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Abstract—The problem of direction-of-arrival (DOA) estimation by
using spectral search for a non-uniform planar array is addressed. New
search methods for DOA estimation based on piecewise interpolation
are proposed. The relationships between these methods and
Fourier-Domain (FD) root-MUSIC are discussed. The proposed
methods are based on dividing the multiple signal classification
(MUSIC) null-spectrum function into a number of equal subintervals.
These subintervals are interpolated by using low-degree polynomials.
Piecewise interpolation methods based on elementary functions are
used to reduce the required computations of MUSIC null-spectrum
function. This property reduces the computational complexity
compared with line-search methods for DOA estimation. The Cramér
Rao Lower Bound (CRB) is used as a benchmark to check the accuracy
and validity of the proposed methods.

1. INTRODUCTION

Conventional spectral algorithms as MUSIC involve a spectral search
step. The computational complexity of this spectral search is
not preferred in real-time processing. Extensions of Root-MUSIC
algorithm such as interpolated root-MUSIC [1], element-space root-
MUSIC [2], manifold separation (MS) [3], FD root-MUSIC [4], and

Received 14 December 2011, Accepted 19 January 2012, Scheduled 26 January 2012
* Corresponding author: Wael Sabry Elshennawy (wael.elshennawy@orange.com).



242 Elshennawy et al.

modified polynomial rooting (MPR) [5] are introduced as an alternative
search-free algorithm to tackle this problem for nonuniform arrays.
In this case polynomial rooting is used instead of spectral domain
search step. Fourier weighted least-squares (FWDLS) root-MUSIC
uses the weighted least squares to approximate the MUSIC null-
spectrum function [6]. This method refines FD-root MUSIC technique
by evaluating the improved values of the Fourier series coefficients.
Fourier-Domain (FD) line-search MUSIC does not require polynomial
rooting but it uses simple line search [1]. This method applies zero-
padded inverse Fourier transform to the FD root-MUSIC polynomial
step [6].

The degree of FD root-MUSIC polynomial has to be sufficiently
high to minimize the truncation errors. However, the computational
complexity of root-finding of the polynomial is rather high and it
may not be suitable for real time applications [7]. On the other
hand, the root-finding DOA estimation methods suffer from that the
roots may not fall exactly on the unit circle in the presence of any
perturbation like the effect of finite snapshots. If the root-MUSIC
function has negative values below zero in some of its minima, a
different procedure is used to estimate the signal DOAs from the roots
of the negative polynomial [1]. The primary difficulty for root-MUSIC
is how to distinguish the signal roots from the extra roots of the MUSIC
polynomial. Ideally, it is assumed that the signal roots have larger radii
than the extra roots, but this may not hold for low signal-to-noise ratio
(SNR). Inside the unit circle, there might be large number of roots but
only few of them are the typical signal roots. If an extra root has a
radius larger than a signal root, the signal root is missed and it may
take the angle of the extra root as the direction for the signal. This
may be estimated as a secondary detection problem [8].

To reduce the computational complexity of the FD-root MUSIC
approach in these cases, FD line-search MUSIC is used. This FD
line-search MUSIC method does not require polynomial rooting step.
Thus, it has less computational complexity due to the simple line
search procedure. The key idea of this modification follows the work
in [8, 9]. However, it has a substantially reduced complexity compared
with conventional MUSIC null-spectrum function. It uses a large
number of zero padding values to evaluate the inverse discrete Fourier
transformation (IDFT) step in order to obtain a comparable DOA
estimation performance to those of spectral search-free methods. Thus,
it has high complexity order. Also, the performance of FD line-search
MUSIC method is worse than that of root-finding-based methods in
the case of closely spaced sources because of the threshold effect [1].

