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Abstract—The present paper is a study of adaptive beamforming
(ABF) techniques applied to antenna arrays. The structure of these
techniques is based on Taguchi’s Optimization (TagO) method. The
high convergence speed and the ability to reach near-optimal solutions
by adjusting only one parameter make the Taguchi’s method an
attractive choice for real time implementations like the case of ABF.
Modifications are proposed in order to enhance the applicability of the
TagO algorithm and decrease the computational time needed by the
algorithm to terminate. The TagO method is used here to construct an
ABF technique that aims at steering the main lobe of a uniform linear
array towards a signal of interest, under the constraint of low side lobe
level (SLL) or the constraint of placing radiation pattern nulls towards
respective interference signals. Properly defined fitness functions must
be minimized by the TagO algorithm to satisfy respectively the above
mentioned constraints. The TagO-based ABF technique is compared
with typical beamforming methods, like the Sample Matrix Inversion
(SMI) and Maximum Likelihood (ML) ones, and with two evolutionary
ABF techniques based on Particle Swarm Optimization (PSO) and
Differential Evolution (DE), respectively. The comparison is performed
regarding the convergence speed, the ability to achieve better fitness
values in less time, the ability to properly steer the main lobe and
finally the null-steering ability or the SLL control depending on the
constraint type. The results exhibit the superiority of the TagO-based
technique.

Received 1 April 2012, Accepted 5 May 2012, Scheduled 10 May 2012
* Corresponding author: Zaharias D. Zaharis (zaharis@auth.gr).



554 Zaharis

1. INTRODUCTION

Adaptive beamforming (ABF) is a real time procedure capable of
improving the dynamic behavior of an antenna array, which receives
signals from directions of arrival (DoA) that change with time [1–
19]. Principally, an ABF technique estimates the excitation weights
wm (m = 1, . . . ,M) that make an M -element array steer the main
lobe towards a desired signal called signal of interest (SOI). Such a
technique that improves the reception of the SOI in the presence of
additive zero-mean Gaussian noise is the Maximum Likelihood (ML)
method [20]. Nevertheless, in many cases, the rejection of undesired
incoming signals is additionally required by an ABF technique. This
requirement is satisfied either by placing radiation pattern nulls
towards the respective DoA of the undesired signals or by producing
a radiation pattern with low side lobe level (SLL). The null-steering
can be achieved either by typical ABF methods, such as the Sample
Matrix Inversion (SMI) method [20], or by ABF techniques based
on evolutionary optimization methods, such as Genetic Algorithms
(GAs) [1–3], Particle Swarm Optimization (PSO) [4–9, 11, 13] and
Differential Evolution (DE) [14, 15]. Due to its structure, the
SMI method does not perform SLL control. On the contrary, an
evolutionary optimization method has the ability to achieve low SLL
by minimizing a properly defined fitness function. Therefore, every
evolutionary method is potentially capable of performing either null-
steering or SLL control. The major disadvantage that makes such a
method unsuitable for real time applications is the low convergence
speed. Thus, an optimization method with high convergence speed
would be desirable for ABF applications.

The present work introduces an effective ABF technique based on
the recently announced Taguchi’s Optimization (TagO) method [21–
25]. To the best of the author’s knowledge, the TagO method has
never been applied before in antenna array beamforming problems.
Some modifications are proposed in order to enhance the applicability
of the TagO algorithm and decrease the computational time needed by
the algorithm to terminate.

The TagO-based ABF technique is applied here to estimate the
excitation weights of uniform linear arrays (ULAs) in several cases with
alternative requirements and in comparison with other beamforming
techniques. In some of these cases, the proposed technique is compared
with a PSO-based beamformer, a DE-based beamformer and the SMI
method regarding the convergence speed, the ability to steer the main
lobe towards a SOI and the ability to place nulls towards respective
interference signals. In the rest cases, the proposed technique is
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compared with the same PSO-based and DE-based beamformers and
also with the ML method regarding the convergence speed, the ability
to steer the main lobe towards a SOI and the ability to minimize the
SLL.

