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Abstract—A matrix splitting domain decomposition method based
on hybrid shell vector element–boundary integral (MSDD-SVE-BI) for
three dimensional electromagnetic scattering from multiple conducting
bodies coated by thin layer dielectric is proposed. In the framework of
domain decomposition, the whole computational domains are divided
into a lot of sub-SVE-domains and boundary element domains. For
conducting body coated with thin-layer dielectric, the shell vector
element is used instead of traditional tetrahedral elements to reduce
the number of unknowns. Further, a block Gauss-Seidel type pre-
conditioner is applied to attain fast matrix splitting formulation for
the matrix connecting surface electric field and surface magnetic field.
By this method, only sub-matrix inversion is required in the SVE-BI
method, the computational time for connecting matrix can be reduced
greatly. Several numerical examples prove the accuracy and efficiency
of the present method.

1. INTRODUCTION

Recently, electromagnetic scattering from single or multiple conducting
bodies coated by thin-layer dielectric has attracted more and more
interests. Typical applications can be found in microwave integrated
circuits design, antenna array design, analysis of stealth objects and
so on.

For conductor structures coated by thin-layer material, many
numerical methods have been developed up to now. These numerical
methods can be divided two categories. The first category is
accurate boundary condition based method, including finite-difference
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time-domain, integral equation method, hybrid finite element with
boundary integral method. The conformal finite-difference time-
domain (CFDTD) approach is developed to compute scattering from
anisotropically coated bodies in [1]. The CFDTD method based
on effective constitutive parameters is presented to simulate the
electromagnetic scattering of targets with thin-coating accurately [2].
The surface integral equation (SIE) method has been developed for
scattering from arbitrary shaped conducting bodies coated with lossy
materials of arbitrary thickness in [3]. But for thin coating problems,
the SIE method is very difficult to converge into correct numerical
solutions due to very ill-posed matrix. The finite element method
(FEM) is widely used for modeling of composite conducting body and
dielectric because of its powerful ability of modeling inhomogeneous
materials [4]. In order to combine together the advantage of FEM and
boundary integral method, the hybrid FEM with boundary integral
method (FEM-BI) is proposed [5–7]. Though the FEM-BI has a good
computational property for composite conducting body and dielectric,
it is deficient for analysis of conductor structures coated by thin-layer
material because a great deal of volume elements are required.

The second category for thin-coating problems is approximate
boundary condition based method, it realizes efficient solution by sim-
plifying electromagnetic analysis, including the impedance boundary
condition (IBC) [8], thin dielectric sheet (TDS) approximation [9–12].
These methods avoid the volumetric discretization of material region,
the computational region is only limited as the surface of conductor.
A multilevel-TDS extension is also proposed for solution of conducting
body coated by multi-thin-layer materials [13, 14].

Recently, shell vector element (SVE) has been paid much attention
because of its good performance for modeling of thin materials [15, 16].
As a degenerated prism element, the SVE belongs to the second
category mentioned above, a specific field distribution along normal
direction in material region is assumed. Based on the SVE, the
volume integration can be simplified into surface integration, and fewer
elements are required compared with traditional tetrahedral elements.
In [17], hybrid shell vector element–boundary integral method (SVE-
BI) is developed by us to analyze the scattering of conducting body
coated by single thin layer material and multiple thin layers materials.

To realize efficient analysis of the scattering from multiple objects,
we resort to domain decomposition method (DDM). This is because
the entire region related to the problem is huge especially when the
separation distance between each object is electrically large, enormous
number of unknowns is required. The DDM makes it possible by the
strategy of “divide and conquer”. A DDM based on the FEM-BI
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framework is presented in [18] to analyze the scattering of multiple
objects. A DDM based on an iterative sub-structuring method is
used to solve the scattering by multiple objects [19]. A systematic
research on domain decomposition method for solving electrically large
electromagnetic problems is also done in [20].

In this paper, a hybrid matrix splitting DDM with SVE-BI
(MSDDM-SVE-BI) is developed for multiple conducting bodies coated
by thin layer dielectric. By use of a block Gauss-Seidel type pre-
conditioner, no iterative or inverse operation for the original matrix
of sub-SVE-domains is required for computation of connecting matrix,
the computational time can be reduced greatly. The rest of paper
is organized as follows: Firstly, the principle of a MSDDM-SVE-BI
method for single conducting body coated by thin layer dielectric
is introduced in Section 2. The extension of MSDDM-SVE-BI into
multiple conducting bodies coated by thin layer dielectric is presented
in Section 3. Finally, several examples are given to demonstrate the
efficiency and accuracy of the present method. Finally the conclusions
are also given.

