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Abstract—The aim of this work is to asses the performance of a nodal-
based finite element formulation when applied to the computation
of specific absorption rate (SAR) problems. This formulation solves
numerically the regularized Maxwell equations using nodal elements
and, in principle, it offers several advantages: It provides spurious-free
solutions and well-conditioned matrices without the need of Lagrange
multipliers or scalar potentials. Its integral representation is well-
suited for hybridization with integral numerical techniques because
of a low-order singular kernel. Also, the nodal approximation of the
electromagnetic problem is easier to couple to a thermal finite element
problem which usually also employs nodal elements. But, on the other
hand, we need to take special care of the points of the domain where the
field is singular to obtain accurate solutions. In this paper, we show
the impact of the singularities on the performance of the proposed
finite element formulation and how its good features are affected when
solving real-life SAR problems.

1. INTRODUCTION

The specific absorption rate (SAR) is the power per unit mass
absorbed by a body when illuminated by electromagnetic fields. This
quantity is useful to determine, in combination with the heat equation,
the temperature increase produced by the incident electromagnetic
radiation inside the body, as done in [22]. The SAR is helpful to
determine the levels of radiation which are below dangerous limits and
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can be safely used in therapeutic treatments [23, 25, 27]. The SAR is
also a quantity used for regulatory purposes. That is, before a mobile
phone is available for sale to the general public, it must shown that
the SAR is below some limits. In addition, a mobile phone with a
high value of SAR implies that the energy of the battery is wasted in
unwanted heating instead of being used to transmit information [21].

The measurement of the SAR is performed in specialized test
houses with complex and sophisticated systems. Besides, if you want
your product to comply with government requirements, you have
to send it to an accredited test house to obtain the certification.
This process is expensive and time-consuming. Numerical simulations
can save time and money predicting the value of the SAR
before certification and improving the design of the product before
manufacturing it. Also, numerical simulations are of valuable help
when we need to know the SAR in places where its measurement is
difficult, like inside the bodies of living creatures [23, 26, 28].

In the scenario present above, the regularized nodal-based finite
element formulation proposed in this work seems to be a good choice
for the computation of the SAR. This is so because, in principle, this
approach presents several advantages:

• The finite element method (FEM) works naturally with complex
geometries and materials.

• The FEM numerical approximation of the regularized Maxwell
equations provides spurious-free solutions and well-conditioned
matrices that are easy to solve with iterative Krylov solvers [1].

• Only the three components of the electric field E are the
unknowns; that is, there is no need of extra functions such as
Lagrange multipliers or scalar potentials.

• The integral representation of the regularized Maxwell equations
involves a singular kernel of order 1 instead of the order 3 found
in the double-curl formulation with edge elements [1]. This fact
makes the regularized FEM formulation best suited to
hybridization with integral numerical techniques [20].

• The nodal FEM solution of the electromagnetic problem is easier
to couple to thermo-mechanical multi-physics problems which
usually also employ nodal FEM elements [22].

But, on the other hand, we need a special treatment on the points of
the problem domain where the field is singular and/or discontinuous.
In [2] it is explained the techniques we need to apply on these points
to obtain accurate solutions. In this paper, we show the effect of these
corrections on the regularized formulation when solving real-life SAR
problems.
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2. DEFINITIONS

The specific absorption rate (SAR) is defined as,

SAR (W/kg) =
σ + ωε′′

2ρ
|E|2 (1)

where σ is the electrical conductivity, ρ is the mass density, ω is the
angular frequency, ε′′ is the imaginary part of the electric permittivity
ε = ε

′
+ i(ε′′ + σ/ω) and E is the electric field. The expression (1)

represents the time-average power per unit mass dissipated as heat due
to conductivity and dielectric losses. This expression is deduced from
the Poynting’s theorem assuming time-harmonic fields, linear materials
and no magnetic losses. In this work, we will compute numerically the
field E to obtain the SAR.