This is the motivation here to propose a DOA estimation
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method based on hybridization between the spectral search-free
DOA estimation methods [6] and line-search based DOA estimation
method [1]. This hybrid DOA estimation method applies the line-
search algorithm to the extended root-MUSIC method in such a way
leading to a reduction in computational complexity. The nulls of
the resultant spectrum correspond to the signal DOAs. Moreover,
it divides the MUSIC null spectrum into several subintervals. The
idea of dividing the MUSIC null spectrum is similar to the work
in [8] with some differences in the modeling and the method of
evaluating the signal DOAs. The response of a non-uniform planar
array over each subinterval is modeled with a low-degree polynomial
interpolant, permitting a MUSIC null-spectrum to be constructed for
each subinterval.

Only the minima with each subinterval are considered as candidate
signal DOAs. The line-search method can be applied to each
subinterval spectrum in parallel. Thus, this method reduces the
computational burden that may render from root-finding technique [9]
with a simple line search method. The proposed DOA estimation
method can be considered as computationally efficient method for
interpolating the MUSIC null-spectrum function compared with the
FD line-search MUSIC.

This paper is organized as follows. In Section 2, the signal model
is defined, the key assumptions are stated, and a brief overview of the
wavefield modeling is introduced. Then, an extension to root-MUSIC
function for the case of a non-uniform planar array is derived. In the
following three Sections 3, 4, and 5 the proposed DOA estimation
methods are introduced by using different piecewise interpolation
methods. The CRB of the proposed methods are evaluated in
conjunction with the simulation results, and compared with FD line-
search MUSIC and FD root-MUSIC methods. Finally Section 9
presents the concluding remarks.

2. BACKGROUND

Assume a non-uniform planar array as shown in Figure 1 composed
of M stationary omnidirectional elements located in XY plane. The
distance of the mth elements from the origin is rm, and γm is the
corresponding angular position measured from the x-axis. P non-
coherent narrowband signal sources are incident in the x-y plane (where
P < M). These sources are impinging on the array from direction
φ = [φ1, φ2, . . . , φn, . . . , φP ]T , where [·]T stands for matrix transpose.
Furthermore, K-snapshots are observed by the array at time instants
tk, k = 1, . . . ,K. The array steering matrix B is defined in terms of
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Figure 1. Location of non-uniform planar array formed of M elements
which are subjected to P incident plane waves.

the steering vectors b(φn) = [b1(φn), . . . , bM (φn)]T as [10]

B
M×P

= [b(φ1), b(φ2), . . . , b(φP )]. (1)

The array steering vector b(φ) is modeled by manifold separation
technique (MST) [11] as the product of a sampling matrix G(rm, γm)
(which is independent on the wavefield) and a coefficient vector d(φ)
(which is independent on the array) as follows:

b(φ) ' G d(φ), for 0 ≤ φ ≤ 2π, (2)

where d(φ) is an n × 1 Vandermonde vector which depends on φ and
n. The MST can perfectly model the array steering vector b(φ) only
by using an infinite number of Fourier coefficients [6]. In practice, the
sampling matrix can be truncated by considering only a finite number
of excitation modes (n). The parameter n characterizes the accuracy
of the approximation in (2) and it becomes exact for n → ∞. The
received signal is given by array data matrix U [12]

U
M×K

= B
M×P

S
P×K

+ N
M×K

, (3)

where U = [u(1), . . . , u(K)] and u(·) is expressed as M×1 array vectors.
It should be noted that B × S and N are defined in the similar way
as U . The matrix S is the signal matrix with rank (SSH) = P , where
[·]H is the conjugate transpose, and N represents the observation noise.
The noise is modeled as a stationary second-order ergodic zero-mean
variance σ2

n, with spatially and temporally white circular complex
Gaussian process [13].
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In practical situations, the exact array covariance matrix R
UU

is
unavailable, and its sample estimate R̂

UU
is given as [10]:

R̂
UU

=
1
K

K∑

i=1

u(i)u(i)H . (4)

The eigen decomposition of the sample covariance matrix (4)
yields two groups of eigenvectors. As, their associated eigenvalues
(λ̂1 ≥ . . . ≥ λ̂P ≥ λ̂P+1 ≥ . . . ≥ λ̂M ) are sorted in non-ascending
order, the eigenvectors can be divided into noise Ê

N
, [êp+1, . . . , êM ]

and signal Ê
S
[ê1, . . . , êP ]-subspaces eigenvectors respectively [10, 13].

