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Abstract—This paper proposes a new method to display microwave
images of breast tissue, based on estimation of local microwave velocity
from time of flight measurements. Its computational demands are low
compared with tomography. It has two major components: 1) the
estimation of the travel time of microwaves across the tissue between a
set of antennae using a wavelet decomposition, and 2) the estimation
of the microwave velocity field from the set of travel times using a low
dimensional set of radial basis functions to model local velocity. The
technique is evaluated in 2-D on clinical MR-based numerical breast
phantoms incorporated in Finite-Difference Time-Domain simulations.
The basis functions, used with a regularisation scheme to improve
numerical stability, reduce the dimensionality of the inverse problem
for computational efficiency and also to improve the robustness to
error in velocity estimation. The results support previously published
findings that the wavelet transform is suitable for robust measurement
of time of flight even in clinically significant simulations, and shows
that the velocity contrast images can be constructed so different
regions of breast tissue type can be distinguished. In particular, the
presence of a tumour is clearly detected, demonstrating the potential
of this approach for breast screening. Keywords: Biomedical signal
processing; Microwave imaging; Image reconstruction.
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1. INTRODUCTION

Breast cancer represents one in five new cancer cases in women, making
it the most frequent cancer among women worldwide [1]. X-ray
mammography is currently the gold standard method for breast cancer
detection, with ultrasound used in clinic to follow up potential tumours
but suffers from several limitations [2, 3] such as high false-positive
and false-negative rates, exposure to ionizing radiation, and reduced
efficiency when imaging women with radiographically dense breasts.
Ultrasound is operator dependent and offers poor tissue contrast.

These limitations have motivated the development of new
techniques for breast cancer detection. A promising alternative is
microwave imaging [4–6]. The basis for breast microwave imaging
is the dielectric contrast between healthy and malignant tissues at
microwave frequency [7, 8]. Microwave imaging also avoids the use
of ionizing radiation, and could be implemented as a reasonably cheap
and portable device.

Image reconstruction follows one of two methods: tomographic
reconstruction and radar-based imaging, or some combination of
these. In tomography, the goal is to reconstruct the electrical
properties of the breast. Inverse scattering approaches using FDTD
models have proved most successful in complex images [9, 10] but
require multiple processors to achieve a throughput appropriate for
clinical use [10, 11]. To address this problem models with reduced
dimensionality have been used in the forward path, for example in [9].
In radar based imaging the goal is to create a contrast image of
breast tissue, of a type familiar to clinicians through, for example,
B-mode ultrasound. Beamforming techniques (for example delay and
sum, or more sophisticated techniques to optimise signal to noise ratio
such as Capon beamformers) are used to create an image from the
backscattered signals, but their performance deteriorates in images
with high velocity differences. Tumours may be identified as high
scattering regions [12–14].

In this article, we consider a new approach which uses time
of arrival of the transmitted signals to derive an image for velocity
contrast in the tissue, providing clinical information in a similar format
to the B-mode ultrasound image. Following [15, 16] the time of arrival
of signals is identified using a wavelet decomposition. Lazaro et
al. [16] showed that wavelets were a robust method of matching time
domain signals even in a dispersive medium such as breast tissue,
as they can handle translated and scaled versions of a waveform.
A particular advantage of the method is that it largely avoids the
problem of the large skin reflection which is seen in the radar based
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approaches [17, 18], but still avoids a solution to the inverse scattering
problem, maintaining the lower computational requirements of time of
arrival approaches.

A radial basis function network (RBF) is then used to estimate the
velocity distribution over the breast. An RBF network reconstructs
the image using a low dimensional but continuous model which
provides a rapid solution to the inverse problem, and has been applied
successfully in fields [9, 19–22], which share with clinical microwave
imaging problems of dispersion and high scattering. The linearity
inherent in the method ensures that the error surface presents a single
minimum (and no local minima) which can be found in a single matrix
operation; hence the method is suited well for use in the clinic. The
dimension of the model is related to the final resolution required, and
for microwave imaging may be kept much lower than the normal grid
size used in tomography since there is no need to propagate the forward
scattering solution. The method automatically provides interpolation
to provide a continuous velocity estimation from a set of imperfect
measurements.