When the SAR is employed for regulatory purposes it is usually
averaged either over the whole body, or over a small sample volume
(typically 1 g or 10 g of tissue). SAR limits for a radiating object
depends on the country, for instance, in United States, the Federal
Communications Commission (FCC) requires that phones sold for the
general public have a SAR level at or below 1.6W/kg taken over a
volume of 1 g of tissue with the shape of a cube. In the European
Union, before a mobile phone is available for sale, it must show
compliance with the European Radio & Telecommunication Terminal
Equipment (R & TTE) directive 1999/5/EC. This directive limits the
human exposure to radio frequency (RF) fields in accordance with
the standard EN 50360 : 2001 developed by the European Committee
for Electrotechnical Standardization (CENELEC). This standard is
summarized in Table 1.

3. FINITE ELEMENT FORMULATION

In this work, the electric field E appearing in (1) is computed by
solving numerically the regularized time-harmonic Maxwell’s wave

Table 1. SAR limits specified by the CENELEC EN 50360 : 2001.
SARwb is the average over the whole body. SAR10g is the average over
10 g of tissue with the shape of a cube.

Type of user SARwb (W/Kg) SAR10g (W/Kg)
General public 0.08 2
Occupational 0.40 10
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Equation [1]

∇×
(

1
µ
∇×E

)
− ε̄∇

(
1

ε̄εµ
∇ · (εE)

)
− ω2εE = iωJ, (2)

where µ is the magnetic permeability, ε is the electric permittivity,
i =

√−1 is the imaginary unit and J is an imposed current density.
The bar over a magnitude denotes its complex conjugate. If we solve
Equation (2) in an open domain Ω, we must apply a regularized version
of the Silver-Müler radiation boundary condition at infinity [1]

lim
r→∞

∮

∂Ωr

∥∥n̂×∇×E − ik0 (n̂× n̂×E)
∥∥2 = 0,

lim
r→∞

∮

∂Ωr

|∇ ·E − ik0 (n̂ ·E)|2 = 0. (3)

where ∂Ωr is the boundary of the domain Ω at a distance r from the
sources and k0 = ω

√
ε0µ0, being ε0 and µ0, respectively, the electric

permittivity and the magnetic permeability of vacuum. On the surface
of a perfect electric conductor (PEC) we impose the regularized version
of the standard PEC boundary condition [1]

∇ · (εE) = 0,

n̂×E = 0, (4)

where n̂ is the exterior unit normal of the PEC surface.
The second-order differential Equation (2) with boundary

conditions (3) and (4) can also be solved using an equivalent weak
formulation. That is, if we define

H (curl,div; Ω) :=
{
F ∈ L2 (Ω)

∣∣∇×F∈L2 (Ω) ,∇·(εF)∈L2 (Ω)
}

, (5)

being L2 (Ω) the space of square integrable functions in the domain
Ω and L2 (Ω) the space of vectorial functions with all its components
belonging to L2 (Ω), and

H0 (curl, div; Ω) := {F ∈ H (curl, div; Ω) | n̂× F = 0 in PEC }. (6)

Then, solving the problem represented by Equations (2) to (4)
is equivalent to finding E ∈ H0(curl,div; Ω) such that ∀F ∈
H0(curl, div; Ω) holds:∫

Ω

1
µ

(∇×E)·(∇×F̄
)
+

∫

Ω

1
µεε̄

(∇·(εE))·(∇·(ε̄F̄))−ω2

∫

Ω
ε
(
E·F̄)

−
∫

∂Ω

1
µ

(∇×E)·(n̂×F̄
)−

∫

∂Ω

1
µεε̄

(∇·(εE))·(n̂·(ε̄F̄))
= iω

∫

Ω
J·F̄, (7)

where ∂Ω is the boundary of the domain Ω. In [1] it is shown that
solving analytically the regularized weak formulation (7) is completely
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equivalent to solving the classical double-curl time-harmonic Maxwell’s
wave equation. The regularized formulation (7) presents all the
advantages detailed at the introduction of this paper when it is solved
with nodal (Lagrangian) finite elements. However, we must be careful
if the electric field E is singular at some point of the domain. In
such a case, the physical solution can not be approximated with nodal
elements and (7), no matter the element size or the polynomial order
used in the discretization [3–5].

