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Abstract—Gaussian beam scattering by a spheroidal particle is
studied in detail. A theoretical procedure is given to expand an
incident Gaussian beam in terms of spheroidal vector wave functions
within the generalized Lorenz-Mie theory framework. Exact analytic
solutions are obtained for an arbitrarily oriented spheroid with non-
confocal dielectric coating. Normalized differential scattering cross
sections are shown and discussed for three different cases of a dielectric
spheroid, spheroid with a spherical inclusion and coated spheroid.

1. INTRODUCTION

The generalized Lorenz-Mie theory (GLMT) developed by Gouesbet et
al. is effective for describing the interaction of a shaped beam with
a spherical particle by relying on the separability of variables [1–
3], and has been extended by so many researchers to multilayered
spheres [4, 5], spheroids [6] and infinite cylinders [7–9]. Various
applications of focused beam scattering include optimizing the rate
at which morphology-dependent resonances (MDRs) are excited, laser
trapping, particle manipulation, and the analysis of optical particle
sizing instruments [10, 11]. Within the GLMT framework for spheroids,
one fundamental problem concerns the expansion of the incident
shaped beam in terms of spheroidal vector wave functions, in which the
expansion or beam shape coefficients (BSCs) are at the core. Due to the
complexity of the spheroidal vector wave functions, it is a convenient
and effective approach to evaluate the BSCs in spheroidal coordinates
by virtue of the known expressions of the BSCs in spherical coordinates.
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By using such an approach, Han et al. have obtained the BSCs in
spheroidal coordinates when the propagation direction of the incident
Gaussian beam is parallel with the symmetry axis of the spheroid,
and then analyzed the scattering of an off-axis Gaussian beam and
of a femtosecond pulse by a spheroid [12]. With an appropriate
coordinate rotation, a theoretical procedure is presented by Xu et al.
to expand an incident shaped beam in terms of the spheroidal vector
wave functions with respect to a spheroid, and then a general case is
studied of an arbitrarily oriented, located, and shaped beam scattered
by a homogeneous spheroidal particle [13, 14]. The method used by
Xu et al. is first to have a description of a shaped beam in the particle
coordinates through coordinate rotations, and then to calculate the
BSCs in the spherical coordinates and in the spheroidal coordinates
as usual. Since it has been found that the localization approximation
method, an efficient method of evaluating the BSCs, can no longer be
applied under coordinate rotations, the BSCs given by Xu et al. are
computed by a triple integral or a double integral due to the use of the
quadrature method, which lacks flexibility and is often computer-time
consuming.

To overcome the difficulty of the inapplicability of the localization
principle under coordinate rotations, contrary to Xu’s theory, a method
is provided by us which uses a rotation of the coordinate system after
the localization principle is applied. As a result, the localization
principle holds, and the addition theorems for spherical vector wave
functions under coordinate rotations are required [15, 16]. The
resultant BSCs in the spheroidal coordinates are expressed explicitly in
terms of the BSCs in the spherical coordinates evaluated by a localized
beam model, proving their evaluations highly efficient. Based on such
an expansion, a strong effort has been devoted by us to the study
of Gaussian beam scattering by a spheroidal particle [17], and by
a spheroidal particle with concentric non-confocal dielectric coating,
in which a transformation from spheroidal vector wave functions to
spherical ones is necessary [18]. In this paper, we present a detailed
discussion of the expansion of Gaussian beam in spheroidal coordinates
within the GLMT framework, and of the scattering of Gaussian beam
by a dielectric spheroid and coated spheroid.

2. EXPANSION OF GAUSSIAN BEAM IN SPHEROIDAL
COORDINATES

As illustrated in Fig. 1, a Gaussian beam propagates in free space
and from the negative z′ to the positive z′ axis in its own Cartesian
coordinate system O′x′y′z′, with the beam center located at origin
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Figure 1. The Cartesian coordinate system Ox′′y′′z′′ is parallel to
the Gaussian beam coordinate system O′x′y′z′, and the Cartesian
coordinates of O in O′x′y′z′ are (x0, y0, z0). Oxyz is obtained by
a rigid-body rotation of Ox′′y′′z′′ through a single Euler angle β. A
spheroidal particle is natural to Oxyz.