The main assumption in the model is that the velocity can be
represented by a first order Taylor expansion. Since the purpose of
the technique is to provide images for clinicians, quantitative errors
resulting from a first order approximation are not important-contrast
rather than exact values are needed. The results are displayed in terms
of permittivity through an approximate relationship approximation
between velocity, to make them easier to compare with the simulations
and other methods.

The basis function model of the breast used here differs from [9]
in that the basis functions are used to represent velocity and therefore
can be related directly to time of flight measurements, rather than
being used to represent dielectric properties within a forward scattering
framework.

To illustrate and evaluate the method it is tested on 2-D
simulations of dense and fatty breasts derived from clinical MR models
and taken from the Wisconsin database [23]. This represents a
complex and challenging environment, chosen as a clinically significant
environment which allows our results to be compared with other
methods using the same database (for example [5]). It is significantly
more complex than the experiments published using the wavelet
method by Lazaro et al. [16]. The system simulated uses a pulse
excitation similar to that currently undergoing clinical trials in Bristol
Frenchay Hospital [14].

The results presented are preliminary and do not include a fully
dispersive model.
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2. METHODS

The approach is based on estimating the spatial group velocity
distribution c(X) from a collection of microwave travel times across
the tissues.

The local velocity in different types of tissue varies with their
relative permittivity. For a non-dispersive medium, it depends on the
local relative permittivity, ε′r(X) as follows:

c(X) ≈
√

1
µεoε′r(X)

(1)

where µo is the permeability of free space (and tissue), ε′r the real part
of the relative permittivity and εo the permittivity of free space. Since
over the range of frequencies of interest in this paper the variation in
velocity with frequency is small [8]. Eq. (1) is a useful approximation,
and is used to relate velocity and permittivity in later sections.

The time-of-flight (ToF) between a transmitting antenna Tm and
a receiving antenna Rn can be approximated by the integral, along the
straight line path between them, of the inverse velocity:

∆tmn =
∫ Rn

Tm

dl

c(X)
(2)

In the following, we focus on the 2-D problem, i.e., the estimation
of the velocity c(X) over a plane. The parameter X is therefore a
2-element vector giving the position in the plane of interest. The
equations developed in this section remain valid for the 3-D case.

The method requires an accurate estimation of the travel times
between antenna pairs. The technique developed for this purpose
is described in the next section. Once these are established, the
estimation of the velocity field c(X) becomes an inverse problem,
seeking to recover a scalar function from line-integral measurements.
A radial basis function (RBF) network, spaced regularly over the
tissue region, is used to model the velocity field. Its input is the
set of ToF values and its output is a linear combination of basis
functions representing local velocity. The magnitude of each function
(representing local velocity) can be determined in a single matrix
operation, quickly providing an estimate of the microwave velocity
distribution (Subsection 2.2).

2.1. Time-of-Flight Estimation

The wavelet transform develops a signal representation based in its
similarity to a set of scaled and shifted basis functions, of a single time
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limited function, the mother wavelet. The information it contains
is related to the frequency content of the signal. It is superior to
the Fourier transform for certain types of signal and application in
localising the signal in frequency and in time simultaneously. A number
of mother wavelets are possible, but since microwave systems typically
generate Gaussian-like excitation pulses, a complex Gaussian wavelet
was chosen.

For a given signal f and mother wavelet ψ, the continuous wavelet
transform at scale a and time τ is defined as:

Tf (a, τ) =

∞∫

−∞
f(t)

1√
a
ψ∗

(
t− τ

a

)
dt (3)

where ∗ is the complex conjugate operator. Tf (a, τ) can be interpreted
as a measure of the match between the signal and a scaled and delayed
wavelet, ψ(t).

Estimation of time of flight then requires the signal to be matched
between transmitter and receiver. A simple method was used, which
estimated the position of the maximum power summed over a set of
scales ak in the pulse received. Using a smaller number of scales in the
sum may increase robustness to noise but may lose resolution, and a
suitable range of values, ao to a1, was chosen empirically. Hence, the
time of flight τToF can be written as follows:

τToF = arg max
τ

a1∑

k=ao

∣∣Tf+(ak, τ)
∣∣ (4)

Figure 1 shows the real and imaginary parts of the complex
Gaussian mother wavelet. Fig. 2 gives an example of a microwave
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Figure 1. Real (plain line) and imaginary (dotted line) part of the
complex Gaussian mother wavelet.
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Figure 2. (a) Example of a simulated microwave signal and (b)
map of the corresponding wavelet coefficients (absolute value). The
x-coordinate of the maximum is used to calculate the ToF between
scales ao = 30, a1 = 130.

signal, together with the corresponding wavelet coefficients across
scales and time delays.