2. THE MATRIX SPLITTING DDM FOR SINGLE
CONDUCTING BODY COATED BY THIN LAYER
DIELECTRIC

The scattering problem of single conducting body coated by thin layer
dielectric is shown in Fig. 1. The object is illuminated by an incident
wave Einc or Hinc, the n̂ is the unit normal vector on surface of the
object. Ju and Mu are the equivalent surface electric and magnetic
currents on the coating dielectric surface.
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Figure 1. The scattering problem of single conducting body coated
by thin layer dielectric.
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The E field inside the coating dielectric satisfies the following
equation:

£E = 0 (1)

where £ = ∇ × (µ−1
r ∇×)−k2

0εr, µr, εr denotes the relative
permeability and permittivity of coating dielectric, respectively. k0

is the wave number in free space.
Because the tangential electric field and tangential magnetic field

is continuous on the boundary, the boundary conditions on the surface
of coating dielectric S are written as:

n̂×E |S− = n̂×E |S+ (2)

n̂×
(

1
µr
∇×E

)
|S− = −jk0n̂× H̄ |S+ (3)

where H̄ = η0H, η0 is the wave impedance in free space.
According to the general variational principle, the functional F (E)

can be written as [4]:

F (E) =
1
2
〈£E,E〉 − 1

2
〈£E,u〉+

1
2
〈E,£u〉 (4)

where u is an arbitrary vector which satisfies the boundary
condition (2) and (3).

The arbitrary vector u is eliminated when we construct the
functional F (E) based on Equation (4), and the boundary conditions
on the surface of coating dielectric S Equation (2) and Equation (3),
the functional F (E) is expressed as follows [4]:

F (E) =
1
2

∫∫∫

V

[
1
µr

(∇×E)·(∇×E)−k2
0εrE ·E

]
dV

+jk0η0

∫∫

S
n̂ · (E×Hs)dS (5)

For dielectric region, the vector tetrahedral element is usually used
as a volume basis function to expand the electric field as:

E =
6∑

j=1

Ee
jN

e
j (6)

where the basis function of the jth edge Ne
j = (Le

j1
∇Le

j2
−Le

j2
∇Le

j1
)lej ,

j1 and j2 are the node of the jth edge of the tetrahedral element
respectively; Le

j1
and Le

j2
are the normalized volume of the tetrahedral

element; lej is the length of the jth edge of the tetrahedral element; Ee
j

is the unknown coefficient.
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For the surface integral term in Equation (5), the magnetic field
on the surface of coating dielectric can be expanded by three edges of
planar triangle on surface S as:

Hs =
3∑

j=1

Hs
j N

s
j (7)

where the basis function of the jth edge Ns
j = (Ls

j1
∇Ls

j2
−Ls

j2
∇Ls

j1
)lsj ,

j1 and j2 are the node of the jth edge of triangle element respectively;
Ls

j1
and Ls

j2
are the normalized area of triangle element; lsj is the length

of the jth edge; Hs
j is the unknown coefficient.

The FEM matrix can be written as:

[K] {E} − [B] {H} = {0} (8)

The representation of matrix K, B can be easily derived as follows:

Kij =
1
2

∫∫∫

V

[
1
µr

(∇×Ni) · (∇×Nj)−k2
0εrNi ·Nj

]
dV (9)

Bij = jk0η0

∫∫

S
n̂ · (Ni ×Nj)dS (10)

For thin layer material, a great deal of elements are required in
traditional discretization. To realize efficient solution of thin layer
material, the shell vector element can be used.

As shown in Fig. 2, there are six edge vectors along the
corresponding edges in the upper triangle and bottom triangle, and
three normal vectors. A linear function β(ς) was used to describe
the variation of the field along the normal direction, and ∇β = − n̂

d .
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Figure 2. The structure of the prism element and the shell element.
(a) The prism element. (b) The shell element.
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The βNj(j = 1, 2, 3), β′N′
j(j = 1, 2, 3) are the edge basis functions in

the upper and bottom triangle respectively. The Lj , j = 1, 2, 3 is the
normal basis function at the node-j.

