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Abstract—Millimeter-wave (MMW) imaging techniques have been
developed for the detection of concealed weapons and plastic explosives
carried on personnel at major transportation hubs and secure locations.
The combination of frequency-modulated continuous-wave (FMCW)
technology and MMW imaging techniques leads to wideband, compact,
and cost-effective systems which are especially suitable for security
detection. Cylindrical three-dimensional (3-D) imaging technique,
with the ability of viewing multiple sides, is an extension of rectilinear
3-D imaging technique only viewing a single side. Due to the relatively
long signal sweep time, the conventional stop-and-go approximation of
the pulsed systems is not suitable for FMCW systems. Therefore, a
3-D backscattered signal model including the effects of the continuous
motion within the signal duration time is developed for cylindrical
imaging systems. Then, a holographic image reconstruction algorithm,
with motion compensation, is presented and demonstrated by means
of numerical simulations.

1. INTRODUCTION

Personnel surveillance has been increasingly important due to the
increasing threat of terrorism. Some modern threats, such as plastic
or ceramic handguns and knives, as well as extremely dangerous liquid
explosives, have emerged in recent years, which make the conventional
security systems ineffective. Although some systems, such as X-ray
systems and terahertz systems, can present effective solutions to this
problem, X-ray systems [1] are unacceptable due to the potential health
risks, and terahertz systems [2] are immature and too expensive for
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civilian applications. Thus, we need a personnel surveillance system
with the ability of detecting all types of modern threats cost-effectively
and with the advantage of no harm to the person under surveillance.
One of the choices is to use millimeter-wave which can penetrate
common clothing barriers to form an image of a person as well as any
concealed items with different reflectivity [3–5]. Millimeter waves are
nonionizing and, therefore, pose no known health hazard at moderate
power levels.

The combination of FMCW and MMW imaging techniques leads
to wideband, compact, cost-effective, low-power operation, and high-
quality imaging systems, which are especially suitable for security
and detection application. FMCW signal has been widely used
in imaging radar [6–9]. The continuous motion of the antenna
while transmitting and receiving the signal for the FMCW systems
is no longer negligible. Therefore, the stop-and-go approximation
which is used in the conventional SAR imaging algorithms needs
to be modified for FMCW image processing. Several conventional
algorithms, such as wavenumber domain algorithm, frequency-scaling
algorithm, range-Doppler algorithm and chirp-scaling algorithm, etc.,
have been modified to focus the FMCW SAR data [8, 10–12]. In [8], an
accurate two-dimensional (2-D) received signal model was presented,
in which a range-azimuth coupling term was formulated for the first
time in the FMCW SAR community.

The rectilinear and cylindrical 3-D imaging techniques for
concealed weapon detection were described along with several
application results in [3, 13–17]. Wavenumber domain algorithms (or
called range migration algorithms, abbreviated to RMA) [1, 13, 20]
have been widely used in rectilinear 2-D and 3-D imaging system.
Cylindrical 3-D imaging technique is an extension of rectilinear imaging
technique. A cylindrical holographic algorithm was first developed
by Soumekh [18, 19] and was used for security imaging by Sheen et
al. [15]. A 3-D RMA was developed for cylindrical geometries by
backpropagating the backscattered data onto a planar aperture in [21].

Cylindrical 3-D imaging technique has the ability of viewing
multiple sides [14], so we choose it for personal security detection.
The radius of the scan should be generally on the order of 1 m,
obviously in the near-field of millimeter-wave imaging for personnel
surveillance. The cylindrical algorithms mentioned above are generally
used without considering the effects of the continuous motion within
the signal duration time. In this paper, we analyze the 3-D signal
model which takes the characteristics of FMCW systems into account.
The main effects of the motion on the image result turn out to be a
range walk and out of focus. These effects can be compensated for
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Figure 1. Near-field 3-D imaging configuration.

by a matched filter multiplication in the 3-D wavenumber domain.
Then, a deconvolution of the Green’s function is performed. After
the corrections, the range curvature of all scatterers having the same
minimum range as the scatterer at the reference range is corrected
exactly . The residual curvature of the scatterers at other locations
is compensated for by implementing the bilinear mapping from the
polar format to rectangular format. The complex image can then be
reconstructed by the 3-D inverse fast Fourier transform (IFFT).