For use in localising the received signal, Pourvoyeur, et al. [15]
used the analytical signals f+(t) rather than the signal itself f(t):

f+(t) = f(t) + jH {f(t)} (5)

where H {.} is the Hilbert transform operator. This complex extension
of the signal was found to increase the robustness and accuracy of the
estimation.

2.2. RBF Network: Solution of the Inverse Problem

Assume that the velocity can be represented using a first order Taylor
series:

c(X) = cmean + ∆c(X) (6)

where cmean is the mean velocity, determined from the set of ToF
estimations, and ∆c(X) the local fluctuation term to be estimated.
Assuming that the fluctuations of the velocity field are small compared
to the mean velocity, one can write the inverse:

1
c(X)

=
1

cmean + ∆c(X)
=

1

cmean

(
1 + ∆c(X)

cmean

) (7)
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The traversal time ∆tmn between two transmit antenna (Tm) and
receive antenna (Rn):

∆tmn =
∫ n

m

dl

c(X)
=

∫ n

m

1
cmean

(
1− ∆c(X)

cmean

)
dl (8)

and, with some rearrangement:

∆tmn =
dmn

cmean
− 1

c2
mean

∫ Tm

Rn
∆c(X)dl (9)

where dmn is the distance between the transmitter Tm and the receiver
Rn. Provided that several line-integral measurements along different
directions are available, an estimate of the velocity fluctuation field
∆c(X) can therefore be reconstructed by inverting this expression.

An RBF network consists of a set of kernels normally placed on
regular grid across the image. Each may be specified by its centre
position θk and weight wk. The parameter required is then represented
by a linear combination of Nf RBFs f(θ, k) with different weights and
centres:

∆c(X) =
Nf∑

k=1

wkf (‖X − θk‖) (10)

where f is a RBF, θk and wk the centre and weight of the kth
function, and ||.|| a norm operator. For computational efficiency, and
following [9] it is convenient to choose the RBF as a Gaussian (the most
common choice). The norm is taken to be the Euclidean distance:

f (‖X − θk‖) = exp
(
−β ‖X − θk‖2

)
(11)

Using Eq. (10) and Eq. (11), Eq. (9) can be written as:

dmn

cmean
−∆tmn =

1
c2
mean

∫ Rn

Tm

Nf∑

k=1

wk exp
(
−β ‖X − θk‖2

)
dl (12)

=
1

c2
mean

Nf∑

k=1

wk

∫ Rn

Tm
exp

(
−β ‖X − θk‖2

)
dl (13)

In Eq. (13), dmn, the distance between the transmitter Tm and the
receiver Rn, can easily be calculated from the geometry of the antenna
array. Additionally, the time-of-flight ∆tmn between Tm and Rn can
be estimated directly from the corresponding microwave signal, as seen
in the previous section. As a result, the left hand side of Eq. (13) is
known. Three parameters need to be adjusted so the RBF network
“fits” the line-integral measurements: the RBF scaling factor β, the
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RBF centres θk, and the output weights wk. Once the parameters
β and θk have been chosen, the inverse problem becomes linear and
finding the weights wk is straightforward. (Note that the choice of the
parameters β and θk is explained in the next section). Define:

umn =
dmn

cmean
−∆tmn (14)

as the line-integral measurement for the transmitting antenna Tm and
receiving antenna Rn,

W =
[

w1 w2 . . . wNf

]T (15)

as the vector of weights, and

Amn =
1

c2
mean




∫ Rn
Tm exp

(
−β ‖X − θ1‖2

)
dl

∫ Rn
Tm exp

(
−β ‖X − θ2‖2

)
dl

. . .∫ Rn
Tm exp

(
−β

∥∥X − θNf

∥∥2
)

dl




T

(16)

as the vector of RBF integrals between Tm and Rn. Eq. (13) can be
re-written as:

umn = AmnW (17)

Or, for all pairs of transmitters and receivers available:

U = AW (18)

where U is the Np × 1 vector of line-integral measurements, A is the
Np × Nf matrix including the RBF integrals, and W is the Nf × 1
vector of weights to be solved. A solution can be found by a least
square method:

W =
(
AT A + λI

)−1
AT U (19)

where λ is a regularization parameter used to improve the conditioning
of the problem. From the knowledge of the vector W (i.e., the
weights wk of the RBFs), the velocity fluctuation field ∆c(X) can
be reconstructed by Eq. (10), and the velocity distribution is given
by Eq. (6). The final step is the reconstruction of the permittivity
distribution, which is done through Eq. (1).