O′ and the time-dependent part of the electromagnetic fields assumed
to be exp (−iωt). An accessory system Ox′′y′′z′′ that is parallel to
O′x′y′z′ is introduced, and the system Oxyz is obtained by rotating
Ox′′y′′z′′ through a single Euler angle β [19]. The center of a spheroid
is located at origin O and has the Cartesian coordinates (x0, y0, z0) in
O′x′y′z′, and the major axis is along the z axis of Oxyz. The semifocal
distance, semimajor and semiminor axes of the spheroid are denoted
by f , a and b.

By following Davis’s first-order approximation, the electromag-
netic fields of the Gaussian beam can be described in its own Cartesian
coordinate system O′x′y′z′ as [20]

Ex′ = E0ψ0e
ikz′ (1a)

Ey′ = 0 (1b)

Ez′ =
x′

l
2QEx′ (1c)

Hx′ = 0 (1d)

Hy′ = H0ψ0e
ikz′ (1e)

Hz′ =
y′

l
2QHy′ (1f)

where

ψ0 = iQ exp
[−iQ

(
ξ2 + η2

)]
(1g)
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as well as

ξ =
x′

w0
(1h)

η =
y′

w0
(1i)

Q =
1

i− 2z′
l

(1j)

l = kw2
0 (1k)

where w0 is the beam waist radius.
From the scatterer geometry described in Fig. 1, the following

equation relating the two systems O′x′y′z′ and Oxyz can be obtained
as: [

x′ − x0

y′ − y0

z′ − z0

]
= [A]

[
x
y
z

]
(2)

where the transformation matrix is given by

[A] =

[ cosβ 0 sinβ
0 1 0

− sinβ 0 cos β

]
(3)

By virtue of Eq. (2), i.e., to transform the coordinates x′, y′,
z′ to x, y, z according to Eq. (2), in Eq. (1) the beam descriptions
of (Ex′ , Ey′ , Ez′) and (Hx′ , Hy′ , Hz′) in the beam coordinate system
O′x′y′z′ can be transformed to their counterparts (Ex, Ey, Ez) and
(Hx, Hy, Hz) in the particle coordinate system Oxyz, in the following
form [

Fx

Fy

Fz

]
= [A]

[
Fx′
Fy′
Fz′

]
(4)

where F stands for E or H, and the coordinates x′, y′, z′ at the right
side are transformed to x, y, z according to Eq. (2).

Within the framework of the GLMT, the incident Gaussian beam
can be expanded in terms of the spherical vector wave functions with
respect to the system Oxyz as follows [21]

Ei=E0

∞∑

n=1

n∑
m=−n

Cnm

[
igm

n,TEmr(1)
mn (kr, θ, φ) + gm

n,TMnr(1)
mn (kr, θ, φ)

]
(5)

Hi=E0
k

ωµ

∞∑

n=1

n∑
m=−n

Cnm

[
gm
n,TEnr(1)

mn (kr, θ, φ)−igm
n,TMmr(1)

mn (kr, θ, φ)
]
(6)
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Cnm =





Cn m ≥ 0

(−1)|m|
(n + |m|)!
(n− |m|)!Cn m < 0

(7)

Cn = in−1 2n + 1
n(n + 1)

(8)

By equating the r components at the left and right sides of Eqs. (5)
and (6) and using the orthogonality of the exponentials eimφ, associated
Legendre functions Pm

n (x) and spherical Bessel functions of the first
kind jn (kr), the BSCs gm

n,TE and gm
n,TM can be calculated from the

r components of the incident electromagnetic fields in the spherical
coordinates (r, θ, φ) attached to Oxyz, by the following two triple
integrals [1, 13]

gm
n,TE = (−i)n−1 2n+1

4π2

(n−|m|)!
(n+|m|)!

∫ ∞

0
jn(kr)krd(kr)

∫ π

0
Pm

n (cos θ) sin θdθ

∫ 2π

0

H i
r

H0
e−imφdφ (9)

gm
n,TM = (−i)n−1 2n+1

4π2

(n−|m|)!
(n+|m|)!