Thus, the DOA estimation technique uses the noise subspace
eigenvectors Ê

N
in defining a function that introduces an indication

of the signal DOA based upon minima versus angle.

2.1. Root-MUSIC Algorithm

Root-MUSIC is a modified version of the MUSIC algorithm where
the signal DOAs are determined as the roots of a polynomial
formed by noise subspace [14]. Unlike MUSIC method which is
applicable to general array configurations, Root-MUSIC is restricted
to uniform linear arrays. From the orthogonality condition existing
between the noise subspace eigenvectors Ê

N
and array steering vectors

b(φn) at the signal DOAs, the Euclidean distance expression d2 =

|b(φ)HÊ
N

Ê
H

N
b(φ)| = 0 satisfies this equality at each DOA [10]. By

defining D(φ) as follows:

D(φ) =
∣∣b(φ)HC b(φ)

∣∣ =
M∑

n=1

M∑

m=1

e−jkrn cos(γn−φ)Cnmejkrm cos(γm−φ)

=
M−1∑

l=−M+1

cle
jkrl cos(γl−φ), (5)

where C , Ê
N

Ê
H

N
and cl is the sum of the diagonal elements of C along

the lth diagonal such that cl =
∑

m−n=l

Cnm. It should be noted that

the sharp minima of (5) represent the signal DOAs, which is evaluated
by searching over φ with a fine grid. However, this method suffers
from substantially-higher computational complexity associated with
evaluating large number of spectral points and locating the minima
of the MUSIC spectral domain. The computational complexity of the
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spectral search step of MUSIC method, (having order of O(JMP )), is
typically higher than that of the eigen decomposition step, (of order
O(M3)), because M ¿ J , where J is the total number of spectral
points. For each spectral point, the product of Ê

N
and b(φn) has to

be computed.
By using MST [11], Equation (2) can be written as:

b(z) ' Gd(z), for 0 ≤ z ≤ 1, (6)

where z = exp(−jiφ); i = −n, . . . , 0, . . . , n. Consequently,
Equation (5) can be expressed in terms of b(z) [15].

D(φ) ' ∣∣d(φ)HGHC Gd(φ)
∣∣ =

∣∣∣∣∣∣∣∣
d(1/z) GHC G︸ ︷︷ ︸

,C′

d(z)

∣∣∣∣∣∣∣∣
, D(z). (7)

Here, D(z) is a polynomial of degree 2n−2 whose roots appear in
conjugate reciprocal pairs such that if z0 is a root of D(z) then 1/z∗0 is
another root, where (·)∗ is the complex conjugate [1, 4].

D(z) =
n−1∑

l=−n+1

c′lz
l '

n∏

l=1

(1− z0z
−1)(1− z∗0z)

= do + d1z
−1 + d2z

−2 + . . . + dn−1z
−(n−1), (8)

where the coefficient c′l is the sum of elements of C ′ along the lth
diagonal. The methods which are based on root-finding require
estimating number of roots equal to the degree of D(z). This D(z)
is composed of the vectors d = [d0, d1, . . . , dn−1]T which lie in the noise
subspace. These roots correspond to the actual incident signals, and
the other roots which do not lie on the unit circle do not correspond to
the signals. These roots are known as spurious roots. Thus, the DOA
signal estimation problem is reduced to finding roots of a polynomial
as opposed to merely plotting the MUSIC null-spectrum or searching
for peaks in the MUSIC null-spectrum.

