonic ellipsoid, the asymmetric
geometry of the cell allows for the induction of different resonances by
means of excitation of different electric field polarizations. As depicted
in Figure 30, with the excitations given as E inc = ŷe− k0x̂·~r and
E inc = x̂e− k0ẑ·~r, the structure shows resonances at around 540THz
and 555 THz respectively.

The first six macrobasis functions are listed in Figure 31. The
first two modes have identical patterns but differ from each other by

(a) (b) (c) (d) (e) (f)E EEE E0 1 2 3 4 5E

(g) (h) (i) (j) (k) (l)H H H H HH0 1 2 3 4 5

Figure 31. Plasmonic ring. The real part of the tangential field due
to the first six MBFs generated for the array at f = 550 THz. The Ei

and the Hi captions signify electrical and magnetic field representation
of the ith MBF.

(a) (b)

Figure 32. Plasmonic ellipsoid. Real part of the tangential field
solution of the 40 × 40 array in response to E inc = x̂e− k0ẑ·~r. E/H
signifies the tangential electric/magnetic field. (a) E on the central
5× 5 section. (b) E on the central element.
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a 90◦ rotation around ẑ axis. The second two modes are also identical
in pattern but differ by a 90◦ rotation around ẑ axis. Nevertheless,
the third and the fourth mode, respectively represent a magnetic and
an electric dipole mode along ẑ. A glance at the near field results in
Figure 32 and Figure 33 reveals that these solutions are very similar
to the first macrobasis function as it is listed in Figure 31(a) and
Figure 31(g). A similar analogy can be drawn between the near
field solutions of Figure 34 and Figure 35 and the second macrobasis
function listed in Figure 31(b) and Figure 31(h) where the electric
field is polarized in the loop plane and along the loop arms while the
magnetic field tends to spin around the arms of the loop.

(a) (b)

Figure 33. Plasmonic ellipsoid. Real part of the tangential field
solution of the 40 × 40 array in response to E inc = x̂e− k0ẑ·~r. E/H
signifies the tangential electric/magnetic field. (a) H on the central
5× 5 section. (b) H on the central element.

(b)(a)

Figure 34. Plasmonic ellipsoid. Real part of the tangential field
solution of the 40 × 40 array in response to E inc = ŷe− k0x̂·~r at
f = 550THz. E/H signifies the tangential electric/magnetic field.
(a) E on the central 5× 5 section. (b) E on the central element.
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(a) (b)

Figure 35. Plasmonic ellipsoid. Real part of the tangential field
solution of the 40 × 40 array in response to E inc = ŷe− k0x̂·~r at
f = 550THz. E/H signifies the tangential electric/magnetic field.
(a) H on the central 5× 5 section. (b) H on the central element.

4. CONCLUSION

The macrobasis function approach discussed here is shown to be
efficient and suitable for simulation of large metamaterial arrays
made of complex building blocks. Using the proposed technique,
a number of examples including arrays of dielectric and plasmonic
spheres, ellipsoids, core-shells and plasmonic rings are solved.
Aimed at large-area metamaterial arrays and considering the array
redundancies inherent to the problem, the presented computational
statistics indicate that the approach leads to significant computational
advantages over the existing commercial solvers. Besides the efficiency,
the method allows for gaining physical intuition to the nature of the
problem due to the presence of the modal profile and the reduced
solution that clearly reflects the contribution of various modes in the
final solution. Like any other projection based technique, successful
implementation of the the proposed MBFM relies on the proper choice
of the projection space that is achieved by means of a systematic
approach discussed in Subsection 2.4. Some unique physics involving
the numerical results are discussed tha serve as a verification to the
validity of the proposed methodology. The method can be easily
applied to arrays with more than one type of building block while using
composite building blocks can also help in improving the robustness
and accuracy of the method.
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