By the SVE, the electric field is expanded as follows [16, 17]:

Ee =
3∑

j=1

(
Ee

uj
βNj + Ee

bjβ
′N′

j

)
+

3∑

j=1

Ee
njL

e
jn̂ (11)

where

β′ = 1− β,

Nj =
(
Le

j1∇Le
j2 − Le

j2∇Le
j1

)
lej ,

N′
j =

(
Le

j1∇Le
j2 − Le

j2∇Le
j1

)
lej

Ee
uj

: the expansion coefficient of the jth edge vector in upper
triangle
Ee

bj
: the expansion coefficient of the jth edge vector in bottom

triangle
Ee

nj : the expansion coefficient of normal vector at the node-j
lej : the length of the jth edge

With the shell vector element, Equation (8) can be written as:
∫∫∫

V

{∇× [
βNe

i + β′Ne
i + Le

i n̂
] · ∇

×µ−1
r




3∑

j=1

(
Ee

ujβNe
j + E

′e
ujβ

′Ne
j

)
+

3∑

j=1

Ee
djL

e
j n̂


− k2

0εr

[
βNe

i +β′Ne
i +Le

i n̂
]·




3∑

j=1

(
Ee

ujβNe
j +E

′e
ujβ

′Ne
j

)
+

3∑

j=1

Ee
djL

e
j n̂





dV

= jk0η0

3∑

j=1

Hs
uj

∫∫

s
Ns

i ·
(
n̂×Ns

j

)
ds (12)

For the shell element model, by using ∇β = − n̂
d and dV = dςdS,
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the volume integral can be simplified as surface integral, for example,
∫∫∫

V
(∇×βNe

i )·µ−1
r

(∇×β′Ne
j

)
dV =

∫ 1
2

− 1
2

ββ′dς

∫∫

s
(∇×Ne

i )·µ−1
r

(∇×Ne
j

)

dS +
∫ 1

2

− 1
2

β

d
dς

∫∫

s
(∇×N e

i ) · µ−1
r Se

jdS−
∫ 1

2

− 1
2

β′

d
dς

∫∫

s
Se

iµ
−1
r

(∇×N e
j

)
dS

−
∫ 1

2

− 1
2

1
d2

dς

∫∫

s
Se

i · µ−1
r Se

j dS =
d

6

∫∫

s
(∇×Ne

i ) · µ−1
r

(∇×Ne
j

)
dS

+
1
2

∫∫

s
(∇×Ne

i ) · µ−1
r Se

jdS − 1
2

∫∫

s
Se

i µ
−1
r (∇×Ne

j)dS

−1
d

∫∫

s
Se

i · µ−1
r Se

jdS (13)

∫∫∫

V
k2

0ββ′Ne
i · εrNe

jdV = k2
0

∫ 1
2

− 1
2

ββ′dς

∫∫

s
Ne

i · εrNe
jdS

= k2
0

d

6

∫∫

s
Ne

i · εrNe
jdS (14)

∫∫∫

V
(∇× Le

i n̂) · µ−1
r

(∇× β′Ne
j

)
dV =

∫ 1
2

− 1
2

β′dς

∫∫

s
(∇Le

i×n̂) · µ−1
r

(∇×Ne
j

)
dS +

∫ 1
2

− 1
2

1
d
dς

∫∫

s
(∇Le

i × n̂) · µ−1
r Se

jdS

=
d

2

∫∫

s
(∇Le

i×n̂)·µ−1
r

(∇×Ne
j

)
dS+

∫∫

s
(∇Le

i×n̂) · µ−1
r Se

jdS (15)

where Se
i = n̂ ×Ne

i , Se
j = n̂ ×Ne

j , d is the thickness of the thin-layer
dielectric.

In the FEM-BI method, the SIE is applied on the surface S. The
electric field integral equation (EFIE) and the magnetic field integral
equation (MFIE) are used as follows,

Einc = L(J̄)−K(M) (16)
H̄inc = K(J̄) + L(M) (17)

The equivalent surface electric and magnetic currents are defined
as:

J = n̂×H (18)
M = E× n̂ (19)
J̄ = n̂× H̄ (20)
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here H̄inc = η0Hinc. The integral operator L, K are expressed as,
respectively,

L(X) = jk0

∫

s′

[
X

(
r′

)
+

1
k2

0

∇∇′ ·X (
r′

)]
G

(
r, r′

)
ds′ (21)

K(X) = TY(r) +
∫

s′
X(r′)×∇G(r, r′)ds′ (22)

In Equation (22), Y(r) = X(r)× n̂, T = 1− Ω
4π . For the smooth

surface, Ω = 2π. G = e−jk0|r−r′|
4π|r−r′| is the Green’s function in free space.

