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Abstract—Efficient global optimization has been extensively used
in problems with expensive cost functions. However, this method
is not suitable for high-dimensional problems. In this paper, the
radial basis function network is introduced into the efficient global
optimization, to avoid local optima and achieve a fast convergence
for high-dimensional optimization. Our algorithm is applied to a
12-dimensional optimization of a transmitting antenna. Compared
to the genetic-algorithm-based efficient global optimization and the
differential evolution strategy, our algorithm converges to the global
optimal value more efficiently.

1. INTRODUCTION

Conventional efficient global optimization (EGO) which employs
the Kriging model is an efficient evolutionary algorithm for the
low-dimensional optimization problems [1]. In comparison with
the population-based optimization techniques, such as the genetic
algorithm (GA) [2–5], particle swarm optimization (PSO) [6–14] and
differential evolution strategy (DES) [15–21], the EGO requires fewer
function evaluations to obtain the global optimum [22–27]. However,
it is difficult for the conventional EGO to avoid falling into local
optima when the dimensions of optimization increase [24, 25]. In
order to overcome this difficulty, some improved EGO algorithms
have been proposed for high-dimensional problems, e.g., the Taguchi’s-
method-based EGO [26] and the GA-based EGO [27]. However, the
convergence rates of these methods remain to be improved.
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An effective approach for fast convergence is to add new sampling
points around the optimum of the surrogate model and the sparse
region in the design space simultaneously [28, 29]. In this paper, we
use the Kriging model and the radial basis function (RBF) network
to determine the new sampling points. Numerical examples show that
the global optimum can be found with a small number of function
evaluations via this sampling strategy.

The remainder of this paper is organized as follows. Section 2
introduces the conventional EGO algorithm briefly. In Section 3
the RBF network and the density function [30] for the sparse region
searching are described, and the new algorithm is presented. Section 4
demonstrates the advantages of our algorithm with a 12-dimensional
optimization of a transmitting antenna [31]. Conclusions are given in
Section 5.

2. THE CONVENTIONAL EGO ALGORITHM

The detailed descriptions of the conventional EGO algorithm can be
found in [1], and we only present its main ideas here. The procedure
of the conventional EGO is shown in Fig. 1.

Initial sampling points m

Calculation of the response of objective

Construction of Kriging model of objective 

from m sampling ponits

Find the next sampling point  x 

with EI from Kriging model 

Termination criteria met?

End

Calculation of the response of x;

update m=m+1

Yes

No

Figure 1. The flow chart of the conventional EGO algorithm.
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The EGO algorithm begins by fitting a surrogate model to the
data which are obtained by evaluating the cost function at a limited
number of sampling points. The initial sampling points are chosen
randomly or by some space-filling techniques, such as the Latin
hypercube, orthogonal array and uniform design [32]. The surrogate
model is then refined with only a few of additional function evaluations.
Finally, the global optimum in the surrogate model can be obtained.

The surrogate model employed in the EGO algorithm [1, 22–27] is
the Kriging model, which can be written as

fk(x) = µ + r′R−1(y − Iµ), (1)

where fk(x) represents the predicted value by the Kriging model.
µ = (I′R−1y)/(I′R−1I) denotes the mean of the function with R
being a m × m matrix whose (i, j) entry is Corr(xi,xj). Here
xi is the i-th sampling point. y = [ y1 y2 . . . ym ] represents
the responses which are obtained by evaluating the cost function at
the sampled points. r′ = [ Corr(x,x1) . . . Corr(x,xm) ] is the
correlation between the point x and all previously sampled points.

The expected improvement (EI) in the EGO can be expressed as

EI(x) = [ymin−fk(x)]ϕ
[
ymin−fk(x)

s(x)

]
+ s(x)Φ

[
ymin−fk(x)

s(x)

]
, (2)

where ymin = min[ y1 y2 . . . ym ] denotes the current best response
value, ϕ(u) and Φ(u) are the normal probability density function and
the probability distribution function with the standard deviation s(x)
respectively.

The location of the maximum value of EI in the design space is
used as the new sampling point which needs to be evaluated. The
balance between the local and global searches of the EGO can be
achieved by the evaluation of EI [24].

The stopping rule of the EGO algorithm can be chosen such that
the absolute value of EI at the next sampling point is less than 1% of
ymin [1], or a maximum number of iteration is reached.

3. THE HYBRID-SURROGATE-MODEL-BASED EGO
ALGORITHM

The most consuming part for the EGO algorithm is to refine the
surrogate model. Since the number of sampling points in constructing
the surrogate model in the EGO increases significantly with the
dimension number, the superiority of the conventional EGO algorithm
will be lost for the high-dimensional problems. One efficient method
to construct the surrogate model is simultaneously adding the new
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sampling points around the optimum of the surrogate model and the
sparse region in the design space [28, 29]. In this paper, the hybrid
surrogate model consists of the RBF network and Kriging model is
used to implement this sampling strategy for the fast convergence of
EGO.