2. TAGUCHI’S OPTIMIZATION METHOD

The TagO algorithm is thoroughly described in [21]. The algorithm
is initialized by selecting a suitable fitness function fit and a proper
orthogonal array OA (E, P , L, t), where E is the number of runs
(or experiments), P is the number of parameters (or variables) to be
optimized, L is the number of levels, and finally t is the strength. An
orthogonal array with 3 levels and strength 2, i.e., OA (E, P , 3, 2),
has been found to be efficient for most problems [21–25]. This type of
OA is used below.

For each ith iteration and each pth parameter, the level difference
LDpi is calculated according to the expression:

LDpi = rri−1 · LDp1 , p = 1, . . . , P (1)
where

LDp1 = (maxp −minp)
/

(L + 1) , p = 1, . . . , P (2)

is the initial level difference and rr is the reduced rate. Also, maxp

and minp are respectively the upper and the lower bound of the pth
parameter. By increasing rr, the TagO algorithm usually achieves
better results but converges slower. Values of rr between 0.75 and
0.90 are good choices for most problems [21, 22, 24]. The value LV 2pi

of the 2nd level of the pth parameter is set equal to the optimum value
optp(i−1) of this parameter derived from the previous iteration (i-1),
except for the 1st iteration (i =1) where LV2p1 = (maxp +minp)/2. If
optp(i−1) = minp then LV2pi = minp +LDpi, and if optp(i−1) = maxp

then LV2pi = maxp−LDpi. Afterwards, it is easy to extract the values
of the other two levels: LV1pi = LV2pi−LDpi and LV3pi = LV2pi+LDpi.
At this point, we check LV 1pi and LV 3pi. So, if LV1pi < minp then
LV1pi = minp, and if LV3pi > maxp then LV3pi = maxp.

Afterwards, the fitness function fitei is calculated for each
experiment e (e = 1, . . . , E) and is converted to a negative value in
dB according to a logarithmic formula given below:

ηei = −20 log fitei , e = 1, . . . , E (3)
The average fitness values in dB are then extracted for each parameter
and each level by applying the expression:

η̄lpi = (L/E)
∑

e, OA(e,p)=l

ηei , p = 1, . . . , P & l = 1, 2, 3 (4)
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In this way, we build the so-called response table. The ith iteration
terminates with the selection of optpi. For each pth parameter, optpi is
represented by the value LV lpi that corresponds to the largest value of
the set (η̄1pi, η̄2pi, η̄3pi). The algorithm terminates at the end of the ith
iteration when all ratios LDpi/LDp1 (p = 1, . . . , P ) become less than
a converged value, which depends on the desired accuracy.

The above description reveals an important advantage, which
makes the TagO algorithm attractive for many applications: that is
the ability to affect the performance of the algorithm by adjusting
only one parameter, i.e., the reduced rate rr, while other optimization
algorithms, like PSO [26–31] and DE [23, 32–34], need to adjust two or
more parameters.

2.1. Modified Taguchi’s Optimization Algorithm

Due to (3), only positive fitness values are allowed. To enable the
TagO algorithm to handle either positive or negative fitness values
and thus increase the applicability of the algorithm, these values are
not converted to dB but only summed for each parameter and each
level. Consequently, the response table is filled only with sums of type∑
e, OA(e, p)=l

fitei without the need either for converting fitei to dB or for

extracting average values. Another difference from the typical TagO
algorithm lies in the selection of optpi. This value is represented by
one of LV 1pi, LV 2pi, LV 3pi, which corresponds to the minimum sum
of fitness values and not to the largest η̄lpi, as previously defined in
the typical TagO algorithm. The absence of logarithmic conversions
and average fitness calculations saves computational time and this is
an additional advantage obtained from these modifications.

Another modification lies in the termination criterion. The
algorithm terminates at the end of the ith iteration when all level
differences LDpi (p = 1, . . . , P ) become less than a desired value. In
this way, an optimal solution with the desired accuracy can always be
achieved.