The integral terms with bars in Equation (22) denote principal value
integrals.

For the SIE on the surface S, there are different formulations based
on the EFIE (16) and the MFIE (17). For different combination of
EFIE and MFIE, the condition number of final SIE matrix is also
different. Here, the TENENH type SIE [7] is used to attain accurate
numerical results due to its well-posed property. And, it can avoid the
interior resonance occurred in some cases.

By choosing Ss
i = n̂×Ni as the weighting function of the EFIE,

the tangential electric-field integral equation (TE: t̂ ·E) can be derived
as [

PTE
] {Eu}+

[
QTE

] {Hu} =
{
bTE

}
(23)

where,

P TE
ij = −

∫

S
Ss

i ·K(Nj × n̂)ds,

QTE
ij =

∫

S
Ss

i · L(η0n̂×Nj)ds,

bTE
i =

∫

S
Ss

i ·Eids

Similarly, the n̂ crossed electric field integral equation (NE: n̂×E)
can be derived by choosing n̂×Ss

i as the weighting function of the EFIE,
[
PNE

] {Eu}+
[
QNE

] {Hu} =
{
bNE

}
(24)

The tangential magnetic field integral equation (TH: t̂ ·H) can be
derived by choosing Ss

i as the weighting function of the MFIE
[
PTH

] {Eu}+
[
QTH

] {Hu} =
{
bTH

}
(25)

The n̂ crossed magnetic field integral equation (NH: n̂ ×H) can
be derived by choosing n̂× Ss

i as the weighting function of the MFIE:
[
PNH

] {Eu}+
[
QNH

] {Hu} =
{
bNH

}
(26)
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Based on the above equations, the TENENH type SIE is
constructed as follows,

[P] {Eu}+ [Q] {Hu} = {b} (27)

where,

[P] = α
[
PTE

]
+ β

[
PNE

]
+ γ

[
PNH

]

[Q] = α
[
QTE

]
+ β

[
QNE

]
+ γ

[
QNH

]

{b} = α
{
bTE

}
+ β

{
bNE

}
+ γ

{
bNH

} (28)

The parameter α, β, γ satisfies: α+β+γ = 1. More details about
the TENENH type SIE can be found in [7].

Combining Equations (8) and (27), the matrix equation of SVE-BI
is obtained: [ Kdd −Kdu 0

−Kud Kuu −B
0 P Q

]{
Ed

Eu

Hu

}
=

[ 0
0
b

]
(29)

where Ed is the expansion coefficient of normal electric field at the
mesh node, and the matrix dimension is Nd × 1. Eu is the expansion
coefficient of electric field along the edge of upper triangle, and the
matrix dimension is Nu × 1, because the bottom triangles locate on
the surface of conducting body, so the value of Eu on the bottom
triangles is zero. Hu is the expansion coefficient of magnetic field on
the surface S, and the matrix dimension is Nu × 1. Nd is the total
number of normal vector unknowns at the mesh nodes. Nu is the total
number of edge unknowns on the surface S.

The Equation (8) can be written as:
[

Kdd −Kdu

−Kud Kuu

]{
Ed

Eu

}
=

[
0
B

]
{Hu} (30)

where Kdd is a square matrix of Nd×Nd. Kdu is a matrix of Nd×Nu.
Kud is a matrix of Nu ×Nd, Kuu is a square matrix of Nu ×Nu. B
is a square matrix of Nu ×Nu.