∫ ∞

0
jn(kr)krd(kr)

∫ π

0
Pm

n (cos θ) sin θdθ

∫ 2π

0

Ei
r

E0
e−imφdφ (10)

Numerical evaluations of the BSCs by using Eqs. (9) and (10)
is excessively time-consuming. When the particle coordinate system
Oxyz is parallel to the beam coordinate system O′x′y′z′ (β = 0), this
difficulty can be overcome with the use of the localized approximation
because of its high efficiency in computation. From a mathematical
point of view, it takes the operations of r → 1

k (n + 1/2) and θ = π
2 on

the right sides of Eqs. (9) and (10) to simplify the computation of the
integrals. Unfortunately, for the general case of oblique illumination
(β 6= 0), such a localization principle fails to hold [13]. To overcome
the difficulty, a method is provided by us to evaluate the BSCs for
oblique illumination, which can be divided into two steps.

First, the incident Gaussian beam is expanded in terms of the
spherical vector wave functions with respect to the system Ox′′y′′z′′,
and the corresponding BSCs can be efficiently evaluated by applying
the localization principle.

Second, we use the addition theorem for the spherical vector
wave functions under coordinate rotations to derive the expansion of
Gaussian beam as in Eqs. (5) and (6), and, after some algebra, the
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BSCs are explicitly expressed as follows [15, 16]:

Cnmgm
n,TE =

n∑
s=−n

ρ(s,m, n)Cnsg
//m
n,TE (11)

Cnmgm
n,TM =

n∑
s=−n

ρ(s,m, n)Cnsg
//m
n,TM (12)

where

ρ(s,m, n) = (−1)m+s

[
(n + s)!(n−m)!
(n− s)!(n + m)!

] 1
2

ums(β) (13)

ums(β) =
[
(n + m)!(n−m)!
(n + s)!(n− s)!

] 1
2 ∑

σ

(
n + s

n−m− σ

) (
n− s

σ

)

(−1)n−m−σ

(
cos

β

2

)2σ+m+s (
sin

β

2

)2n−2σ−m−s

(14)

and g
//m
n,TE , g

//m
n,TM are the BSCs evaluated in the system Ox′′y′′z′′,

and, as pointed out above, can be efficiently calculated by using the
localization approximation method.

When the Davis-Barton model of the Gaussian beam is
used [20, 22], the BSCs for a Gaussian beam with

1
kw0

> 0.1

can be computed without any loss of accuracy by the localization
approximation method [21].

For the representation of the incident Gaussian beam in spheroidal
coordinates, the following equation is useful, which indicates the
conversion relationship between the spherical and spheroidal vector
wave functions [23]

[
mr(1)

mn (kR, θ, φ)

nr(1)
mn (kR, θ, φ)

]
=

∞∑

l=m,m+1

′ 2(n + m)!
(2n + 1)(n−m)!

· il−n

Nml
dml

n−m(c)

[
Mr(1)

ml (c, ζ, η, φ)

Nr(1)
ml (c, ζ, η, φ)

]
(15)

where Nmn and dmn
r (c) are the normalization constants and expansion

coefficients of the spheroidal angle functions Smn (η), respectively.
By using the relation [Mml Nml ] = [Meml Neml ] +

i [Moml Noml ] when substituting Eq. (15) into Eqs. (5) and (6), after
some manipulations the expansion of Gaussian beam in spheroidal
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coordinates can be conveniently obtained as follows [16]:

Ei=E0

∞∑

m=0

∞∑
n=m

in
[
Gm

n,TEMr(1)
emn(c, ζ, η, φ)+iGm

n,TMNr(1)
omn(c, ζ,η,φ)

]
(16)

Hi=E0
k

ωµ

∞∑

m=0

∞∑
n=m

in
[
Gm

n,TM Mr(1)
omn(c,ζ,η,φ)−iGm

n,TENr(1)
emn(c,ζ,η,φ)

]
(17)

where c = kf , and the BSCs Gm
n,TE and Gm

n,TM , for the TE mode, are
given by
[
Gm

n,TE
Gm

n,TM

]
=

∞∑

r=0,1

′
r+m∑

s=0

2(r + 2m)!
(2r + 2m + 1)r!

i−r−m

Nmn
dmn

r (c)
[
gsm
r+m,TE

gsm
r+m,TM

]
(18)

[
gsm
n,TE

gsm
n,TM

]
=

2
(1+δs0)(1+δm0)

in
2n+1

n(n+1)
(−1)s+m

[
(n+s)!(n−m)!
(n−s)!(n+m)!