To fix this problem we employ a similar approach to that followed
in [6, 7] for quasi-static problems. This approach is a simplification of
the weighted regularized Maxwell equation method [8] and it consists
in removing the divergence term of (7) (the first term on the second
line) from the elements which are near the points of the domain where
the electric field is singular.

In (2) it is shown that accurate solutions can be obtained with (7)
and tetrahedral second order nodal elements if we cancel the divergence
term in three layers of elements around any singularity. That is, we
must cancel the divergence term in the elements with a node resting on
reentrant corners and edges of PECs, corners and edges of dielectrics
and on the intersection of several dielectrics [9]. We also have to cancel
the divergence term in the elements which are in contact with the
previous elements and in the elements which are in contact with these
(3 layers). It is possible to use higher order elements and 1 layer,
but the computational cost is higher. On the other hand, it was not
possible to attain a robust and accurate combination with first-order
elements.

Due to the fact that nodal elements impose continuity in all the
components of the electric field, we have to consider explicitly the field
discontinuities at the interface between different media. At the surfaces
separating two different materials we use the double-node strategy
explained in [10]. For the intersection of three or more different
materials we follow the procedure explained in [2].

The above FEM formulation has been implemented in a C++ in-
house code called ERMES (E lectric Regularized M axwell Equations
with S ingularities). ERMES [11] has a user-friendly interface based
on the commercial software GiD [12]. GiD is employed for geometrical
modeling, meshing and visualization of results. ERMES uses a
quasi-minimal residual (QMR) iterative solver [13] with a diagonal
preconditioner to solve the linear systems resulting from the finite
element discretization. This solver needs one second to finish an
iteration of a 2000000 unknowns FEM linear system (as the average
ones appearing on this paper) in a desktop computer with a CPU
Intel Core 2 Quad Q9300 at 2.5 GHz, 8 GB of RAM memory and



404 Otin and Gromat

the operative system Microsoft Windows XP Professional x64 Edition
v2003.

4. SIMULATIONS

In the next sections we are going to apply the FEM formulation
detailed above to three different SAR problems. The essential
difference between them is the quantity of singular nodes in the
domain. In Section 5, we solve a problem without field singularities.
In Section 6, we calculate the SAR produced by an antenna which
presents several singular field points. Finally, in Section 7, we solve
a problem similar to that in Section 6 but with a higher amount of
singular nodes. The objective is to assess the performance of the
proposed formulation in real-life SAR problems and show the effect of
the singularities in the conditioning of the FEM matrix. To do that we
observed the number of iterations required by an iterative solver (QMR
with diagonal preconditioning) to reach convergence. In Section 8 we
summarize and discuss the results.

5. ELLIPSOIDAL PHANTOM IN RECTANGULAR
WAVEGUIDE

In this validation example we compute the SAR in an ellipsoidal
phantom placed inside a rectangular waveguide. This experimental
set-up is typically found when studying the effect of radiation on
small animals [24, 26]. The SAR values obtained with ERMES are
compared with measurements and numerical simulations performed
with the finite difference time domain method (FDTD).

5.1. Description of the Problem

An ellipsoidal phantom, with a longer axis of 4.1 cm and a shorter axis
of 3.0 cm, is filled with a substance of electrical properties ε = 43ε0 and
σ = 0.97 S/m. The phantom is placed at the center of a rectangular
waveguide WR-975 (24.76 cm×12.38 cm) and it is illuminated with the
fundamental mode TE10. The incident electric field has a frequency of
f = 900 MHz, a maximum value of |Erms| =

∣∣E/
√

2
∣∣ = 61.4V/m and

a polarization parallel to the shorter axis of the ellipsoid. The weight
of the phantom is M = 20 g. The weight and electrical properties
of the phantom are comparable to those of a mouse. An outline of
the problem is shown in Fig. 1. The data for this example are taken
from [14].
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Figure 1. Ellipsoidal phantom inside rectangular waveguide. Data
from [14].