This paper is organized as follows. In Section 2, an accurate
backscattered signal model and the imaging algorithm are presented.
The 3-D imaging procedure is given in Section 3. Section 4
shows the simulation results to verify the effectiveness of the motion
compensation. Section 5 summarizes the conclusions.

2. FMCW THREE-DIMENSIONAL SIGNAL MODEL
AND IMAGING ALGORITHM

This section derives a holographic imaging algorithm based on the
analytical model of the FMCW backscattered signal in the 3-D
wavenumber domain for cylindrical imaging systems. The 3-D imaging
geometry is shown in Figure 1. The one-dimensional (1-D) arc antenna
array aligned with the azimuth direction is scanned along the minus y
direction.

The transmitted FM signal can be expressed as [22]:

sT (t) = exp
[
j2π

(
f0t +

1
2
Kt2

)]
, (1)

where f0 is the carried base frequency, t is the time variable varying
within one cycle of signal transmitting, and K is the frequency sweep
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rate of the transmitted signal.
Assuming that the signal is transmitted at an arbitrary time τ

and received at time τ + τd. The time τd is the round-trip delay time.
The corresponding instantaneous ranges between the antenna element
and the target are R (τ) and R (τ + τd), respectively. Consequently,
the round-trip delay time can be expressed as

τd =
R (τ) + R (τ + τd)

c
, (2)

where

R (τ) =
√

(R0 cos θ′ − x)2 + (y′ − y)2 + (R0 sin θ′ − z)2

=
√

(R0 cos θ′ − x)2 + (y′0 − vτ − y)2 + (R0 sin θ′ − z)2,

R (τ +τd) =
√

(R0 cos θ′−x)2+(y′−y)2+(R0 sin θ′−z)2

=
√

(R0 cos θ′−x)2+[y′0−v (τ +τd)−y]2+(R0 sin θ′−z)2,
y′ = y′0 − vτ,

τ =nTθ′+mTyv+t, n = 0, 1, . . . N−1, m=0, 1, . . . M−1, t∈(0, Tθ′)

and c is the speed of light, y′0 represents the starting scanning position
of the arc antenna array, R0 is the radius of the arc antenna array, v
is the scanning velocity and τ is the continuous time. (x, y, z) is the
location of a point target in a 3-D Cartesian coordinate system. And
(R0 cos θ′, y′, R0 sin θ′) is the position of the antenna element, where y′
represents the scanning position of the arc antenna array, θ′ represents
the angle in the cylindrical coordinate system as shown in Figure 1 .
The origins of the two coordinate systems are the same. The period of
signal transmitting along the arc array elements in the azimuth domain
is Tθ′ which is assumed to be equal to the pulse repetition interval. Ty

is the period of sampling time along y direction. The number of the
array elements is N corresponding to the number of samples along
the azimuth direction. M is the number of samples along elevation
direction.

Owing to the fact that the distance between the antenna array
and the target is very short for the personnel security detection, (2) is
accurately approximated as

τd ≈ 2R (τ)
c

. (3)

Neglecting the time scaling influences on the envelope, the received
signal from a single point target can be expressed as

sR

(
θ′, y′; t

)
= σ (x, y, z) sT (t− τd) , (4)
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where σ (x, y, z) is the reflectivity of the single point target.
In dechirp-on-receive SAR systems, the received signal is mixed

with a reference signal in order to reduce the sampling requirements
and data rates [22]. The reference signal is a version of the transmitted
signal with delayed time τc. The dechirped signal can be written as

sIF

(
θ′, y′; t

)
= σ (x, y, z) exp [−j2πf0 (τd − τc)]

exp[−j2πK (τd−τc) (t−τc)] exp
[
jπK (τd−τc)