The error in locating the correct roots locations are due to many
reasons. Among these reasons are the facts that the incoming signals
are partially correlated, the array covariance matrix is approximated
by time averaging, and SNR is relatively low. This is the reason why
it has to exert care in exercising the use of root-MUSIC by knowing
the assumptions and conditions under which the calculations are
made. It is reported in many studies that Root-MUSIC shows better
performance than MUSIC especially in environments where the signals
are located closer and/or they have low SNR [16]. In the following
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sections, (7) is represented by using piecewise interpolation methods
into a low-degree polynomial interpolant of elementary functions.
Thus, it reduces the computational burden. It can be noted that the
only difference with those of root-finding based methods is the way the
polynomial D(z) is formulated and the evaluation of signal DOAs by
using simple line-search method rather than root-finding technique.

2.2. Piecewise Interpolation Methods

Equation (7) can be efficiently approximated by using piecewise
interpolation method into an equivalent polynomial functions that
takes the form of a series of elementary functions. Therefore it provides
simplicity in evaluating the signal DOAs of low-degree polynomials by
searching its corresponding domain for minima (encircled with dashed
lines) using simple line-search based method as shown in Figure 2.
Assume that D(φ) is sampled on the interval 0 ≤ φ ≤ 2π. The
domain is then divided into h-equal distant subintervals such that
each subinterval contains q data samples. Thus, the total number
of samples J = h · q, and the samples of the mth subinterval Dm(φ)
start with ϕ1 and end with ϕq with a subinterval width Tφ = q∆φ,
and ∆φ = 2π/(J − 1).

Obviously, the accurate interpolation within any of these
subintervals does not require interpolant of high degrees. Moreover, the
edge spectral point of the subinterval is multiplied by a Hann function
which has a zero at the end of the small interval ∆Tφ with p-additional
data samples, where the Hann function is scaled so that its peak value
equals to the edge spectral point value.

Figure 2. Spatial spectrum of D(φ) versus φ.
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Clearly, this modified piecewise interpolation method does not
require the evaluation of different kinds of derivatives. Moreover, it
has the effect of suppressing the ripples due to Gibbs phenomenon [17].
As the subinterval width is lengthened by ∆Tφ, this results in
more resolution of the resultant domain of the interpolant. The
polynomial interpolants are then invoked in order to evaluate the
signal DOAs by searching the whole domain which consists of a w
data samples by using simple line-search method. Recalling that
the piecewise polynomial interpolation has better performance in
regards to continuous polynomial interpolation [18] and introduces an
additional degree of freedom in choosing the polynomial interpolating
functions.

This is further exploited to obtain smooth polynomial interpolant
despite its piecewise nature. Therefore, it overcomes the practical
and theoretical difficulties associated with high-degree polynomial
interpolant and avoids round off errors. The Gibbs phenomenon
appears in piecewise interpolation methods as a result of an accuracy
reduction to the first order away from the edge spectral points,
and causes oscillations in the neighborhoods of jumps. Gibbs
phenomenon [19] occurs for almost all series expansions. This
phenomenon does not occur only in trigonometric Fourier series,
but also, it exists in other classical orthogonal series such as
spline expansions and wavelet series [17]. The proposed piecewise
interpolation methods have to fulfill the lowest approximation errors
throughout all possible values within the consecutive subintervals. The
differentiability property of the polynomial interpolant should be also
preserved. The subsequent section addresses a brief review for three
piecewise interpolation methods in line with the proposed DOA signal
estimation method.