3. DESCRIPTION OF THE EXPERIMENTS

3.1. Breast Models

Phantoms from the University of Wisconsin numerical breast phantom
repository [23] were used to validate the method. This online database
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provides a collection of anatomically realistic numerical breast
phantoms derived from series of T1-weighted magnetic resonance (MR)
images of healthy patients. Dielectric properties of breast tissues are
incorporated in the models from detailed measurements [8, 24]. Each
phantom consists of a 3-D grid of cubic voxels, with a spatial resolution
of 0.5 mm in each directions.

The data were used within a non-dispersive model to create
permittivity and conductivity maps of tissues at 6 GHz. 2-D cross
sections on the coronal plane were then extracted and used to run
2-D electromagnetic simulations based on the Finite-Difference Time-
Domain (FDTD) method [25].

The phantoms are immersed in a matching medium of relative
permittivity εr = 10, and include a roughly 1.5-mm-thick skin
layer. Since the database does not provide pathological cases, a
malignant tumour was simulated by adding to the breast phantoms
a homogeneous 6-mm-radius sphere with a relative permittivity of
εr = 50 [23]. Each phantom is categorized according to the Breast
Imaging Reporting and Database System of the American College
of Radiology [26], designed to provide a standardized terminology
and classification system. For this preliminary study, four different
phantoms were used: Model 1: healthy mostly fatty, Model 2: as
Model 1 but with simulated tumour, Model 3: scattered fibro-glandular
model and Model 4: heterogeneously dense.

3.2. Data Acquisition

A simple antenna array, consisting of 24 point source antennas evenly
distributed on the perimeter of a circle, was positioned around the
phantom, as shown in Fig. 3(a) (which shows too the dielectric
distribution in Model 1). Each antenna was used in turn to transmit
and the ToFs found to all other antennas acting as receivers (Np(Np−1)
ToFs in all). An in-house Finite-Difference Time-Domain (FDTD)
code was used to simulate 2-D multistatic microwave measurements,
based on the corresponding permittivity and conductivity maps. The
antennas were excited with a modulated Gaussian pulse of 6 GHz centre
frequency (Fig. 3(c)).

3.3. RBF Network Parameters

To position the RBF centres, a preliminary stage of skin surface
reconstruction was performed, using the algorithm developed by
Sarafianou, et al. [27]. The RBF centres were automatically and
regularly positioned within a perimeter slightly larger than the one
defined by the skin reconstruction. This step is not mandatory, and
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Figure 3. Model 1: (a) Relative permittivity map and positions of
the antennas (white diamonds). ε′r > 32: Fibroconnective/glandular
tissues. ε′r < 7: Fatty tissue. 7 < ε′r < 32: Transitional areas. The
skin has ε′r = 35. (b) Positions of the RBF centres (black dots) on
5mm square grid, and the skin reconstruction (white line); Nf = 465.
(c) The excitation pulse and its spectrum.

the RBF centres could be placed either regularly or randomly within
the perimeter of the antenna array. Fig. 3(b) shows typical positions
of the basis function centres.

The other parameter to be initialised is the parameter β, the
radius of each RBF. Since the RBF centres are distributed on a
regular grid, 1/β is simply the distance between the RBF centres
(4mm or 5 mm depending on the model), although their placement
may be determined more carefully using, for example, the k-nearest
neighbours’ algorithm [28]. To improve robustness a degree of
regularisation was used. The value of the regularization parameter
λ was set empirically to λ = 5× 10−5

∥∥AT A
∥∥. In addition ToFs which

were significantly in error from the estimated mean were discarded as
being physically very unlikely.

The value of cmean is chosen using the mean of the velocity
estimated from each ToF.

As an example, the relative permittivity εr map of Model 1 is
shown in Fig. 3(a), together with details of the RBF network, skin
reconstruction and excitation.

4. RESULTS

4.1. Time-of-flight Estimations

To establish grounds for comparison the travel time between the
transmitting antenna m and the receiving antenna n was estimated
for every antenna pair using the MR-based permittivity maps. It
should be underlined that these ToFs, ∆tmn, ref which were taken as
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Table 1. Mean relative errors in time of flight measurements for the
four models.