2
]
. (5)

The last exponential term of (5) is known as the residual video phase
(RVP), which is introduced by the operation of the dechirp-on-receive
technology [22]. The compensation for RVP is conducted in the
frequency domain, which has been introduced in [23]. Assuming the
RVP has been removed in the remainder of the derivation, i.e.,

sIF

(
θ′, y′; t

)

= σ (x, y, z) exp[−j2πf0 (τd−τc)] exp[−j2πK (τd−τc) (t−τc)] . (6)

Substituting f = K(t− τc) into (6), we obtain

sIF

(
θ′, y′; f

)
= σ(x, y, z) exp [−j2π(f + f0)(τd − τc)] . (7)

Applying the substitution of τ = mTy + nTθ′ + t = τm + τn + t to (7):

sIF

(
θ′, f, y′; τm, τn, t

)

= σ(x, y, z) exp
[
−j4π(f + f0)

(
R(τm + τn + t)

c
− Rc

c

)]
, (8)

where Rc = cτc/2.
In order to obtain the reflectivity σ (x, y, z),we should first give

the Fourier analysis of the function sIF (θ′, f, y′; τm, τn, t) in the
elevation frequency domain.

So performing 1-D Fourier transform to (8) with respect to the
spatial variables y′m (y′m = vτm = vmTy), yields

SIF

(
θ′, f, k′y; τn, t

)
=

1
v

∫
sIF

(
θ′, f ; y′m, τn, t

)
exp

(−jky′y
′
m

)
dy′m

=
1
v
σ(x, y, z)

∫
exp

[−jΦ
(
θ′, kr, ky′ ; y′m, τn, t

)]
dy′m, (9)

where

Φ
(
θ′, kr, ky′ ; y′m, τn, t

)
=

4π (f + f0)
c

[R (τm + τn + t)−Rc] + ky′y
′
m

= 2kr [R (τm + τn + t)−Rc] + ky′y
′
m

and kr = 2π(f + f0)/c.
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The above integral can be evaluated by applying the principle of
the stationary phase method [19, 22, 24]. At the point of stationary
phase, the phase Φ (θ′, kr, ky′ ; y′m, τn, t) takes an extreme value, such
as

∂Φ
(
θ′, kr, ky′ ; y′m, τn, t

)

∂y′m

∣∣∣∣∣
y′m=y′m0

= 0, (10)

∂2Φ
(
θ′, kr, ky′ ; y′m, τn, t

)

∂2y′m

∣∣∣∣∣
y′m=y′m0

6= 0. (11)

Solving (10) for the stationary phase point y′m0, yields

(4k2
r − k2

y′)
[
y′m0 + v (τn + t)− (y′0 − y)

]2

= k2
y′

[(
R0 cos θ′ − x

)2 +
(
R0 sin θ′ − z

)2
]
.

After derivation, we can obtain

y′m0
= −y + y′0 − vτn − ky′Rxz√

4k2
r − k2

y′

− vt

= −y − ky′Rxz√
4k2

r − k2
y′

+ y′0 − vτn − vt, (12)

where
Rxz =

√
(R0 cos θ′ − x)2 + (R0 sin θ′ − z)2. (13)

If the point target is positioned at the center of the coordinates
and y′ ∈ (−L, L), then

ky′ ∈
(
−2kr

L√
R2

0 + L2
, 2kr

L√
R2

0 + L2

)

and 2L is the size of the elevation synthetic aperture [18].
Then (9) can be expressed as

SIF

(
θ′, kr, ky′ ; τn, t

)
=

1
v
σ(x, y, z)exp

{−j
[−ky′y+ky′

(
y′0−vτn−vt

)

−2krRc + Rxz

√
4k2

r − k2
y′

]}
. (14)

Consequently, by the substitution of t = f/K + 2Rc/c, (14) can
also be rewritten as

SIF

(
θ′, kr, ky′ ; τn

)
=

1
v
σ(x, y, z)exp

{
−j

[
−ky′y+ky′y

′
0
−ky′vτn−ky′v

f

K

−ky′v
2Rc

c
− 2krRc + Rxz

√
4k2

r − k2
y′

]}
. (15)
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The minus in “−ky′y” is introduced by the scanning direction of the
array.