Different from the DDM-FE-BI, no iterative or inverse operation
for matrix K will be required here. With the aid of a block Gauss-
Seidel type pre-conditioner [20], Equation (30) can be written as:

[
Kdd 0
−Kud Kuu

]−1 [
Kdd −Kdu

−Kud Kuu

]{
Ed

Eu

}

=
[

Kdd 0
−Kud Kuu

]−1 [
0
B

]
{Hu} (31)



34 Lei, Hu, and Hu

Because: [
Kdd 0
−Kud Kuu

]−1

=
[

K−1
dd 0

K−1
uuKudK−1

dd K−1
uu

]
(32)

Equation (31) can be written as:[
I −K−1

dd Kdu

0 I−K−1
uuKudK−1

dd Kdu

]{
Ed

Eu

}
=

[
0
K−1

uuB

]
{Hu} (33)

Eu can be expressed as:

{Eu} =
{
I−K−1

uuKudK−1
dd Kdu

}−1
K−1

uuB {Hu} (34)

Let {Eu} = XC · {Hu}, so

XC =
{
I−K−1

uuKudK−1
dd Kdu

}−1
K−1

uuB (35)

where XC is a square matrix of Nu × Nu, it connects the surface
electric field Eu and surface magnetic field Hu. From Equation (35),
only sub-matrix inversion is required for XC .

Substituting Equation (35) into Equation (27), we have:

([P] [XC ] + [Q ]) [Hu] = [b] (36)

In Equation (8), K is a square matrix of (Nd+Nu)×(Nd+Nu). By
the matrix splitting domain decomposition based on hybrid shell vector
element method–boundary integral (MSDD-SVE-BI), no iterative or
inverse operation for matrix K is required. The dimension of the largest
sub-matrix is only Nu ×Nu. The cost for sub-matrix Kdd and Kuu

is far less than the one for whole matrix K. Because total number of
unknowns for thin layer dielectric is reduced greatly by the SVE, the
MSDDM-SVE-BI is very suitable for analysis of multiple conducting
bodies coated by thin layer dielectric.

3. MSDDM-SVE-BI FOR MULTIPLE CONDUCTING
BODIES COATED BY THIN LAYER DIELECTRIC

The 3D electromagnetic scattering from multiple conducting bodies
coated by thin layer dielectric is shown in Fig. 3. Jum , Mum are the
equivalent surface electric and magnetic currents on the mth surface.
With DDM-SVE-BI, the concerning regions are the shell vector element
regions of each object and the boundary element regions.

Because the sub-SVE matrix is independent for each object, the
sub-SVE equation can be expressed independently. For the mth object,
Equation (30) can be written as:[

Kdd −Kdu

−Kud Kuu

]

m

{
Edm

Eum

}
=

[
0
B

]

m

{Hum} (37)
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Figure 3. The scattering problem of multiple conducting bodies
coated by thin layer dielectric materials.

where Edm is the expansion coefficient of normal electric field at the
mesh node of the mth object, and the matrix dimension is Ndm × 1.
Eum is the expansion coefficient of tangential electric field along the
upper triangle edge of the mth object, and the matrix dimension is
Num × 1. Hum is the expansion coefficient of tangential magnetic field
on the mth object surface, and the matrix dimension is Num × 1. Kdd

is a square matrix of Ndm ×Ndm , Kdu a matrix of Ndm ×Num , Kud

a matrix of Num × Ndm , Kuu a square matrix of Num × Num , B a
square matrix of Num×Num , Ndm the number of normal unknowns at
the mesh nodes of the mth object, and Num the number of tangential
edge unknowns of the mth object.

Similar to Equation (35), with a block Gauss-Seidel type pre-
conditioner, after trivial derivation, we attain

XCm =
{
I−K−1

uuKudK−1
dd Kdu

}−1

m
K−1

uum
Bm (38)

where XCm is a square matrix of Num ×Num .
Finally, the boundary integral equation for multiple objects is

obtained:
([P] [XC ] + [Q]) [Hu] = [b] (39)

Where [XC ] =




XC1 0 . . . 0
0 XC2 . . . 0
. . .
0 0 . . . XCm


, [P] and [Q] are square

matrices of Nu × Nu and Hu a column matrix of Nu × 1. Nu =
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Nu1 + Nu2 + . . .Num denotes the summation of number of tangential
edge unknowns of all objects.

As we know, the solution for XC1 ,XC2 . . . ,XCm only relies on
each SVE matrix. So the computation for XC1 ,XC2 . . . ,XCm can be
implemented in parallel. After attaining matrix XC , direct solver or
iterative methods can be used to solve Equation (39).