5.2. Finite Element Model

We computed the electric field inside the rectangular waveguide
with the finite element formulation explained in Section 3. In this
example we do not have any field singularity in the problem domain,
therefore, we do not need to cancel the divergence term of (7)
anywhere. In the metallic walls of the waveguide were used the PEC
boundary condition (4). In the waveguide ports we assumed that only
the fundamental mode TE10 was propagating then, we applied the
boundary conditions

n̂×∇×E = γ (n̂× n̂×E) + U,

n̂ ·E = 0, (8)

where γ is the propagation constant of the mode TE10, which is
γ = ±i

√
k2

0 − k2
c when k0 > kc and γ = ∓

√
k2

c − k2
0 when k0 < kc,

being k0 = ω
√

ε0µ0 and kc = π/a, with a being the width of the
rectangular waveguide. The sign of γ depends on the direction of
propagation. For the input and the output port, respectively, we have
that [15]

U = −2 γ (n̂× n̂×E10) ,

U = 0,
(9)

where the field E10 is the incident mode TE10 imposed in the input
port

E10 = −
√

2iωµ

abγ
sin(kcx) eγz ŷ, (10)

being γ the propagation constant, a the width of the rectangular
waveguide and b is its height. In (10) we have considered that
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the x-axis is along the width of the rectangular waveguide, the y-
axis is along its height and the z-axis is perpendicular to the xy-
plane. The incident field (10) must be multiplied by the constant
α = 61.4

√
γab/iωµ = 0.4776 to accomplish with the requirement that

the maximum value of |E10| must be 61.4
√

2 V/m [14].
Once the electric field is calculated, we obtain the SAR with

Equation (1). The density ρ = M/V is deduced using the formula
V = πAB2/6 for the volume of the ellipsoid, where A is the length of
the mayor axis and B the length of the minor axis.

5.3. Results

To solve the above problem were used 347556 tetrahedral second
order nodal elements (518735 nodes) which produced a complex linear
system with 1311631 unknowns. Our iterative solver reached a residual
r = (‖Ax− b‖ / ‖b‖) < 1e− 4 after 1225 iterations (0.09% of the total
number of unknowns).

Table 2. SAR averaged over the whole volume of the ellipsoidal
phantom. Measurement and FDTD result from [14].

SARavg (W/Kg)
Measured 0.06
FDTD 0.05

ERMES 0.05

Figure 2. SAR(W/Kg) inside the ellipsoidal phantom.
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In Table 2 is showed the SAR averaged over the whole volume
of the ellipsoidal phantom (SARavg). This average SAR can be easily
obtained experimentally by measuring the input and the output power
in the waveguide ports [14]. On the other hand, the SAR distribution
inside the phantom is more difficult to measure and this is where
numerical simulations can be very helpful. Fig. 2 shows the SAR
distribution inside the phantom. The presence of “hot spots” where
the SAR values are several times bigger than the average can be clearly
observed with the help of the numerical simulation.

6. PMR ANTENNA NEAR SAM HEAD

In this validation example we compute the SAR produced by a pro-
fessional mobile radio (PMR) antenna in a specific anthropomorphic
mannequin (SAM) head. The results obtained with ERMES are com-
pared with those provided by a commercial software which implements
the method of moments (MoM).

6.1. Description of the Problem

A PMR antenna and handset is placed near a SAM head as shown
in Fig. 3. The PMR antenna was fed with P0 = 2W (33 dBm) at
a frequency of f = 390 MHz. The mass density of the SAM head
is ρ = 1000 Kg/m3 and its electrical properties are ε = 45.5ε0 and
σ = 0.7 S/m.

6.2. Finite Element Model

We solved (7) with the PEC boundary condition (4) assigned to the
metallic surfaces and the first order absorbing boundary condition (15)
assigned to a 70 cm diameter spherical surface centered at the base of
the PMR antenna. Also, we used 3 layers of divergence-less elements
in the points of the geometry where the field singularities are present
(edges of the handset, tip of the PMR antenna and edges of the coaxial
feeding).