For a volume target we can write

SIF

(
ky′ , kr; θ′

)
=

∫

x

∫

y

∫

z

1
v
σ(x, y, z)×exp

{
−j

[
− ky′y+ky′y

′
0
−ky′vτn

−ky′v
f

K
−ky′v

2Rc

c
−2krRc+Rxz

√
4k2

r−k2
y′

]}
dxdydz

= exp
{
−j

[
ky′y

′
0
−ky′vτn−ky′v

f

K
−ky′v

2Rc

c
−2krRc

]}
×

∫

x

∫

y

∫

z

1
v
σ(x, y, z)

exp(jk′yy) exp[−jkxz

√
(R0 cos θ′ − x)2 + (R0 sin θ′ − y)2]dxdydz, (16)

where kxz =
√

4k2
r − k2

y′ .

The above model can be given by

SIF

(
ky′ , kr; θ′

)
=

1
v
exp

{
−j

[
ky′y

′
0
−ky′vτn−ky′v

f

K
−ky′v

2Rc

c
−2krRc

]}

×
∫

x

∫

z

Fy(x, z, ky′)g∗θ′(kxz, x, z)dxdz, (17)

where
Fy(x, z, ky′) =

∫

y

σ(x, y, z) exp(jky′y)dy

and

gθ′(kxz, x, z) = exp
[
jkxz

√
(R0 cos θ′ − x)2 + (R0 sin θ′ − z)2

]
.

Based on the generalized Parseval’s theorem [18, 19], this model can
be expressed as

SIF

(
ky′ , kr; θ′

)
=

1
v

exp
{
−j

[
ky′y

′
0−ky′vτn−ky′v

f

K
−ky′v

2Rc

c
−2krRc

]}

×
∫

kx

∫

kz

F(kx, kz, ky′)G∗
θ′(kxz, kx, kz)dkxdkz. (18)

Transforming the above double integral into the polar coordinate in



526 Ren et al.

the wavenumber domain, one can obtain

SIF

(
ky′ , kr; θ′

)
=

1
v
exp

{
−j

[
ky′y

′
0−ky′vτn−ky′v

f

K
−ky′v

2Rc

c
−2krRc

]}

×
∫

kxz

kxz




∫

φ

Fkxz(kxz, φ, ky′)G∗
θ′kxz

(kxz, θ
′−φ)dφ


dkxz.(19)

Using the Fourier properties of circular symmetric function [18, 19], we
have

Gθ′kxz(kxz, φ) = exp[jkxzR0 cos(φ)].
The term inside the [ ] of (19) represents a convolution in the θ′ domain,
such as∫

φ

Fkxz

(
kxz, φ, ky′

)
G∗

θ′kxz

(
kxz, θ

′−φ
)
dφ =Fkxz

(
kxz, θ

′, ky′
)⊗G∗

kxz

(
kxz, θ

′) .

Based on the derivation in [18, 19], yields
Fkxz

(
kxz, θ

′, ky′
)

= v ∗ IFFT(θ′)

{
FFT(θ′)

{
SIF

(
ky′ , kr; θ′

)
exp

[
jΦ

(
ky′ , kr; f

)]}

FFT(θ′)
[
G∗

kxz
(kxz, θ′)

]
}

, (20)

where
S′IF

(
ky′ , kr; θ′

)
= SIF

(
ky′ , kr; θ′

)
exp

[
jΦ

(
ky′ , kr; f

)]

and

Φ
(
ky′ , kr; f

)
= ky′y

′
0
− ky′vτn − ky′v

f

K
− ky′v

2Rc

c
− 2krRc. (21)

Note that the first term ky′y
′
0

in (21) is introduced by the initial
position of the array. The term ky′vτn represents the phase variation
corresponding to the elevation-range walk caused by the motion of the
nth antenna element. ky′vf/K is a space-invariant term also caused by
the motion of the array within the sweep time. The terms ky′v (2Rc/c)
and 2krRc refer to the constant shifts of the azimuth and range,
respectively, and are introduced by the dechirp-on-receive technology.