Model 1 Model 2 Model 3 Model 4
Wavelet method 1.8% 1.7% 3.5% 5.6%

Correlation 3.7% 4.3% 5.8 % 10.4%

reference, correspond to a straight line path calculation and hence
do not necessarily represent the true ToFs, as they do not include
microwave propagation phenomena (such as diffraction).

The ToFs were then estimated using the wavelet technique,
∆tmn,estim. The two sets of ToFs were close, even when the
transmitting and receiving antennas were on opposite sides of the
breast, although the errors were larger in the highly attenuating
fibro-glandular model. Relatively large errors also occur when the
path between the transmitting antenna and the receiving antenna is
tangential to the skin, probably because this configuration leads to
diffraction phenomena. As a measure of precision, the mean relative
error was calculated for each phantom as:

1
(Np)(Np − 1)

Np∑

m=1

Np∑

n=1,n6=i

|∆tmn,estim −∆tmn,ref |
∆tmn,ref

(20)

where Np = 24 is the total number of antenna, ∆tmn,estim the estimated
ToF for the jth signal, and ∆tmn,ref the reference ToF for the signal
from transmitter m to receiver n. Table 1 shows the mean relative
errors in ToFs in each model and compares them with the equivalent
using the traditional correlation method to match the transmitted and
received signals.

4.2. Velocity and Permittivity Profiles

Following the ToF estimation step, the RBF network technique was
used to reconstruct velocity fields and, using Eq. (1) obtain relative
permittivity distributions. Relative permittivity, ε′r, rather than
velocity is displayed so the results can be compared more easily with
the original images and the data available in the breast phantom
repository [23]. Figs. 4–6 compare the variation in ε′r along each of the
lines shown in the MR maps from which the simulations are derived,
for three of the four phantoms. The profile for Model 1 was similar to
that for Model 2, but without the additional high permittivity region
of the tumour.
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We can first observe that estimations are generally relatively close
to the ground truth. In particular, uniform regions of tissue are
estimated well. However sharp changes and narrow regions are not
identified so successfully; this is because of the smoothing effect of
the Gaussian kernels and the relatively sparse spacing (centres placed
5mm apart). This can be seen especially clearly at the skin and in the
low peak values of εr, for example in Fig. 4 where the general profile
within the breast is reproduced well. Values of εr in uniform regions
is estimated well in both Figs. 4 and 5 (and in Model 1).

For the last model (Fig. 6), the main high and low permittivity
regions are also detected, although the more highly attenuating
dense tissue and varying permittivity profile makes this case more
challenging.
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permittivity map (ε′r) and lines showing profiles taken. Estimated (in
blue) and ground truth (in red) permittivity ε′r across, (b) profile 1,
(c) profile 2, and (d) profile 3.
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permittivity map (ε′r) and lines showing profiles taken. Estimated
(in blue) and ground truth (in red) permittivity ε′r for (b) profile 1,
(c) profile 2, and (d) profile 3.

4.3. Permittivity Images

The main purpose of this technique is to provide a qualitative image of
the breast which could be of use to clinicians rather than to quantify the
local electrical properties. It is clear that the RBFs do not reproduce
values faithfully in regions with rapidly changing properties. Again,
relative permittivity, ε′r, is shown rather than velocity (using Eq. (1))
to conform with the tissue properties available in the breast phantom
repository [23], and to facilitate comparison with other methods.
Contrast images are presented in Fig. 7 to Fig. 10, together with the
MR maps from which the simulation was derived.

In the first model (Fig. 7), a qualitative image of the centre part
of the simulated breast is obtained with the contrast in permittivity
clearly illustrated. When a tumour is present (second phantom,
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Figure 8. Mostly fatty and pathological model: (a) Estimated ε′r field,
and (b) true ε′r field (dB scale).
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Figure 9. Scattered fibro-glandular model: (a) Estimated ε′r field,
and (b) true ε′r field (dB scale).