]1/2

[
g

//s
n,TE

ig
//s
n,TM

] [
(−1)nu(n)

ms(π + β)± u(n)
ms(β)

]
(19)

The prime over the summation sign in Eq. (18) indicates that the
summation is over even values of r when n −m is even and over odd
values of r when n−m is odd. In Eq. (19), δm0 = 0 and δs0 = 0 when
m 6= 0 and s 6= 0 respectively, and δ00 = 1.

For the TM mode, the corresponding expansions of the Gaussian
beam can be obtained by replacing [M N ]emn in Eqs. (16) and (17)
by [M N ]omn, [M N ]omn by [M N ]emn, Gm

n,TE by Gm
n,TM , and

Gm
n,TM by −Gm

n,TE .

3. SCATTERING OF GAUSSIAN BEAM BY A
SPHEROIDAL PARTICLE

In the framework of the GLMT for a spheroid, once the Gaussian
beam expansion is obtained, the scattered fields as well as the fields
within the spheroidal particle can be expanded in terms of appropriate
spheroidal vector wave functions as follows [17]:

Es=E0

∞∑

m=0

∞∑
n=m

in
[
βmn Mr(3)

emn(c, ζ, η, φ) + iαmnNr(3)
omn(c, ζ, η, φ)

]
(20)

Ew =E0

∞∑

m=0

∞∑
n=m

in
[
δmn Mr(1)

emn(c1, ζ, η, φ)+iγmnNr(1)
omn(c1, ζ, η, φ)

]
(21)

where amn, βmn, δmn and γmn are unknown expansion coefficients to be
determined by using the boundary conditions, and c1 = fk1, k1 = kñ
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and ñ is the refractive index of the material of the spheroidal particle
relative to that of free space.

The corresponding expansions of the magnetic fields in spheroidal
coordinates can be obtained with the following relations

H =
1

iωµ
∇×E (22a)

[
Mr(j)

e Nr(j)
e

omn omn

]
=

1
k
∇×

[
Nr(j)

e Mr(j)
e

omn omn

]
(22b)

In all these equations, the superscript j takes the value of 1 or 3,
depending on the usage of the radial function R

(j)
mn (c, ζ) of the first or

third kind in the spheroidal vector wave functions.
The boundary conditions for a spheroidal particle are described

by
Ei

η + Es
η = Ew

η , Ei
φ + Es

φ = Ew
φ

H i
η + Hs

η = Hw
η , H i

φ + Hs
φ = Hw

φ

}
at ζ = ζ0 (23)

where ζ0 is the radial coordinate of the spheroidal particle surface.
By virtue of the field expansions in Eqs. (16), (17) and in

Eqs. (20), (21), the above boundary conditions in Eq. (23) can be
written as

∞∑
n=m

in [Γ]




αmn

βmn

δmn

γmn


 =

∞∑
n=m

in




−Gm
n,TEU

(1),t
mn (c)−Gm

n,TM V
(1),t
mn (c)

−Gm
n,TM U

(1),t
mn (c)−Gm

n,TEV
(1),t
mn (c)

−Gm
n,TEX

(1),t
mn (c)−Gm

n,TM Y
(1),t
mn (c)

−Gm
n,TM X

(1),t
mn (c)−Gm

n,TEY
(1),t
mn (c)




(24)

where the matrix [Γ] is given by

[Γ] =




V
(3),t
mn (c) U

(3),t
mn (c) −U

(1),t
mn (c1) −V

(1),t
mn (c1)

U
(3),t
mn (c) V

(3),t
mn (c) −ñV

(1),t
mn (c1) −ñU

(1),t
mn (c1)

Y
(3),t
mn (c) X

(3),t
mn (c) −X

(1),t
mn (c1) −Y

(1),t
mn (c1)

X
(3),t
mn (c) Y

(3),t
mn (c) −ñY

(1),t
mn (c1) −ñX

(1),t
mn (c1)


 (25)