3. BEAMFORMING PROBLEM DEFINITION

A ULA consists of M monochromatic isotropic elements, with inter-
element distance q = 0.5λ, and receives a SOI s from angle of arrival
(AoA) θ0 and N interference signals in (n = 1, . . . , N) from respective
AoA θn. The SOI is considered as reference signal and therefore its
mean power, PSOI , is taken equal to 1Watt. The interference signals
are considered of the same power level as the SOI. Also, the ULA
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receives additive zero-mean Gaussian noise signals nm (m = 1, . . . ,M)
that have the same variance σ2, calculated as follows:

σ2 = 10−SNR/10 (5)

where SNR is the signal-to-noise ratio in dB. Each θn (n = 0, 1, . . . , N)
is defined by the DoA of the incoming signal and the normal to
the array axis direction. DoA estimation algorithms can be used to
calculate the values of θn (n = 0, 1, . . . , N) [20, 35–40]. Provided that
the signals nm (m = 1, . . . , M) are uncorrelated with each other, the
noise correlation matrix can be simplified as follows:

R̄nn = σ2I (6)

Then, the correlation matrix of the signals xm (m = 1, . . . , M) at the
input of the array elements is calculated by the expression:

R̄xx = ā0 āH
0 + Ā R̄ii Ā

H + σ2I (7)

where R̄ii is the interference correlation matrix,

Ā = [ ā1 ā2 . . . āN ] (8)

is the M ×N array steering matrix, and

ān =
[

1 ej 2π
λ

q sin θn . . . ej(M−1) 2π
λ

q sin θn

]T
, n = 0, 1, . . . , N (9)

is the array steering vector that corresponds to AoA θn.
Depending on the requirements to be satisfied, two beamforming

problems can be defined. In the first one, both the main-lobe-steering
and null-steering abilities are examined, while in the second, the
beamformers are tested regarding both the main-lobe-steering ability
and the ability to minimize the SLL. The fast convergence of the
ABF algorithms is a common requirement for both problems. The
formulation of these problems is given below.

3.1. Main-lobe-steering and Null-steering Beamforming
Problem

The ABF techniques are tested here regarding the ability to steer the
main lobe towards the SOI s and the ability to place nulls towards in
(n = 1, . . . , N). The TagO-based ABF technique is compared with the
SMI method and with two ABF techniques based respectively on PSO
and DE. The excitation weight calculation using TagO, PSO and DE
is achieved by minimizing the following fitness function:

F1 (w̄) = k1

∣∣θ0 − θmain
0

∣∣ + k2

N∑

n=1

∣∣∣θn − θnull
n

∣∣∣ (10)
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where w̄ = [ w1 w2 . . . wM ]T is the excitation weight vector, the
angle θmain

0 indicates the actual direction of the main lobe, the angles
θnull
n (n =1,. . . ,N) indicate the actual directions of the nulls, and finally

k1 and k2 are minimization balance factors of the two terms given in
(10). The SMI method estimates the excitation weights by applying
the following expression:

w̄smi = R̄−1
xx ā0 (11)

In the examples given below, a 9-element ULA (M = 9), with
q = 0.5λ and SNR = 10 dB, is used to confront the above-defined
beamforming problem. This problem has 9 unknowns and thus the
TagO algorithm makes use of orthogonal array OA (27, 9, 3, 2). Also,
the parameter rr is set equal to 0.9 and each execution of the TagO
algorithm is completed when LDpi ≤ 0.001 (p = 1, . . . , P ).

The PSO algorithm used here is an effective PSO variant
called Constriction Factor PSO (CFPSO) [26]. The velocity update
parameters, c1 and c2, used by the CFPSO algorithm are set equal
to 2.05. Then, the constriction factor K calculated by Equation (6)
in [26] is found equal to 0.7298. The maximum velocity Vmax is limited
to the dynamic range of each variable on the respective dimension.
Moreover, the CFPSO algorithm makes use of a population size of 27
particles and takes 500 iterations to complete each execution.