The PMR antenna was fed by a coaxial waveguide located at its
base. We assumed that only the fundamental mode TEM is present
in the waveguide port then, we imposed there the following boundary
condition

n̂×∇×E = γ (n̂× n̂×E) + U,

n̂ ·E = 0 (11)
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(a) (b)

Figure 3. Positioning of the PMR antenna and handset. (a): Frontal
view. (b): Lateral view.

where γ = iω
√

ε0µ0 is the propagation constant of the fundamental
mode and

U = −2 γ (n̂× n̂×ETEM) . (12)

The field ETEM is the incident field imposed in the input port:

ETEM =
√

η

2π ln(b/a)

(
eγ z

r

)
r̂, (13)

being η =
√

µ0/ε0, a = 0.60mm the inner radius of the coaxial,
b = 1.38mm the exterior radius of the coaxial, z is along the direction
of propagation, r the radial coordinate and r̂ its unitary vector.

We forced a radiated output power of P0 = 2W by multiplying
the computed E field by the constant

α =

√
2P0

1− |S11|2
, (14)

where S11 is the reflection coefficient at the coaxial port.

6.3. Results

The problem domain was discretized with 527732 tetrahedral second
order nodal elements (791786 nodes). The complex linear system
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resulting form the discretization had 1992795 unknowns. The iterative
solver reached a residual r < 1e− 4 after 7965 iterations (0.40% of the
total number of unknowns). The results of the simulations performed
with ERMES are shown in Figs. 5 and 6. The same problem was

Figure 4. Location of the 10 g cube by FEKO. The SAR averaged
over the 10 g cube is 3.20W/Kg.

Figure 5. SAR distribution calculated by ERMES and location of the
10 g cube. The maximum SAR is 6.29W/Kg. The SAR averaged over
the 10 g cube is 3.23W/Kg.
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(a) (b)

Figure 6. SAR distribution calculated by ERMES. Sections of the
SAM head. (a): Frontal view. (b): Upper view.

Table 3. PMR SAR simulations results.

SAR10g (W/Kg)
FEKO 3.20

ERMES 3.23

solved with FEKO and the results are shown in Fig. 4. In Table 3 are
displayed the SAR averaged over the 10 g cube obtained with FEKO
and ERMES.

7. PMR-GPS ANTENNA NEAR SAM HEAD

This validation example is similar to that showed in the previous
section. We also compute with ERMES the SAR produced by a PMR
antenna in a SAM head and compare the results with those provided
by FEKO. The main difference is that the total length of the singular
edges is larger than in the previous case.

7.1. Description of the Problem

A PMR-GPS antenna prototype designed by Radiall [16] is placed near
a SAM head as shown in Fig. 7. At the base of the PMR antenna there
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(a) (b)

Figure 7. Positioning of the PMR-GPS antenna. (a): Frontal view.
(b): Lateral view. The distance between handset and SAM head is
2 cm.

is a GPS antenna on a cylindrical dielectric substrate with electrical
permittivity ε = 3ε0. The PMR antenna was fed with P0 = 2 W
(33 dBm) at a frequency of f = 400 MHz. The SAM head is the
same as the one used in Section 6 (ρ = 1000 Kg/m3, ε = 45.5ε0 and
σ = 0.7 S/m).

7.2. Finite Element Model

We solved (7) with the PEC boundary condition (4) assigned to the
surfaces of the PMR antenna, GPS antenna and handset. We also
applied the first order absorbing boundary condition

n̂×∇×E = iω
√

ε0µ0 (n̂× n̂×E) ,

∇ ·E = iω
√

ε0µ0 (n̂ ·E) , (15)

to a 70 cm diameter spherical surface centered at the base of the PMR
antenna. In addition, we used 3 layers of divergence-less elements in the
points of the geometry where the field singularities are present (edges
of the handset, tip of the PMR antenna, edges of the GPS antenna
and edges of the dielectric substrate).