After the reference function multiplication (RFM), we can obtain
Fkxz(kxz, θ′, ky′) as shown in (20). The process of RFM is discussed
in detail in Section 3.

The cylindrical samples of Fkxz (kxz, θ′, ky′) are then converted to
the samples of F (kx, kz, ky′)via an interpolation algorithm, where

kx = kxz cos θ,

kz = kxz sin θ,

ky = ky′ .
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Figure 2. Flow diagram of the proposed image reconstruction
method.

The distinction between the primed and unprimed coordinate
systems can now be dropped since the coordinate systems coincide.
Since σ (x, y, z) and F (kx, ky, kz) form a Fourier transform pair, the
3-D inverse Fourier transform of this signal is the desired image, i.e.,

σ(x, y, z)=v

∫∫∫
F (kx, ky, kz)exp[j (kxx−kyy+kzz)] dkxdkydkz. (22)

The constant factor relative to 2π is ignored in (22).

3. THREE-DIMENSIONAL IMAGING PROCEDURE

The computational procedure of the algorithm which is proposed in
Section 2 is summarized in Figure 2 and is outlined in detail in the
following steps.

Step 1: Remove RVP. Removing RVP is not the key parts in this
paper, so it is not addressed.
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Step 2: Perform the fast Fourier transform (FFT) of sIF (θ′, y′; f)
acquired in step 1 with respect to y′ for each frequency and azimuth
angle. As a result, the raw data in the y′ domain is transformed into
the ky′ domain.

Step 3: RFM. Corrections of the phase are the emphasis of this
paper. The processing steps of the matched filtering can be split into
two parts.

1) Remove the unwanted phase in the wavenumber domain.

a) Considering the motion within the sweep, a 3-D matched filter is
given by

GF

(
ky′ , kr; τn

)
= exp

[
j

(
ky′y

′
0
− ky′v

f

K
− ky′vτn

)]

exp
[
j

(
−2krRc − ky′v

2Rc

c

)]
. (23)

b) Under the stop-and-go approximation, the conventional matched
filter [22] is shown as follows

GF

(
ky′ , kr; τn

)
= exp

[
j

(
−2krRc − ky′v

2Rc

c

)]
. (24)

Note that the term ky′vτn exists in the elevation-frequency domain
and the azimuth-time domain, therefore the term GF should be first
multiplied exactly before the azimuth Fourier transform and after the
elevation Fourier transform, as shown in Figure 2.

2) Correct the range curvature of all scatterers at the reference
range R0.

In this paper, R0 is considered as the reference range. The
correction progress should be calculated in the kθ′ domain in the
proposed algorithm, such as the following steps.

a) Calculate the FFT of S′IF (ky′ , kr; θ′) acquired in step 3 with
respect to θ′, so the function S′IF (ky′ , kr; kθ′) is obtained.

b) Obtain the FFT of the function G∗
kxz

(kxz, θ′) with respect to θ′,
so as to yield the function G∗

kxz
(kxz, kθ′).

c) Take the complex product of S′IF (ky′ , kr; kθ′) and 1/G∗
kxz

(kxz, kθ′)
in the kθ′ domain.

d) Perform the IFFT of the product with respect to kθ′ in order to
obtain Fkxz (kxz, θ′, ky′).

In order to further alleviate the computational load of the
algorithm, the term 1/G∗

kxz
(kxz, kθ′) which is defined as the focusing

function [17] in this paper can be calculated first and stored in memory.
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The focusing function is multiplied to correct the range curvature of
all scatterers at the reference range. Residual range curvature is still
present on those scatterers which are not located at the reference
range [18, 22]. The residual range curvature is compensated for by
implementing the bilinear mapping, which will be shown in step 4.