Finally, the DE algorithm utilized here is the most popular DE
variant and is based on the DE/rand/1/bin strategy. The weighting
factor F and the crossover constant CR are set respectively equal to
0.5 and 0.9. The DE algorithm makes use of the same population size
(27 vectors) and takes the same number of iterations (500 generations)
per execution as the CFPSO algorithm.

It must be noted that every experiment in the TagO algorithm
has the same meaning as a particle in the CFPSO algorithm or a
vector in the DE algorithm. This can be easily understood considering
that each experiment or particle or vector corresponds to a fitness
function evaluation for every iteration of the algorithm. Given that an
orthogonal array of 27 experiments is utilized by the TagO algorithm,
the CFPSO and DE algorithms must use a population size of 27
particles or vectors in order to have a fair comparison among the
algorithms.

3.2. Main-lobe-steering and SLL-minimization Beamforming
Problem

The ABF techniques are tested here regarding the ability to steer the
main lobe towards the SOI and the ability to minimize the SLL. The
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TagO-based ABF technique is compared with the ML method, the
PSO-based technique and the DE-based technique. The calculation
of w̄ using TagO, PSO and DE is achieved by minimizing the fitness
function given below:

F2 (w̄) = k1

∣∣θ0 − θmain
0

∣∣ + k2 [max (SLL, SLLdes)− SLLdes] (12)

where θmain
0 , k1 and k2 have the same meaning as in (10), and SLLdes

is the desired SLL value. Due to the second term in (12), SLL values
less than SLLdes do not cause further minimization of F2, since the low
SLL requirement has already been satisfied. The ML method estimates
w̄ as follows:

w̄ml =
R̄−1

nn ā0

āH
0 R̄−1

nn ā0

(13)

In the examples given below, this beamforming problem is solved
considering an 11-element ULA (M = 11), with q = 0.5λ and
SNR = 10 dB. Thus, the TagO algorithm makes use of OA (27,
11, 3, 2) considering rr = 0.9 and terminates when LDpi ≤ 0.001
(p = 1, . . . , P ). The CFPSO and DE algorithms are the same as
previously described.

4. CONVERGENCE RATE RESULTS

Initially, the TagO-based ABF technique is compared with the PSO-
based and DE-based techniques in terms of convergence speed. The
convergence speed is a crucial parameter of real time applications like
ABF ones. The comparison is performed separately for each one of the
above-defined beamforming problems.

4.1. Main-lobe-steering and Null-steering Beamforming
Problem

The formulation of the problem and all the parameters concerning the
optimization algorithms have already been given in Subsection 3.1.
Each one of the TagO-based, PSO-based and DE-based techniques is
executed 100 times in order to minimize the fitness function given in
(10) and thus extract comparative graphs that display the average
convergence rate. The techniques are applied to a 9-element ULA
receiving a SOI from AoA θ0 = 30◦ and seven (N = 7) interference
signals arriving respectively from AoA −70◦, −50◦, −30◦, −10◦, 10◦,
40◦ and 60◦. The comparative graphs given in Figure 1 show that the
TagO-based technique needs fewer iterations to terminate and seems
to achieve better fitness values than the other two techniques. Thus,
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Figure 1. Comparative convergence graphs for the main-lobe-steering
and null-steering beamforming problem.

the use of TagO is more suitable for the above-defined beamforming
problem than the use of PSO or DE.

4.2. Main-lobe-steering and SLL-minimization Beamforming
Problem

The formulation of the problem has already been given in
Subsection 3.2. Again, each one of the three optimization techniques
is executed 100 times in order to minimize the fitness function given in
(12) and thus extract comparative convergence graphs. The techniques
are applied to an 11-element ULA receiving a SOI from AoA θ0 = 30◦
under a low SLL requirement with SLLdes = −30 dB. The comparative
graphs given in Figure 2 exhibit again the superiority of the TagO-
based technique regarding the convergence speed, the number of
iterations, and finally the ability to approach the optimal fitness value.