The PMR antenna was fed with a current probe located at its
base (see Fig. 8). We imposed a radiated output power of P0 = 2 W



412 Otin and Gromat

Figure 8. Current probe used by ERMES to fed the PMR-GPS
antenna.

by multiplying the computed E field by the constant

α =

√
2P0

− ∫
s Real

[
E · J̄] , (16)

where s is the volume of the current probe.

7.3. Results

The volume contained inside the 70 cm diameter spherical surface
was discretized with 838840 tetrahedral second order nodal elements
(1336948 nodes). The complex linear system resulting form the
discretization had 3286368 unknowns. The iterative solver reached
a residual r < 1e− 4 after 58964 iterations (1.79% of the total number
of unknowns). The results of the simulations performed with ERMES
are shown in Figs. 9 and 10.

The same problem stated above was computed with the
commercial software FEKO [17]. In this case, the antenna feeding was
modeled with a voltage gap (see Fig. 11). The results of the simulations
performed with FEKO are shown in Fig. 12.

The SAR averaged over the 10 g cube obtained with FEKO and
ERMES is displayed in Table 4. The differences in the results can be
attributed to the different geometries employed in the computations.
We must take into account that the SAR is very sensitive to the
positioning of the handset with respect to the SAM head. For instance,
if we move the handset 0.4 cm closer to the surface of the SAM head
then, the value of the SAR averaged over the 10 g cube obtained with
ERMES rises to 3.36W/Kg.
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Figure 9. SAR distribution calculated by ERMES and location of the
10 g cube. The maximum SAR is 4.92W/Kg. The SAR averaged over
the 10 g cube is 2.82W/Kg.

(a) (b)

Figure 10. SAR distribution calculated by ERMES. Sections of the
SAM head. (a): Frontal view. (b): Upper view.
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Table 4. PMR-GPS SAR simulations results.
SAR10g (W/Kg)

FEKO 3.00
ERMES 2.82

Figure 11. Details of the geometry used by FEKO to model the
PMR-GPS antenna. The antenna is fed by a voltage gap.

Figure 12. Location of the 10 g cube by FEKO. The SAR averaged
over the 10 g cube is 3.00W/Kg.

8. SUMMARY

In Table 5 are summarized the degrees of freedom and the number
of solver iterations of the problems presented in this paper. The
effect of the singularities is clearly observed when comparing the solver
convergence of the problems showed in Section 5 and reference [18],
with the problems showed in Sections 6 and 7 and references [2]
and [19]. In the first cases, there are no singularities in the problem
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Table 5. Summary table.

Problem size Solver iterations
Ellipsoidal phantom 1311631 1225 (0.09%)

PMR antenna 1992795 7965 (0.40%)
PMR-GPS antenna 3286368 58964 (1.79%)

domains and the QMR solver only needs a number of iterations of less
than 0.1% of the total number of unknowns to reach convergence. In
the second cases, depending of the number of singularities present in
the problem domain, this percentage of iterations can be increased up
to near 2%.

9. CONCLUSIONS

In this paper we have shown that the computational cost of the
proposed nodal-based FEM formulation increases with the number of
singular points in the problem domain. This is due to the need of
meshing with small elements near the singularity and the worsening
of the condition number in the resultant matrix. We can improve
the convergence rate using a better solver and preconditioning but,
the objective here is to show the effect of the singularities on the FEM
matrix. Nevertheless, although the computational cost growth with the
increment of singular points, we can still solve efficiently realistic SAR
problems in a desktop computer with a very simple iterative solver
(QMR with diagonal preconditioning), which proves an acceptable
conditioning of the resultant FEM matrix.

It is left for a future work the hybridization of our approach with
integral numerical techniques. This hybridization can take profit not
only of the low-order singularity kernel of the regularized formulation
also of the fact that, usually, in SAR related problems, we can separate
dialectic objects (with smooth surfaces) from metallic objects (with
sharp edges) and solve the field singularities with the integral numerical
method.
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