Step 4: Use bilinear interpolation to convert Fkxz (kxz, θ′, ky′)
into a 3-D linear phase grating. The relationship of the variables is

kxz cos θ =
√

4k2
r − k2

y cos θ → kx,

kxz sin θ =
√

4k2
r − k2

y sin θ → kz,
(25)

where kxs and kzs are uniformly spaced.
Step 5: Perform 3-D IFFT operation on the uniformly spaced

wavenumber domain data F (kx, ky, kz). As a result, the 3-D
reflectivity image σ (x, y, z) is obtained.

In [25], a modified rectilinear 3-D FMCW SAR imaging algorithm
is presented. The main difference between the rectilinear imaging
algorithm and the cylindrical imaging algorithm is that a convolution
in the azimuth domain is needed for the latter. And another difference
is that the cylindrical imaging algorithm needs bilinear interpolation
to compensate the residual curvature, however, the rectilinear imaging
algorithm needs 1-D interpolation.

4. SIMULATION RESULTS

In order to validate the performance of the modified holographic
algorithm, two numerical simulations have been carried out. The
simulation parameters used in this paper are listed in Table 1.

Table 1. Simulation Parameters.

Parameter Value
Carrier frequency 35GHz

Bandwidth 5 GHz
Sampling interval: ∆θ′ 0.007 rad

Number of array elements 64
Sampling interval: ∆y′ 0.007m

Number of samples along y direction 64
Scanning velocity 1m/s

Referenced range R0 1m
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Figure 3. Phase of the signal for a single point target in the scene
center after matched filtering with a reference function based on the
stop-and-go approximation. (a) Phase in the elevation-frequency and
range-frequency domain. (b) Phase in the elevation-frequency and
azimuth-angle domain.

The target used in the first simulation is a single point target,
and we can get the point spread function (PSF) of the target with
cylindrical aperture. The wavenumber domain data SIF (ky′ , kr; θ′)
in (20) is multiplied by the conventional and the proposed matched
filters which are shown in (23) and (24), respectively.

Figure 3 shows the phase of the signal after step 3 in Section 3
with the matched filtering function that makes the stop-and-go
approximation. The phase of the remaining signal in the elevation-
frequency and range-frequency domain after step 3 is illustrated in
Figure 3(a), and the phase in the elevation-frequency and azimuth-
angle domain, is shown in Figure 3(b). The phase in the azimuth-angle
and range-frequency domain is not demonstrated due to the fact that
it is not affected by the motion of the sweep, as shown in Figure 1.

Figure 4 illustrates the phase results after step 3 produced by
filtering the signal SIF (ky′ , kr; θ′) with the proposed function in (23).

If the signal SIF (ky′ , kr; θ′) is completely compensated for by the
matched filter, the phase of the remaining signal should be constant
and do not vary with θ′, ky′ and kr in the case that the simulated point
target is in the scene center, i.e., (x, y, z) = (0, 0, 0). Clearly, only in
Figure 4 does the phase in the support band is practically constant,
indicating that the matched filter does match the received signal.

Figures 5(a) to (c) show the PSF of a single point target located
in the scene center corresponding to the x-y (with z = 0), y-z (with
x = 0), and x-z (with y = 0) section planes, respectively, with the
matched filtering function based on the stop-and-go approximation. It
can be seen that a range walk exists in the elevation direction which is
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Figure 4. Phase of the signal for a single point target in the scene
center after matched filtering with the proposed function in (23).
(a) Phase in the elevation-frequency and range-frequency domain.
(b) Phase in the elevation-frequency and azimuth-angle domain.
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Figure 5. The PSF images in the x-y (with z = 0), y-z (with x = 0),
and x-z (with y = 0) section planes, respectively, with the matched
filtering function based on the stop-and-go approximation. (a) Image
in the x-y section plane. (b) Image in the y-z section plane. (c) Image
in the x-z section plane.
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Figure 6. The PSF images in the x-y (with z = 0), y-z (with
x = 0), and x-z (with y = 0) section planes, respectively, with the
proposed matched filtering function. (a) Image in the x-y section plane.
(b) Image in the y-z section plane. (c) Image in the x-z section plane.

caused by the motion of the array, as shown in Figures 5(a) and (b).
The motion is not affected the image in the x-z plane in Figure 5(c).