4. NUMERICAL RESULTS

Several examples are given to prove the accuracy and efficiency of
the matrix splitting domain decomposition method (MSDDM) based
on the SVE-BI. The results by the analytical method, the DDM-
FE-BI and the MSDDM-FE-BI method are used as comparisons,
tetrahedral elements are used as volume elements in the DDM-FE-BI
and MSDDM-FE-BI method.

4.1. Coating PEC Sphere

The first example is a coating PEC sphere, shown in Fig. 4. The
frequency is 300 MHz. k0a = 1, the thickness of the coating layer d is
a
30 . The relative permittivity of coating dielectric is εr= 4. As shown
in Fig. 5, the result of the MSDDM-SVE-BI coincides with the result
of MIE method.

The comparison between MSDDM-FE-BI and MSDDM-SVE-BI
for this problem is shown in Table 1, here mesh density is λ0

15 for
two methods. The number of unknowns is 290 in MSDDM-SVE-BI,
but the one is 578 in MSDDM-FE-BI. This is because only normal
unknown vectors are considered in dielectric region for MSDDM-
SVE-BI. Obviously, the MSDDM-SVE-BI has less memory and time
requirement than the MSDDM-FE-BI.

k  a = 10

PEC

d

Figure 4. Coating PEC sphere.
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Figure 5. The bistatic RCS of coating PEC sphere.

Table 1. The comparison of MSDDM-SVE-BI and MSDDM-FE-
BI. Bistatic RCS of a coating PEC sphere. (mesh density with
λ0
15 ). The sub-matrix KII , Kbb in FE-BI denotes the self-interaction
matrix in coating dielectric region, on the surface of coating dielectric
respectively.

Method MSDDM-FE-BI
Unknowns 578
Memory of
matrix K

1.05Mb(KII) /0.37 Mb(Kbb)

Method MSDDM-SVE-BI
Unknowns 290
Memory of
matrix K

0.044Mb(Kdd)/0.37 Mb(Kuu)

4.2. Coating PEC Cube

The second example is a coating PEC cube. The geometry is shown
in Fig. 6. The length of the cube is 0.1m, the thickness of the coated
layer is 0.001m. The wavelength is 0.1 m. The incident angle of plane
wave is θinc = 45◦, ϕinc = 0◦. The bistatic RCS of the coating PEC
cube is shown in Fig. 7. The results with MSDDM-SVE-BI agree well
with the one by the commercial software FEKO.

The comparisons between MSDDM-SVE-BI and MSDDM-FE-BI
for this problem are shown in Table 2, here mesh density is λ0

10 for
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two methods. The memory for two main sub-matrices Kdd, Kuu

are 5.2 Mb and 46.5 Mb respectively in MSDDM-SVE-BI, but the
memory requirement of KII , Kbb in MSDDM-FE-BI is 68.96 Mb,
46.5Mb respectively. Obviously, the computational time and memory
requirement in MSDDM-SVE-BI is much less than the one in MSDDM-
FE-BI.

0.1 m

Figure 6. Coating PEC cube.
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Figure 7. The bistatic RCS of coating PEC cube.

Table 2. The comparison of MSDDM-SVE-BI and MSDDM-FE-BI.
Bistatic RCS of coating PEC cube. (mesh density withλ0

10 ). The sub-
matrix KII , Kbb in FE-BI denotes the self-interaction matrix in coating
dielectric region, on the surface of coating dielectric respectively.

Method MSDDM-FE-BI
Unknowns 5348

Memory of matrix K 68.96 Mb(KII)/46.5 Mb(Kbb)
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Method MSDDM-SVE-BI
Unknowns 3218

Memory of matrix K 5.2Mb(Kdd)/46.5Mb(Kuu)
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Figure 8. Two coating PEC cubes.
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Figure 9. The bistatic RCS of two coating PEC cubes.

4.3. Two Coating PEC Cubes

The third example is two coating PEC cubes, shown in Fig. 8. The
frequency is 300MHz. The length of the cube is 0.5m, the thickness
of the coated layer is 0.02m. The distance between the centers of two
cubes is 1.6m. The relative permittivity of coated layer εr = 2.0. The
incident angle of plane wave is θ = 45◦, ϕ = 0◦. The bistatic RCS
results are shown in Fig. 9. The results by MSDDM-SVE-BI agree
well with the one by MSDDM-FE-BI very well.