Fig. 8), the estimation of fatty tissues remains relatively good and
the central high permittivity region is still visible. Also, the tumour at
2 o’clock is properly detected since the contrast between the tumour
and fatty tissues is significant because of the differences in electrical
properties. The fibro-glandular and heterogeneously dense models
(Figs. 9 and 10) contains multiple regions of high permittivity (fibro-
connective, glandular and transitional tissues). Some of these regions
are limited in size and scattered in the tissues, which complicates the
estimation. However, the largest regions, at 10 o’clock and in the
centre, respectively, are distinguished as well as the fatty tissues.
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Figure 10. Heterogeneously dense model: (a) Estimated ε′r field, and
(b) true ε′r field (dB scale).

4.4. Discussion

A potentially real time method to provide contrast images to assist in
tumour detection has been presented. It uses a multi-basis function
with an optimisation method based on estimated ToF measurements.
Because of the relatively small number of basis functions it does not
return the true values of permittivity, especially in regions of rapid
tissue variation, but it provides contrast maps which allow regions
such as tumours to be identified.

It is assumed that the travel time between a transmitter and a
receiver can be formulated as the integral, along the straight line path,
of the inverse of the velocity. In fact, since microwave propagation is
characterized by phenomena such as diffraction, scattering, or multiple
reflections, the path between the transmitter and the receiver is more
likely to be a curve. Therefore the straight line integral is only an
approximation to the true ToF. This is the case especially for signals
travelling tangentially to the breast surface (i.e., when transmit and
receive antenna are close). This effect is reduced by averaging across
many different signal paths as different antenna are used in turn as the
transmitter.

It is also assumed that the differences in velocity across the tissue
can be approximated as a first order change on an average velocity. In
fact the variation in dielectric constant may be as high as a factor of ten
between fatty tissue and malignant tissue [8] and so this assumption
may lead to further error in absolute values (the difference is less in
denser breast tissue.

The time of flight estimation returns an average velocity, whereas
in for real media the velocity will be frequency dependent. The only
significance in this for the RBF model is further inaccuracy in absolute
values of relative permittivity. However more significant is its effect in
time of flight estimation. The two pole Debye model in [8] suggests that
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over the frequency range 3–8 GHz (around the 3-dB points in Fig. 3(c))
the change in velocity in tissue is within 3% although the difference
in conductivity is larger (up to 16%) (less for very adipose issue).
Over a similar frequency range Lazaro et al. [16] suggest that the
wavelet transform should be robust to time of flight measurements with
dispersion. However modelling of dispersion in the simulated received
signals using the 2-pole Debye model and using the predominant tissue
type (following [8] suggests that the mean relative errors for the wavelet
method in Table 1 become between 2.12% and 7%. Since the method
is sensitive to ToF error (as evidenced in the different images in Figs. 4
to 6, some deterioration of the images would be expected (although the
error for most tissue types is still lower than that for the non-dispersive
simulation in the fibro-glandular case in Fig. 6).

Reconstruction, even using an inverse scattering model, reduces
contrast especially for small regions [5]. This effect is seen in
all methods and is clear in the results presented in this paper.
Quantitatively the effect is seen most clearly in the cross sectional
profiles of Figs. 4–6. It is clear that the absolute estimate of
permittivity, even in cases in which the variation is low, is reduced
by up to about 33%, with peak values even more adversely affected.
However since in clinical use the requirement is for contrast imaging
rather than a full quantitative reconstruction this is not necessarily a
problem; for example B-mode ultrasound has widespread clinical use
and presents only contrast information (often quite weak contrast).
However of more serious concern is the balance between contrast and
size of tumour because of the smoothing effect of the radial basis
functions. Although the 12 mm lesion is distinguished in Fig. 5,
both this figure and Fig. 6 suggest that the maximum spatial rate
change of relative permittivity is limited to around 7 over 1 cm,
demonstrating the trade-off between contrast and spatial resolution for
tumour detection. Different architectures of the network and different
RBFs, such as polyharmonic spline functions, will be investigated to
allow more flexibility in the estimation of quick-changing profiles.

For comparison, the results were compared with an inverse
scattering solution by Shea et al. using simulations from the same
database [5]. As far as can be assessed from the figures (especially
Fig. 6 in [5]) the quantitative results are not that different. The
underestimate in relative permittivity over large areas is similar
although Shea’s method gives a better estimate of the true value in
regions of rapid variation of permittivity. This is at the expense of a
much longer execution time. Shea’s model includes a 3-D simulation
of data acquired at four frequencies between 1.0 and 2.5 GHz, with 40
offset antenna in five elliptical rings. Although the dispersive effect
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over this range of frequency is likely to be small a 3-D model is likely
to include greater scattering and hence measurement error, and the
number and configuration of antenna also affects the resolution.