The parameters U
(j),t
mn , V

(j),t
mn , X

(j),t
mn and Y

(j),t
mn (j = 1 or 3

according to the radial function R
(j)
mn (c, ζ) in them of the first or third

kind) are given by Asano and Yamamoto in [24], and Eq. (24), given the
value of m ≥ 0, is valid for each of t ≥ 0. By taking t to be sufficiently
large, an adequate number of relations between the unknown expansion
coefficients amn, βmn, δmn and γmn can be generated. With the use
of the standard numerical techniques, the expansion coefficients, and
then from Eqs. (20) and (21) the scattered and internal fields can be
determined [17, 24].
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4. SCATTERING OF GAUSSIAN BEAM BY A
SPHEROIDAL PARTICLE WITH CONCENTRIC
NON-CONFOCAL DIELECTRIC COATING

For this scattering problem, the scattering geometry can be obtained
by replacing the spheroidal particle in Fig. 1 with a coated one.
The spheroidal particle and dielectric coating are concentric but not
necessarily confocal, so that the particle and coating surfaces can be
in different spheroidal coordinate systems. We denote the semifocal
distance, semimajor and semiminor axes by f1, a1 and b1 for the
spheroidal particle surface, and by f2, a2 and b2 for the outer surface
of the dielectric coating.

As in Eqs. (16), (17) and (20), the electromagnetic fields of
the incident Gaussian beam as well as the scattered fields can be
represented by infinite series with the spheroidal vector wave functions
attached to the dielectric coating, i.e., the value of the parameter c
taken to be kf2 in the spheroidal vector wave functions.

The electromagnetic fields within the spheroidal particle can be
represented by

Ew(1) =E0

∞∑

m=0

∞∑
n=m

in
[
δ(1)
mnM

r(1)
emn(c1, ζ, η, φ)+iγr(1)

mn Nr(1)
omn(c1, ζ, η, φ)

]
(26)

where c1 = f1k1, k1 = kñ1 and ñ1 is the refractive index of the material
of the spheroidal particle relative to that of free space.

To overcome the difficulty of applying the boundary conditions
on the particle and coating surfaces which are concentric non-confocal,
the electromagnetic fields within the dielectric coating are expanded in
terms of the spheroidal vector wave functions attached to the spheroid
surface and coating surface, respectively, as follows:

Ew = E0

∞∑

m=0

∞∑
n=m

in
[
δmnMr(1)

emn(c2, ζ, η, φ) + χmnMr(3)
emn(c2, ζ, η, φ)

+iγmnNr(1)
omn(c2, ζ, η, φ) + iτmnNr(3)

omn(c2, ζ, η, φ)
]

(27)

Ew = E0

∞∑

m=0

∞∑
n=m

in
[
δ′mnMr(1)

emn(c′2, ζ, η, φ) + χ′mnM
r(3)
emn(c′2, ζ, η, φ)

+iγ′mnN
r(1)
omn(c′2, ζ, η, φ) + iτ ′mnNr(3)

omn(c′2, ζ, η, φ)
]

(28)

where c2 = k2f1, c2 = k2f2, k2 = kñ2, and ñ2 is the refractive index of
the material of the dielectric coating relative to that of free space.

With ζ1 and ζ2 as the radial coordinates of the boundary surfaces
of the spheroid and coating respectively, the boundary conditions on
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the surface ζ = ζ2 are described by.

Ei
η + Es

η = Ew
η , Ei

φ + Es
φ = Ew

φ

H i
η + Hs

η = Hw
η , H i

φ + Hs
φ = Hw

φ

}
at ζ = ζ2 (29)

and on the surface ζ = ζ1 by

Ew(1)
η = Ew

η , E
w(1)
φ = Ew

φ

Hw(1)
η = Hw

η , H
w(1)
φ = Hw

φ



 at ζ = ζ1 (30)

Similar to the case of a spheroidal particle described in Section 3,
by considering the use of Eqs. (27) and (28) when writing Eqs. (29)
and (30) respectively, we can express the above boundary conditions
in Eq. (29) explicitly as

∞∑
n=m

in[Γ]




αmn

βmn

δ′mn

χ′mn
γ′mn
τ ′mn




=
∞∑

n=m

in




−Gm
n,TEU

(1),t
mn (c)−Gm

n,TM V
(1),t
mn (c)

−Gm
n,TM U

(1),t
mn (c)−Gm

n,TEV
(1),t
mn (c)