3. PIECEWISE TRIGONOMETRIC INTERPOLATION
(PTI) LINE-SEARCH MUSIC

Piecewise trigonometric interpolation line-search MUSIC method is an
alternative to root-MUSIC type approach to DOA estimation method
which can be used for non-uniform planar array. In this method, the
Dm(φ) spectrum is expressed as trigonometric series expansions by
using trigonometric piecewise interpolation method discussed in [20]
as:

Dm(φ) '
t/2∑

l=0

δl cos(2πlφ/(Tφ + ∆Tφ))

+βl sin(2πlφ/(Tφ + ∆Tφ)) , f1(φ), (9)
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where the complex coefficients δl and βl are independent and normally
distributed. Each of these coefficients has its mean values (µδl

, µβl
),

and variances (σδl
, σβl

) respectively. These coefficients are evaluated
by solving a linear system of equations, which is obtained by equating
spectral data samples of (7) to a matrix system of (9). The resultant
matrix of coefficients has a size t× t and is non-singular and diagonal.
Hence this interpolation method is well defined [20]. Moreover, the
computational complexity associated with the solution of this system
involves O(t2) operation. The expected number of signal DOAs per
subinterval is given by [21]:

ENF = 2

√√√√
t/2∑

l=0

l2
{

σ2
δl

+ σ2
βl

}/ t/2∑

l=0

{
σ2

δl
+ σ2

βl

}
. (10)

The exponential form of (9) is related to that of root-MUSIC
representation (5) where both are similar with the difference of
interpolant degree:

F1(φ) =
l=t/2∑

l=−t/2

αl exp(j2πlφ/(Tφ + ∆Tφ)). (11)

The following formulas define the transformation between the
two representation of (9) and (11); α0 = δ0, αl = (δl − jβl)/2, and
αl = (δl + jβl)/2, thus the polynomials are Hermitian. It can be noted
that the sum and the product of symmetric (Hermitian) polynomials
are also symmetric (Hermitian) polynomials which means that the
polynomials are rings [22]. Equation (11) can be written as follows:

f1(z′) =
t/2∑

`=−t/2

α`z
′`, (12)

where z′ denotes exp(j2πφ/(Tφ + ∆Tφ)) and it follows the so-called
conjugate reciprocity property, i.e., z′0 = (1/z′0)

∗. In the absence of
noise (12) has zeros which precisely lie on the unit circle and their
angles are functions of the signal DOAs in similar way to the root-
MUSIC method. Clearly, the degree of (8) is usually higher than that
of (12). Thus, it results in lowering the computation burden. As
the structures of (8) and (12) are related, it is expected the result of
asymptomatic performance analysis [16] of (8) can be used as well for
this method. However, the signals DOAs are evaluated by simple line
search method.
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4. PIECEWISE PRONY INTERPOLATION (PPI)
LINE-SEARCH MUSIC

This piecewise interpolation method is devoted to approximating
the subintervals Dm(φ) of (7) by using direct Prony method [23].
Interpolating F2(φ) by using q + p equidistant data samples within
the domain Tφ + ∆Tφ using PPI method leads to F ′

2(φ), where F2(φ)
is expressed as

F2(φl) =
{

Dm(φl); l = 1, . . . , q
w(l); l = q + 1, . . . , q + p

}
,

w(l) = Dm(φq) · sin2(lπ/p− 1).
(13)

The polynomial interpolant F ′
2(φ) is approximated by t

exponential functions [23] which equals to F2(φ) at φl = φ1, . . . , φq+p

as

F2(φl)'
t∑

i=1

Aie
(αi+jωi)·(l−1)(Tφ+∆Tφ)+jψi , F ′

2(φl)=
t∑

i=1

hig
′′l−1
i , (14)

where hi = Aie
jψi , and g′′i = e(αi+jωi)(Tφ+∆Tφ), provided that (Tφ +

∆Tφ), Ai, αi, ωi, ψi are the sampling period, amplitude, damping
factor, angular velocity, and initial phase respectively. Prony method
is a technique for extracting sinusoid or exponential signals from data
series by solving a set of linear equations [24]. The estimation problem
is based on the minimizing the squared error δ over the q + p-data
values as follows [23]:

δ =
q+p∑

l=1

|ε[l]|2

ε[l] = F2(φl)−
t∑

i=1

hig
′′l−1
i .