The comparisons of MSDDM-SVE-BI with MSDDM-FE-BI and
DDM-FE-BI for this problem are demonstrated in Table 3. The total
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Table 3. The comparison of MSDDM-SVE-BI with MSDDM-FE-BI
and DDM-FE-BI. Bistatic RCS of two coating PEC cubes. (mesh
density with λ0

20 ). The sub-matrix KII , Kbb in FE-BI denotes the self-
interaction matrix in coating dielectric region, on the surface of coating
dielectric respectively.

Method DDM-FE-BI MSDDM-FE-BI
Total Unknowns 10688 10688

Memory of matrix K about
single coating PEC cube

68.8Mb (KII)
46.5 Mb (Kbb)

68.8Mb (KII)
46.5Mb (Kbb)

Computational time
for matrix XC

29846.8 s 19711 s

Method MSDDM-SVE-BI
Total Unknowns 6436

Memory of matrix K about
single coating PEC cube

5.2 Mb (Kdd)
46.5Mb (Kuu)

Computational time
for matrix XC

7115 s

Figure 10. 3× 2 array of coating PEC spheres.
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Table 4. The comparison of MSDDM-SVE-BI with MSDDM-FE-BI
and DDM-FE-BI. Bistatic RCS of 3× 2 array of coating PEC spheres.
(mesh density with λ0

10 ). The sub-matrix KII , Kbb in FE-BI denotes
the self-interaction matrix in coating dielectric region, on the surface
of coating dielectric respectively.

Method DDM-FE-BI MSDDM-FE-BI
Total Unknowns 3138 3138

Memory of matrix K
about single PEC

coating sphere

0.81Mb (KII)
0.33Mb (Kbb)

0.81Mb (KII)
0.33Mb (Kbb)

Computational time for
single matrix XC

22.4 s 8.7 s

Method MSDDM-SVE-BI
Total Unknowns 1644

Memory of matrix K
about single PEC

coating sphere

0.051Mb(Kdd)
0.33Mb(Kuu)

Computational time for
single matrix XC

3.2 s

unknowns are 6436, 10688, 10688 respectively for MSDDM-SVE-BI,
MSDDM-FE-BI and DDM-FE-BI. The computational time for matrix
XC in MSDDM-SVE-BI, MSDDM-FE-BI and DDM-FE-BI is 7115 s,
19711 s, 29846.8 s respectively. Obviously, the advantage of MSDDM-
SVE-BI for multiple conducting bodies coated by thin layer dielectric
is remarkable.

4.4. 3× 2 Array of Coating PEC Spheres

The fourth example is the scattering of 3 × 2 array of coating PEC
spheres located in the x-y plane. The radius of PEC sphere is 0.2m.
The thickness of dielectric coating is 0.05 m with εr = 2.0, µr = 1.0.
The distance between the centers of two spheres is 0.8λ0 in both the
x- and y-dimension as shown in Fig. 10. The excitation is x̂ polarized
plane wave propagating into the negative ẑ direction at 0.3GHz. Both
the co-polarization and cross-polarization cases are evaluated.

As shown in Fig. 11(a), the results by MSDDM-SVE-BI also agree
very well with the one of the Moment of Method (MoM), and the one of
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MSDDM-FE-BI for co-polarization case. About the cross-polarization
case, the results by MSDDM-SVE-BI also agree with the results by the
MSDDM-FE-BI and DDM-FE-BI, from Fig. 11(b).

Table 4 demonstrates the comparisons between MSDDM-SVE-BI,
MSDDM-FE-BI and DDM-FE-BI. In the MSDDM-FE-BI, the total
number of unknowns is 3138, the computational time for single matrix
XC are 8.7 seconds, but in the MSDDM-SVE-BI, the total number of
unknowns is only 1644, the computational time for single matrix XC

are only 3.2 seconds. To solve single matrix XC , traditional DDM-FE-
BI requires computational time of 22.4 s.
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Figure 11. The bistatic RCS of 3× 2 array of coating PEC spheres.
(a) Co-polarization. (b) Cross-polarization.

Table 5. The comparison of MSDDM-SVE-BI ,MSDDM-FE-BI and
DDM-FE-BI. Bistatic RCS of 5 × 5 array of coating PEC spheres.
(mesh density with λ0

10 ). The sub-matrix KII , Kbb in FE-BI denotes
the self-interaction matrix in coating dielectric region, on the surface
of coating dielectric respectively.