−Gm
n,TEX

(1),t
mn (c)−Gm

n,TM Y
(1),t
mn (c)

−Gm
n,TM X

(1),t
mn (c)−Gm

n,TEY
(1),t
mn (c)




(31)

and the boundary conditions in Eq. (30) as

∞∑
n=m

in




U
(1),t
mn (c2) U

(3),t
mn (c2) V

(1),t
mn (c2) V

(3),t
mn (c2)

ñ2V
(1),t
mn (c2) ñ2V

(3),t
mn (c2) ñ2U

(1),t
mn (c2) ñ2U

(3),t
mn (c2)

X
(1),t
mn (c2) X

(3),t
mn (c2) Y

(1),t
mn (c2) Y

(3),t
mn (c2)

ñ2Y
(1),t
mn (c2) ñ2Y

(3),t
mn (c2) ñ2X

(1),t
mn (c2) ñ2X

(3),t
mn (c2)







δmn

χmn

γmn

τmn




=
∞∑

n=m

in




U
(1),t
mn (c1) V

(1),t
mn (c1)

ñ1V
(1),t
mn (c1) ñ1U

(1),t
mn (c1)

X
(1),t
mn (c1) Y

(1),t
mn (c1)

ñ1Y
(1),t
mn (c1) ñ1X

(1),t
mn (c1)




[
δ
(1)
mn

γ
(1)
mn

]
(32)

The matrix [Γ] in Eq. (31) is given by

[Γ] =




V
(3),t
mn (c) U

(3),t
mn (c) −U

(1),t
mn (c′2) −U

(3),t
mn (c′2)

U
(3),t
mn (c) V

(3),t
mn (c) −ñ2V

(1),t
mn (c′2) −ñ2V

(3),t
mn (c′2)

Y
(3),t
mn (c) X

(3),t
mn (c) −X

(1),t
mn (c′2) −X

(3),t
mn (c′2)

X
(3),t
mn (c) Y

(3),t
mn (c) −ñ2Y

(1),t
mn (c′2) −ñ2Y

(3),t
mn (c′2)

−V
(1),t
mn (c′2) −V

(3),t
mn (c′2)

−ñ2U
(1),t
mn (c′2) −ñ2U

(3),t
mn (c′2)

−Y
(1),t
mn (c′2) −Y

(3),t
mn (c′2)

−ñ2X
(1),t
mn (c′2) −ñ2X

(3),t
mn (c′2)


 (33)
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Obviously, it is not sufficient to solve Eqs. (31) and (32) for the
unknown coefficients αmn, βmn, δmn, χmn, γmn, τmn, δ′mn, χ′mn,
γ′mn, τ ′mn, δ

(1)
mn and γ

(1)
mn, and the other relations between them can

be generated by using a transformation from spheroidal vector wave
functions to spherical ones, which is of the form [26]



Mr(j)

e
o

mn

(
c(h), ζ, η, φ

)

Nr(j)

e
o

mn

(
c(h), ζ, η, φ

)



=

∞∑

q=0,1

′im+q−ndmn
q

(
c(h)

)



mr(j)

e
o

m m+q

(k2r, θ, φ)

nr(j)

e
o

m m+q

(k2r, θ, φ)




(34)

where the superscript j takes, as already mentioned, the value of 1 or
3 according to the radial functions R

(j)
mn (c(h), ζ) and R

(j)
mn (k2r) of the

first or third kind, and c(h) is c2 or c′2.
By substituting Eq. (34) into Eqs. (27) and (28), which express

the electric fields within the dielectric coating in the same spherical co-
ordinate system, we can find that, for every q, the following formulae
hold because of the orthogonality and linear independence of the spher-
ical vector wave functions mr(j)

e
o

m m+q

(k2R, θ, φ), nr(j)

e
o

m m+q

(k2R, θ, φ)

(j = 1, 3, q = 0, 1, 2 . . . ∞)

∞∑

n=m,m+1

′




dmn
q (c2)δmn − dmn

q (c′2)δ′mn

dmn
q (c2)χmn − dmn

q (c′2)χ′mn

dmn
q (c2)γmn − dmn

q (c′2)γ′mn

dmn
q (c2)τmn − dmn

q (c′2)τ ′mn


 =




0
0
0
0


 (35)

The prime over the summation sign indicates that q takes even
values when n−m is even and odd values when n−m is odd [16].