The better performance of the TagO-based technique can be
explained by taking into account the deterministic nature of TagO in
comparison to the stochastic nature of PSO and DE. In the structures
of PSO and DE, a stochastic process lies behind the basic optimization
procedure. This process usually helps the two methods escape from
local minima but is also the main reason for increasing the number
of iterations without any assurance of achieving the optimum fitness
value especially in cases where the methods are eventually trapped in
a local minimum. On the contrary, no stochastic process is involved in
TagO. The TagO algorithm actually simulates a full factorial strategy
by carrying out only a few experiments per iteration. Due to the
optimum combination of optimization parameter values involved in
each experiment, the optimum fitness value is achieved after a few
iterations.
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Figure 2. Comparative convergence graphs for the main-lobe-steering
and SLL-minimization beamforming problem.

5. BEAMFORMING EXAMPLES

The TagO-based technique is compared here with the rest of the ABF
techniques regarding its ability to solve effectively the aforementioned
beamforming problems. For each one of these problems, the techniques
are applied to two different sets of 1000 random cases and the results
undergo a statistical analysis. Representative radiation patterns chosen
respectively from the above sets are also displayed in corresponding
figures. The statistical analysis and the patterns are used to evaluate
the ABF techniques. The comparison is performed separately for each
one of the beamforming problems.

5.1. Main-lobe-steering and Null-steering Beamforming
Problem

The TagO-based, PSO-based, DE-based and SMI techniques are
applied to two sets of 1000 random cases per set. The sets concern
respectively five (N = 5) and seven (N = 7) interference signals.
Each case is a group of N + 1 random AoA values θ0, θ1, . . . , θN

different from each other. For each case, the techniques are applied
to find the near-optimal weight vectors, respectively w̄tago, w̄pso, w̄de

and w̄smi, that produce a main lobe towards the AoA θ0 of the
SOI and N nulls towards the AoA θ1, . . . , θN of the interference
signals. Then, the radiation patterns produced respectively from w̄tago,
w̄pso, w̄de and w̄smi are used to estimate the corresponding absolute
angular deviations ∆θmain

tago , ∆θmain
pso , ∆θmain

de and ∆θmain
smi of the main

lobe direction θmain
0 from its desired value θ0 and the absolute angular

deviations ∆θnull
tago, ∆θnull

pso , ∆θnull
de and ∆θnull

smi of the null directions θnull
n
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(n = 1, . . . , N) from their respective desired values θn (n = 1, . . . , N).
Finally, the average absolute angular deviation values ∆θ

main
tago , ∆θ

main
pso ,

∆θ
main
de and ∆θ

main
smi concerning the main lobe direction and the average

absolute angular deviation values ∆θ
null
tago, ∆θ

null
pso , ∆θ

null
de and ∆θ

null
smi

concerning the null directions are calculated for each one of the above
two sets. These values are given in Table 1 (sets 1 and 2). It seems that
the TagO-based technique provides better steering ability regarding
the main lobe and the nulls. The same conclusion is also derived from
Figures 3 and 4, which display the optimal radiation patterns of two
typical cases chosen respectively from the two sets. The radiation
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Figure 3. Optimal patterns for a desired signal arriving from θ0 =
−27◦ and 5 interference signals arriving from AoA −48◦, −10◦, 18◦,
43◦ and 54◦.
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−12◦ and 7 interference signals arriving from AoA −55◦, −44◦, −34◦,
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Table 1. Statistical results of the two beamforming problems.

Set 1st 2nd Set 3rd 4th
N 5 7 SLLdes −20 dB −30 dB

∆θ
main
tago 0.77o 0.92o ∆θ

main
tago 0.27o 0.27o

∆θ
main
pso 0.93o 1.09o ∆θ

main
pso 0.31o 0.36o

∆θ
main
de 0.99o 1.31o ∆θ

main
de 0.30o 0.31o

∆θ
main
smi 0.80o 0.95o ∆θ

main
ml 0.02o 0.02o

∆θ
null
tago 0.23o 0.34o SLLtago −20.67 dB −30.88 dB

∆θ
null
pso 0.26o 0.43o SLLpso −20.12 dB −27.56 dB

∆θ
null
de 0.31o 0.62o SLLde −19.72 dB −28.79 dB

∆θ
null
smi 0.24o 0.37o SLLml −13.02 dB −13.02 dB

Table 2. Radiation characteristics derived from Figures 3 and 4.