(15)

Let us consider the linear prediction polynomial F ′
2(z

′′) [24] that
has the roots g′′i , then the expression for Prony interpolant can be
expressed as:

F ′
2(z

′′) ,
t∏

i=1

(z′′ − g
′′−1
i ). (16)

It should be noted here that the definition of (16) is similar to
that which has been used in (8) but they are different in the degree
of the polynomials and the locations of the roots. In this example,
the number of data samples equals twice the polynomial interpolant
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order, i.e., q +p = 2t, thus the basic Prony method is used [24]. Prony
method is classified as a high-resolution spectrum estimation method.
The accuracy of the signals DOAs estimation depends on the SNR, the
number of subintervals (h), and the number of data samples (q + p).

5. PIECEWISE CHEBYSHEV INTERPOLATION (PCI)
LINE-SEARCH MUSIC

The subinterval Dm(φ) is represented by using the discrete Chebyshev
expansions. This piecewise interpolation method implies the use of
non equidistant sampling points that satisfies the uniform convergence
condition, efficient, and stable interpolation method [25]. It involves
calculation of the Chebyshev nodes φk, which are defined as
Cheybshev-Gauss-Lobatto (CGL) [25];

φl = cos((l − 0.5)π/(q + 1)); l = 0, . . . , q − 1. (17)

The extrema of the Chebyshev polynomials are not evenly
distributed and clustered around the subinterval edges. Thus it is
not necessary to use Hann function for this DOA estimation method.
This piecewise interpolation method benefits from the advantages of
Chebyshev polynomials, i.e., the least deviation from zero property,
and the recurrence relationship for efficient computation [26]. In
this case, the Chebyshev polynomials of the first kind are used to
approximate the subintervals of the null spectrum, and the series
expansion takes the form of truncated Chebyshev expansion at degree
t as:

Dm(φ) '
t−1∑

i=0

c′′i Ti(φ) , f t
3(φ) =

t−1∑

i=0

diz
′′′i , f3(z′′′), (18)

where di are the coefficients of the f3(z′′′), and Ti(φ) and c′′i are
first kind Chebyshev polynomials and their associated coefficients,
respectively. The coefficients are efficiently evaluated by using fast
cosine transform (FCT), and their computations are of order O(t log2 t)
operation. Note that f3(z′′′) in (18) has a polynomial of degree (t− 1)
which is lower than that of D(z) in (8). The Chebyshev approximation
error can be defined as follows [25]:

|f t
3(φ)−Dm(φ)| ≤ 2(ϕq − ϕ1)t+1

4t+1(t + 1)!
max

ϕ1≤φ≤ϕq

|f t+1
3 (φ)|. (19)

Equation (19) is used to determine the degree of polynomial
function (t) that ensures the interpolation method can perfectly
approximate the subintervals Dm(φ).
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6. CRAMÉR-RAO BOUND

The analysis of ultimate performance of an unbiased estimator can
be obtained by using the assumptions of unconditional data signal
model, large number of snapshots (K), and Gaussian distribution of
noise with zero mean. This is generally conducted by using the CRB.
Assume that θ = [φT ρT σn]T denotes the unknown parameter vector,
where ρ is the P 2 × 1-vector made from signal covariance matrix R̂

ss
.

Under the assumptions of data signal model discussed in Section 2 and
the Gaussian hypothesis, the Fisher information matrix (FIM) for the
parameter vector θ is given by [27]:

FIMi,l = K · Tr
(

dR
UU

dθi
R−1

UU

dR
UU

dθl
R−1

UU

)
,

for i, l = 1, . . . , P 2 + P + 1, (20)
where Tr(·) stands for trace. Both ρ and σn are nuisance parameters.
The parameter of interest in this study is only in φ — block of CRB
= FIM−1, which it is denoted by CRB (φ) on the signal covariance
matrix of an unbiased estimate of φ and is given by [28];