For every value of m, we can truncate the infinite system of
equations consisting of Eqs. (31), (32) and (35) by setting n = m, m+
1, . . . , m+N , t = 0, 1, . . . , N and q = 0, 1, . . . , N , N being a suitable
large number for a convergent solution, so that the total number of
unknown coefficients is 12×(N +1). From the above truncated system,
an adequate number of relations between the unknown coefficients can
be generated, and the standard numerical techniques may be employed
to solve for them.

5. NUMERICAL RESULTS

Usually, one is more interested in the behavior of the scattered wave
at relatively large distances from the scatterer (far field), which can
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be deduced by taking the asymptotic form of Es, as cζ → ∞. In
Mr(3)

emn (c, ζ, η, φ) and Nr(3)
omn (c, ζ, η, φ), as cζ → ∞, there can be

neglected terms of order higher than 1/r, then, from Eq. (20) the
asymptotic forms of the scattered electric field Es can be obtained
as [24]

−Es
η = E0

iλ

2πr
exp

(
i
2πr

λ

) ∞∑

m=0

∞∑
n=m[

αmn
dSmn(c, cos θ)

dθ
+ mβmn

Smn(c, cos θ)
sin θ

]
sinmφ (36)

Es
φ = E0

iλ

2π r
exp

(
i
2π r

λ

) ∞∑

m=0

∞∑
n=m[

mαmn
Smn(c, cos θ)

sin θ
+ βmn

dSmn(c, cos θ)
dθ

]
cosmφ (37)

By virtue of Eqs. (36) and (37), we can have the differential
scattering cross section which is defined by

σ(θ, φ) = 4πr2

∣∣∣∣
Es

E0

∣∣∣∣
2

=
λ2

π

(
|T1(θ, φ)|2 + |T2(θ, φ)|2

)
(38)

where

T1(θ,φ)=
∞∑

m=0

∞∑
n=m

[
mβmn

Smn(c,cos θ)
sin θ

+αmn
dSmn(c,cos θ)

dθ

]
sinmφ (39)

T2(θ,φ)=
∞∑

m=0

∞∑
n=m

[
mαmn

Smn(c,cos θ)
sin θ

+βmn
dSmn(c,cos θ)

dθ

]
cosmφ (40)

The normalized differential scattering cross section πσ(θ,φ)/λ2 is
thereafter evaluated in the coordinate system attached to the
spheroidal particle. In the following calculations, the incident Gaussian
beam is TE polarized and x0 = x0 = z0 = 0. Since the representation
of the radial functions of the third kind R

(3)
mn (c, ζ) in terms of the

spherical Hankel functions of the first kind converges slowly [Flammer,
(4.1.16)], difficulties arise in the calculations for larger or smaller ka
and larger a/b. By adopting an algorithm using the recursive matrix
equation for the computation of the expansion coefficients dmn

q (c) [27],
numerical values presented until now have been for spheroids with
1 < ka < 20 and a/b < 3.

Figure 2 shows the normalized differential scattering cross sections
πσ(θ, φ)/λ2 in three scattering planes (φ = 0,π

4 ,π2 ), for incidence of
a Gaussian beam with w0 = 2λ (wavelength λ = 0.6328µm) on a
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Figure 2. Normalized differential scattering cross sections
πσ (θ, 0)/λ2, πσ (θ, π

4 )/λ2 and πσ (θ, π
2 )/λ2 for a dielectric spheroid

(ka = 5, ñ = 1.33, a/b = 2, β = −π
3 ) illuminated by a Gaussian beam

of w0 = 2λ.

dielectric spheroidal particle. In the φ = 0 plane, parallel to the
incident plane, the spheroid has the maximum forwardscattering, i.e.,
in the angle regions around θ = π

3 due to the transmitted light by the
particle which dominates the scattering profile, and oscillations due to
interference of light diffracted with light transmitted by the particle.
With the increase of the angle by which the scattering plane incline
from the incident plane, for example from φ = π