Figures 6(a) to (c) demonstrate the corresponding image results
produced by the proposed matched filtering function in (23). It can
be seen from Figures 5 and 6 that the improvements due to the
proposed correction are visible. The loss of the peak power and the
elevation-range walk are compensated by the proposed algorithm and
the sidlobes of the PSF in Figure 6(a) are more similar to the sidelobes
of the ideal sinc function. In order to show the improvements clearly,
the simulation has been carried out for different platform velocities
from 0.5–1 m/s. As can be seen from Figures 7(a) and 7(c), the peak
level is below 0 dBm2 at higher velocities. The loss of peak power is
0.5 dBm2 at 1 m/s. However, no peak power is lost at any platform
velocities in Figures 7(b) and 7(d). The elevation-range walk is v/2fs

(fs is the sampling rate), which is compensated by the proposed
algorithm as shown in Figures 6(a), 7(b) and 7(d).
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Figure 7. The PSF images in the y (with x = 0 and z = 0) dimension
at different platform velocities from 0.5–1 m/s, (a) with the stop-and-go
approximation and (b) with the proposed matched filtering function.
(c) and (d) are the enlargements of the main lobe in (a) and (b),
respectively.

-0.1

-0.05

0

0.05

0.1

-0.1
-0.05

0
0.05

0.1
-0.1

-0.05

0

0.05

0.1

x (m)z (m)

y (m)

Figure 8. The cuboid target model consisting of 27 scatterers.

In order to verify the efficiency of the proposed algorithm for the
targets with multiple scattering centers, we have given a simulation of
a cuboid target model consisting of 27 scatterers in Figure 8. The
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Figure 9. Projections of the 3-D image of the cuboid target
model onto the x-y, y-z and x-z planes, respectively, with the
matched filtering function based on the stop-and-go approximation.
(a) Projections onto the x-y plane. (b) Projections onto the y-z plane.
(c) Projections onto the x-z plane.

size of the cuboid target model is 0.16m × 0.16 m × 0.2m. The
interval of the points is 0.1 m in the range dimension and 0.08 m in
the elevation-range and azimuth-range dimensions. The radar cross
section (RCS) of all scatterers is 1m2. The projections of the images
onto the three main planes are shown in Figures 9 and 10, with the
matched filtering function using the stop-and-go approximation and
the proposed matched filtering function respectively. The real positions
of the scatterers are represented by the intersections of the dashed
lines. The defocusing and range walk are clearly seen in Figure 9 and
are the same as shown in Figure 5. Figure 10 shows that the focusing
performance of the proposed algorithm is improved. The range walk
in the elevation-range dimension is compensated and the sidelobes of
the image in Figure 10(a) are more similar to the sidelobes of the ideal
sinc function. The dynamic range of the images is 30 dB.
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Figure 10. Projections of the 3-D image of the cuboid target model
onto the x-y, y-z and x-z planes, respectively, with the proposed
matched filtering function. (a) Projections onto the x-y plane.
(b) Projections onto the y-z plane. (c) Projections onto the x-z plane.

5. CONCLUSIONS

A holographic imaging algorithm with motion compensation to process
the near-field 3-D imaging for cylindrical imaging systems has been
developed. In this algorithm, the effects of the array motion during
the long pulse duration have been described and compensated for. The
additional terms caused by the motion have been removed. In order to
accelerate the image reconstruction process, the focusing function can
be calculated first and stored in memory. Numerical simulations show
that the focusing performance of the proposed algorithm is improved.
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