Method DDM-FE-BI MSDDM-FE-BI
Total Unknowns 13075 13075

Memory of matrix K about
single coating PEC sphere

0.81Mb (KII)
0.33 Mb (Kbb)

0.81Mb (KII)
0.33Mb (Kbb)

Computational time
for matrix XC

560 s 207 s
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Method MSDDM-SVE-BI
Total Unknowns 6850

Memory of matrix K about
single coating PEC sphere

0.051Mb (Kdd)
0.33Mb (Kuu)

Computational time
for matrix XC

74 s

Figure 12. 5× 5 array of coating PEC spheres.

4.5. 5× 5 Array of Coating PEC Spheres

The fifth example is the scattering of 5 × 5 array of coating PEC
spheres located in the x-y plane. The radius of PEC sphere is 0.2m.
The thickness of dielectric coating is 0.05m with εr = 2.0, µr = 1.0.
The excitation is x̂ polarized plane wave propagating into the negative
ẑ direction at 0.3 GHz. The distance between the centers of two spheres
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is 0.8λ0 in both the x- and y-dimension as shown in Fig. 12. Both the
co-polarization and cross-polarization cases are evaluated.

As shown in Fig. 13(a), the results by the present method agree
well with the results of MSDDM-FE-BI and DDM-FE-BI for the co-
polarization case. About the cross-polarization case, as shown in
Fig. 13(b), the results by MSDDM-SVE-BI does not agree so well with
the results by the MSDDM-FE-BI and DDM-FE-BI, this is because
the relatively weak interactions between elements of this array cannot
be evaluated accurately by the SVE-BI method.

The comparison of MSDDM-SVE-BI, DDM-FE-BI and MSDDM-
FE-BI is shown in Table 5. The Computational time for matrix XC by
DDM-FE-BI, MSDDM-FE-BI and MSDDM-SVE-BI are 560 s, 207 s,
74 s, respectively.

4.6. Two Coating PEC Spheres

The final example is the scattering of two coating PEC spheres located
in the x-y plane, as shown in Fig. 14. The diameter of PEC sphere is
3.0m. The thickness of dielectric coating is 0.02 m with εr = 2.0−j1.5,
µr = 1.0. The excitation is x̂ polarized plane wave propagating into
the negative ẑ direction at 0.3 GHz. The distance between the centers
of two spheres is 3.5λ0. Both the co-polarization and cross-polarization
cases are evaluated.

As shown in Fig. 15, the results by the present method agree well
with the results of MSDDM-FE-BI both with the co-polarization and
the cross-polarization. The total unknowns required by the MSDDM-
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Figure 13. The Bistatic RCS of 5× 5 array of coating PEC spheres.
(a) Co-polarization. (b) Cross-polarization.
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Figure 14. Two coating PEC spheres.
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Figure 15. The bistatic RCS of two coating PEC spheres. (a) Co-
polarization (b) Cross-polarization.

FE-BI and MSDDM-SVE-BI are 61652, 42746 respectively. The total
storage requirement of the MSDDM-SVE-BI is nearly half of the one
of the MSDDM-FE-BI. The above examples demonstrate the present
method is very efficient for multiple PECs coated by thin materials.

5. CONCLUSIONS

In this paper, the matrix splitting domain decomposition method based
on hybrid shell vector element–boundary integral (MSDDM-SVE-BI)
is developed for analyzing multiple conducting bodies coated by thin
layer dielectric. Compared with traditional tetrahedral elements, the
shell vector elements reduce the number of unknowns greatly. Further,
matrix splitting domain decomposition method based on a block
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Gauss-Seidel type pre-conditioner is used for expediting the solution
of connecting matrix. Based on this method, no iterative or inverse
operation for the original SVE matrix is required, the computational
time for connecting matrix can be reduced greatly. Typical numerical
results show that MSDDM-SVE-BI is accurate, efficient method for
electromagnetic scattering from multiple conducting bodies coated by
thin layer dielectric.

Although the present method enhances the computational ability
compared with DDM-FE-BI and MSDDM-FE-BI, fast algorithms are
still required to incorporate into it for larger problems. Some direct
methods like LU decomposition, hierarchical matrix method, and fast
iterative algorithms like multilevel fast multipole algorithm (MLFMA)
are appropriate choices. This work is in process.
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