4 to φ = π
2 , the curve

oscillates with a smaller amplitude.
The radiation force and torque generated by a Gaussian beam

on a particle can be used for optical trapping or manipulation, in
which one fundamental problem concerns the description of Gaussian
beam scattering by the particle, especially in an analytical form. In
theoretical predictions of light scattering, it is probably appropriate to
model a biological cell in water solution as a spheroidal particle having
a spherical inclusion (a1/b1 taken to be 1.0001 in computation for the
scattering geometry in Section 4), illuminated by one Ar laser beam.
The incident Ar laser beam has a wavelength of λ = 0.3868µm in
water and is approximated by a Gaussian beam with w0 = 2λ. Fig. 3
shows the normalized differential scattering cross sections πσ(θ, 0)/λ2

for such a theoretical model. In Fig. 3, ñ1 = 1.109 and ñ2 = 1.045
are the refractive indices of the material of the inner sphere and outer
spheroid, but relative to that of water, and the wavelength λ of the
incident Gaussian beam is 0.3868µm.

Figure 3 shows that, with the increase of the angle between the
propagation direction of the incident Gaussian beam and the major
axis of the spheroid, i.e., the increase of the absolute value of β in



552 Sun, Wang, and Zhang

0 20 40 60 80 100 120 140 160 180
10

-4

10
-3

10
-2

10
-1

10
0

10 1

Scattering angle θ (degree)

π
σ

( θ
,0

)/
λ

2

β = 0

β =-π/4

β =-π/2

Figure 3. Normalized differential scattering cross sections
πσ (θ, 0)/λ2 for a spheroidal particle with a spherical inclusion (ka1 =
2, ka2 = 6, a1/b1 = 1.0001, a2/b2 = 2, ñ1 = 1.109 ñ2 = 1.045), for
incidence of a Gaussian beam with w0 = 2λ (β = 0, β = −π

4 , β = −π
2 ).
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Figure 4. Normalized differential scattering cross sections
πσ (θ, 0)/λ2 and πσ (θ, π

2 )/λ2 for a coated spheroid (ka1 = 4, ka2 = 6,
a1/b1 = a2/b2 = 2, ñ1 = 1.5, ñ2 = 1.33, β = −π

6 ) for incidence of a
Gaussian beam with w0 = 2λ.

Fig. 1, the curve shows fewer oscillations. According to the concept
of geometrical shadow adopted by Asano and Yamamoto [24, 25],
the geometrical shadow of the spheroidal particle is πb2(a2

2 sin2 β +
b2
2 cos2 β)1/2 and that of the spherical inclusion is πa2

1. It is obvious
that, with the increase of the absolute value of β, the ratio of the
geometrical shadow of the spherical inclusion to that of the spheroidal
particle becomes smaller, and then the interference effects decrease of
light diffracted and transmitted by the spherical inclusion with light
by the spheroidal particle, thus leading to a smoother curve with fewer
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oscillations.
Figure 4 shows the normalized differential scattering cross sections

πσ(θ, φ)/λ2 in two scattering planes φ = 0 (plane 1) and φ = π
2

(plane 2), parallel to and normal to the incident plane respectively, for
a spheroid with a concentric non-confocal dielectric coating illuminated
by a Gaussian beam of w0 = 2λ. Compared to plane 1, plane 2 shows
smoother oscillations.

6. CONCLUSION

As an extension of the GLMT for spheres, the theory of Gaussian
beam scattering from a spheroidal particle is given, including the
expansion of Gaussian beam in terms of spheroidal vector wave
functions, scattering of Gaussian beam by an arbitrarily oriented
spheroidal particle, and by a spheroidal particle with non-confocal
dielectric coating. Numerical results for the normalized differential
scattering cross section are presented. The plotted curve has the
maximum forwardscattering, and oscillates with a smaller amplitude
as the angle between the scattering plane and incident plane increases.
For a coated spheroid, with the increase of the absolute value of β, the
curve becomes smoother with fewer oscillations. Due to the difficulties
in computation of the radial functions of the third kind R

(3)
mn (c, ζ),

applications of the method to larger or smaller ka and larger a/b is
at present limited. As a result, this study provides an important
analytical model of the scatterer, and is suggestive and useful for
interpretation of shaped beam scattering phenomena for homogenous
and inhomogeneous spheroidal particles.
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