CRB(φ) =
σn

2K

{
Re(Y HΠ⊥

B
Y )¯ (R

SS
BHR−1

UU
BR

SS
)T

}−1
,

Y
M×P

= [y
1
, . . . , y

P
]; y

i
= (db(φi)/dφi),

Π⊥
B

= I −Π
B

; Π
B

= B(BHB)−1BH ,

(21)

where ¯ is the Hadamard-Schur product. The diagonal elements of
CRB(φ) represent the variances of estimation errors. It should be
noted that the [CRB(φ)ii] values are dependent on K, M , σn, R̂

ss
and

SNR values, and become asymptotically equal to the exact CRB for
large K, and M values [29].

7. COMPUTATIONAL COMPLEXITY ANALYSIS

The complexity orders of the PTI, PPI, and PCI line-search MUSIC
methods are presented in Table 1 compared with those of the FD line-
search MUSIC and FD root-MUSIC methods. It can be noted that all
of the methods in Table 1 include the eigen decomposition step which
has a computational complexity of order O(M3), the computation
of J samples of the MUSIC null spectrum requires computational
complexity of order O(JMP ), and the complexity to compute the
spectrum domain of the polynomial interpolant is of order O(wt).

It is clear from Table 1 that the three-proposed DOA estimation
methods, i.e., PTI, PPI, PCI line-search MUSIC methods have
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Table 1. The orders of computational complexities for the proposed
DOA estimation methods.

Algorithm Computational Complexity
Order

level

PCI line-search

MUSIC
O(M3 + JMP + h · (t log2 t) + wt) 104

PTI line-search

MUSIC
O(M3 + JMP + ht2 + wt) 104

PPI line-search

MUSIC
O(M3 + JMP + 2h · (t2 + t3) + wt) 103

FD Line-Search

MUSIC [1]
O(M3 + nMP + J log2 J) 107

FD root-MUSIC [1] O(M3 + nMP + n log2 n + degree-n rooting) 103

Table 2. Non-uniform planar array elements locations within XY -
plane.

Element number 1 2 3 4 5
X/λ −0.83 −0.16 0.17 0.22 0.81
Y/λ −0.15 −0.11 0.31 0.63 −0.62

computational complexity levels of much lower orders than the FD
line-search MUSIC and comparable to that of the FD root-MUSIC.

8. SIMULATION RESULTS

In this section, the performances of the proposed DOA estimation
methods are presented, and illustrative comparisons between the
performances of the three methods are given for the array of omni-
directional elements as shown in Figure 1. The XY locations of the
non-uniform planar array in terms of the operating wavelength are
given in Table 2. The array is illuminated by two uncorrelated sources
of equally power levels. In the first and second examples, the DOA
estimation performances of the PCI, PPI, and PTI line-search MUSIC
are tested versus CRB and compared to that of FD line-search MUSIC
and FD root-MUSIC respectively in the case of n = 19. The incident
fields are assumed to impinge from the direction angles φ1 = 20◦ and
φ2 = −10◦ for the case of first example, and from the direction φ1 = 15◦
and φ2 = 20◦ for the second and third examples respectively in the
azimuth plane (−π < φ < π). Throughout the simulations, 1000-
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Figure 3. DOA estimation RMSEs versus SNR for K = 100,
φ1 = 20◦, φ2 = −10◦, n = 19. The array of Figure 1 is used, FD
line-search MUSIC and FD root-MUSIC are overlapped.

independent Monte Carlo runs have been conducted in each example.
The number of snapshots used to estimate the covariance matrices are
K = 100.