Figure 3 TagO PSO DE SMI
∆θmain (o) 0.10 0.20 0.50 0.50
∆θ

null (o) 0.10 0.34 0.44 0.44
SINR (dB) 19.17 18.87 18.67 18.67

Average null depth (dB) −62.08 −58.35 −55.25 −55.24
Figure 4 TagO PSO DE SMI

∆θmain (o) 0.70 0.90 1.30 0.20
∆θ

null (o) 0.29 1.30 0.49 0.29
SINR (dB) 19.02 17.50 18.52 18.81

Average null depth (dB) −60.17 −43.52 −53.59 −56.93

characteristics concerning the patterns of the two figures are given in
Table 2.

5.2. Main-lobe-steering and SLL-minimization Beamforming
Problem

The TagO-based, PSO-based, DE-based and ML techniques are
applied to two new sets of 1000 random cases per set. Each set
corresponds to a different value of SLLdes. This value is considered
equal to −20 dB and −30 dB respectively for the two sets. Each case
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Figure 5. Optimal patterns for θ0 = 4.5◦ and SLLdes = −20 dB.
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Figure 6. Optimal patterns for θ0 = 39.5◦ and SLLdes = −30 dB.

corresponds to a random value of θ0. For each case, the techniques
are applied to find the near-optimal weight vectors, respectively w̄tago,
w̄pso, w̄de and w̄ml, that produce a main lobe towards θ0 and minimize
the SLL below SLLdes. The radiation patterns produced respectively
from w̄tago, w̄pso, w̄de and w̄ml are used to estimate the corresponding
absolute angular deviations ∆θmain

tago , ∆θmain
pso , ∆θmain

de and ∆θmain
ml of

the main lobe direction θmain
0 from its desired value θ0 and the

corresponding side lobe levels SLLtago, SLLpso, SLLde and SLLml.
Finally, the average values ∆θ

main
tago , ∆θ

main
pso , ∆θ

main
de , ∆θ

main
ml , SLLtago,

SLLpso, SLLde and SLLml are calculated for each set. These values
are given in Table 1 (sets 3 and 4). Also, two typical cases are chosen
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Table 3. Radiation characteristics derived from Figures 5 and 6.

Figure 5 TagO PSO DE ML
∆θmain (o) 0.10 0.70 0.50 0.03
SLL (dB) −23.43 −20.77 −19.28 −13.02
Figure 6 TagO PSO DE ML

∆θmain (o) 0.20 0.60 0.60 0.02
SLL (dB) −31.34 −28.39 −30.34 −13.02

respectively from the two sets in order to display the corresponding
optimal patterns (Figures 5 and 6). By taking into account the results
of Table 1, the optimal patterns of Figures 5 and 6, and the radiation
characteristics of these patterns given in Table 3, it seems that the
TagO-based technique outperforms the other techniques regarding
both the main lobe steering and the SLL minimization.

6. CONCLUSION

A new ABF technique based on Taguchi’s Optimization method
has been presented. Modifications have been proposed to improve
the applicability of the method and save computational time. The
technique is applied to solve two different beamforming problems by
using a suitably chosen fitness function for each problem. The main
lobe steering is a common requirement for both problems. The null
steering and the SLL minimization below a desired SLL value are two
additional requirements respectively for the two problems.

The TagO-based ABF technique was compared in terms of
convergence with two other techniques based respectively on PSO and
DE. The comparison was applied to both beamforming problems and
revealed the superiority of the TagO-based technique regarding its high
convergence speed in combination with its ability to achieve better
fitness values in less time than the other two techniques. Therefore,
the TagO algorithm is more suitable for real time applications, such as
ABF, than other optimization algorithms.

A statistical analysis was performed on the ABF results of both
beamforming problems and showed that the TagO-based technique
outperforms several ABF techniques regarding the aforementioned
requirements of the problems. Consequently, the TagO method seems
to be promising in smart antenna applications.
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