A more exact comparison remains to be done through a full
simulation. More sophisticated methods to match wavelets in scale
space, for example using amplitude or phase matching across the range
of coefficients, may give better results. A better approach would be
to provide some compensation for dispersion in the signals received.
Since the dispersion curve of breast tissue which is less than 84%
adipose and malignant tissue was shown by Lazebnik et al. [8] to
have similar dispersion characteristics an equalisation filter prior to
the wavelet transform stage may be suitable. Other methods might
include estimation of the dispersion characteristics within the solution
scheme (for example Fang et al. [31] use a first order approximation)
or signal decomposition methods [29]. These need to be investigated
and a dispersive simulation is being developed.

The most difficult case for breast tumour detection is in fibro-
glandular (dense) breasts, for which the contrast between background
tissue and malignant tissue is low. In [5], Shea suggests that contrast
agents, which are preferentially taken up by the tumour, need to
be employed in the clinical imaging protocol for women with this
type of breast as there is too little contrast even using a full inverse
scattering method; other work (e.g., [30]) makes the same point. The
method presented in this paper would again be a viable alternative to
tomography in providing contrast images.

A major strength of the algorithm lies in its speed, a consideration
in clinical use when often high throughput is needed. Producing
the estimates of the velocity and permittivity fields shown here took
approximately 90 seconds on a single processor (2.8 GHz CPU and
8GB RAM) running with Matlab. Most of this processing time
is dedicated to the wavelet transform (cwt function in Matlab) in
ToF estimation. Reconstruction of the velocity and permittivity
distributions from the ToFs takes only a few seconds. Recent
experiments suggest that ToF measurements using only the lower half
of scale space produces comparable results, resulting in a reduction
in overall execution time of nearly four. Further improvements are
possible through using a compiled language such as C++, or by
distributing the ToF calculations over a number of processors since the
ToF calculation operates independently on each signal with the pulse
transmitted. Some increase would be expected for a 3-D measurement
since the number of antennas would need to be increased, although
ToF calculation could proceed in parallel with data acquisition.
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5. CONCLUSION

In this manuscript, we introduced a potentially fast, relative
permittivity imaging algorithm for microwave breast imaging. The
method is based on a radial basis function network and uses wavelets to
estimate the travel times between transmitting and receiving antennas.

A particular feature of the algorithm is its fast execution speed
which derives largely from the approximation of the tissue properties
by a set of basis functions which required only a sparse set of
measurements from the data. In terms of offering fast execution time
it is in the same class as the delay and sum beamformer, but without
the assumption on uniform velocity to determine spatial position. In
addition it is not affected in the same way by the large echo at the skin;
a pre-processing step to remove this is not needed. In comparison to
tomography its resolution and quantitative estimation is poorer but
the speed of execution very much faster.

The algorithm was evaluated on three different classes simulated
from MR images of breast tissue. The presence of a tumour, and
high permittivity regions such as fibro-glandular tissues, were clearly
detected in the reconstructed images. However the dielectric contrast
between normal and malignant fibro-glandular tissues is too low for
small tumours to be detected. At microwave frequency it may be
as low as 10% [8], and as a consequence, pathological tissues do not
necessarily differentiate from healthy fibro-glandular tissues. This
problem has been reported using other image reconstruction methods
as well (e.g., [5]). Recent studies showed that the infusion of a contrast
agent which specifically alters the dielectric properties of tumours
can significantly improve the tumour detection performances. The
method presented here is fully compatible with contrast-enhanced
image acquisition.

In a practical 3-D configuration it is unlikely that there would be as
many as 24 antenna in each annulus. A practical configuration would
take more than one set of acquisitions on a smaller density of antenna,
through rotation or lateral movement of the set of antenna between
readings. Processing and acquisition could take place in parallel to
enhance speed.

While preliminary, these results demonstrated that the new
algorithm offers an interesting alternative to microwave imaging and
radar-based imaging, and that it may be a promising tool for breast
screening especially when high throughput is needed. However two
important extensions need to be made to the simulated FDTD models
to test the algorithm more fully. The first is to include dispersion as
discussed previously. The second is to extend the 2-D simulation into
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3-D: this does not affect the methodology significantly but is likely
to introduce more artefacts through the greater scattering which will
occur.
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