For a diagonally-signal covariance matrix R
SS

, Figure 3 shows
that the DOA estimation RMSEs of the proposed methods are
tested versus the SNR. The proposed DOA estimation methods
asymptomatically exhibit the same performance as the stochastic CRB
for SNR > −4 dB. Thus, these methods are considered statistically
efficient for SNR > −4 dB. Note that in this figure, the PTI line-
search MUSIC and CRB curve are nearly equal above −4 dB (i.e.,
they merge into one curve). The performances of PTI, PCI, and PPI
line-search MUSIC, and FD line-search MUSIC and FD root-MUSIC
are compared for the case of n = 19 as shown in Figure 3. It can
be observed that the proposed DOA estimation methods substantially
outperform the FD line-search MUSIC and FD root-MUSIC for SNR >
−4 dB and close to both of them for SNR < −4 dB with preference to
the proposed DOA estimation methods in achieving low computations
compared to FD line-search MUSIC method and nearly equal to
that of FD-root-MUSIC. The performance of PTI line-search is the
highest among the proposed DOA estimation methods, and it has
analytic performance asymptomatically to that of FD root-MUSIC.
The performance of PPI line-search MUSIC is close to that of PCI
line-search MUSIC except for −6 dB < SNR < −4 dB, with the
exception that the RMSEs of PCI line-search MUSIC shows faster
decrease rate for SNR > 2 dB. This asserts that the choice of the
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Figure 4. DOA estimation RMSEs versus SNR for K = 100,
φ1 = 15◦, φ2 = 20◦, n = 19. The array of Figure 1 is used.

subinterval representation model plays important role in controlling
the performance of the DOA estimation method.

In the second example, the performances of the proposed methods
are examined for the case of closely spaced signal sources. It is assumed
that two sources impinge on the array used in Figure 1 from the
directions φ1 = 15◦ and φ2 = 20◦ in the azimuth plane. All other
parameters are same as the first example.

Figure 4 displays the DOA estimation RMSEs of the proposed
methods versus the SNR compared to the FD line-search MUSIC, and
FD root-MUSIC [1]. For SNR > −4.5 dB, the performance of PCI
line-search MUSIC is better than those of the PTI and PPI line search
MUSIC in the case of closely spaced signal sources. This property has
an important role in achieving pronounced performance improvements
at relatively low SNR and closely angular spacing between sources.
From the shown figure, it is clear that the performance of the line-
search based methods can be enhanced by using proper subinterval
basis functions such as the trigonometric, Prony, and Chebyshev
polynomials. It is shown also the PCI line-search MUSIC has the
best performance than others.

In Figure 5, the impact of the number of snapshots K on the
proposed methods compared to those of the FD root-MUSIC and
FD line-search MUSIC is shown. The performance of the proposed
methods outperforms those of FD root-MUSIC and FD line-search
MUSIC for K > 10 and SNR = 20 dB. It can be noted that the
behavior of the RMSEs in finding the signal DOAs versus K is similar
to those curves of signal DOA estimation RMSEs versus SNR values.
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Figure 5. DOA estimation RMSEs versus SNR for φ1 = 15◦,
φ2 = 20◦, n = 19, SNR = 20 dB. The array of Figure 1 is used.

9. CONCLUSIONS

The signal DOAs are estimated by using hybridization between spectral
search-free methods and line-search based DOA estimation method.
It is shown that the proposed line-search based methods, i.e., PCI,
PPI, PTI line-search MUSIC, have better performance than FD root-
MUSIC and FD line-search MUSIC especially for relatively low SNR
values in terms of complexity order and performance. An important
property of these methods is that they have computationally efficient
implementation because they are based on piecewise interpolation
method which can be calculated in a parallel scheme. The PTI line-
search MUSIC exhibits the same analytic performance as the FD
root-MUSIC. The proposed DOA estimation methods offer attractive
alternative to the existing DOA estimation line-search based methods
like FD line-search MUSIC. On the other hand, the proposed
methods are more accurate at relatively low SNR and faster when
implemented using parallel processors. For DOA signals estimation
of closely angular separation between sources, the PCI line-search
MUSIC outperforms other proposed methods as well as the FD root-
MUSIC and FD line-search MUSIC at relatively low SNR, due to the
appropriate choice of interpolant representation model.
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