3.1. RBF Network

An RBF network is a three-layer feed-forward network. The output of
the network fR(x) is given by

fR(x) =
m∑

i=1

wihi(x), (3)

where m represents the number of sampling points, hi(x) and wi are
the i-th basis function and its weight. The basis function is chosen as

hi(x) = exp
(
−(x− xi)′(x− xi)

r2
i

)
, (4)

where ri is the width of the i-th basis function. The learning of the
RBF network is usually accomplished by solving

E =
m∑

i=1

(yi − fR(xi))2 +
m∑

i=1

λiw
2
i → min, (5)

where yi is obtained by evaluating the cost function at the sampled
point xi and the second term is introduced for the purpose of
regularization. It is recommended that λi in Eq. (5) has a small value
(e.g., λi = 1.0 × 10−3). Thus, the learning of the RBF network is
equivalent to finding the weight vector [30]

w = (H′H + Λ)−1H′y, (6)

where H, Λ and y are given by

H =




h1(x1) h2(x1) · · · hm(x1)
h1(x2) h2(x2) · · · hm(x2)

...
...

. . .
...

h1(xm) h2(xm) · · · hm(xm)


 (7)

Λ =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λm


 (8)

y = ( y1 y2 . . . ym )′. (9)



Progress In Electromagnetics Research, Vol. 124, 2012 89

The RBF network can be incorporated into EGO easily, since the
sampling point is added gradually and the additional learning reduced
to the incremental calculation of the matrix inversion in the EGO. The
detailed procedure can be found in [33].

3.2. Density Function

The introduction of the density function is to discover a sparse region
in the design space. The basic concept of the construction of a density
function using the RBF network is very simple.

We set the output of density function yD
i at the sampled point

xi as “+1”, i.e., yD = ( 1 1 . . . 1 )′m×1. The weight vector wD of
density function D(x) is calculated as wD = (H′H + Λ)−1H′yD, and
the density function D(x) is written as

D(x) =
m∑

i=1

wD
i hi(x). (10)

The point at which the density function D(x) is minimum will be
taken as the new sampling point. It is expected that the addition of
the new sampling points in the sparse region will prevent the EGO
falling into the local optima.

3.3. Algorithm for EGO using Hybrid Surrogate Model

As the surrogate models with large dimensions are not accurate at
the beginning of the optimization, one can increase the diversity of
sampling and expand the search domain by the combination of different
surrogate models. Therefore, the RBF network and the Kriging model
are employed alternatively in the iterations in optimization procedure.

Figure 2 shows the details for the hybrid-surrogate-model-based
EGO algorithm (HSM-based EGO). The orthogonal array (OA) is
introduced to determine the initial sampling points [32]. It provides a
sparse and balanced design for any projection into k dimensions in the
optimization problem. The number of initial samples m is determined
by the strength of the array and the number of levels. The responses
at these sampling points are calculated by the cost function.

A Kriging model is constructed from m sampling points, and the
first new sampling point P1 is generated by searching the maximum
value of EI in the design space. This is a quasi-global search as the EI
is a random value and associated with the local optima (See Eq. (2)).
Then the response at the P1 is calculated by the cost function and the
number of sampling points is updated to m = m + 1.
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The second new sampling point P2 is the location at the optimal
output of the RBF network. This is obviously a local search. Then the
response at the P2 is evaluated and the number of sampling points is
updated to m = m + 1.

If the terminal criterion that the number of function evaluations
reaches a given mmax is met, the algorithm is terminated. Otherwise,
a density function D(x) will be constructed. The third new sampling
point P3 which located in the sparse region is the global minimum of
the density function. This is helpful to the global search. Then, the
value of m is updated for the next iteration as shown in Fig. 2.

Initial sampling points m by Orthogonal Array

Calculation of the response of objective

Construction of Kriging Model with 

m sampling ponits

Find the next sampling point P1 with EI
from Kriging Model by GA

Termination criteria met?

End

Calculation of the response of P1;

update m=m+1

Construction of RBF network 

with m sampling ponits

Find the optimal point P2 from RBF 

network with GA

Calculation of the response of P2;

update m=m+1

Construction of 

D (x) with m 

sampling ponits

Find the minimal

point P3 of D(x)

with GA

Calculation of the 

response of P3;

update m=m+1

Yes

No

Figure 2. The flow chart of the HSM-based EGO algorithm.
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4. NUMERICAL EXAMPLES

In this section, the validity of our algorithm will be demonstrated with
the examples of a test function and a transmitting antenna design.

4.1. A Test Function

We consider the following problem

f(x) =
1
2

k∑

i=1

(
x4

i − 16x2
i + 5xi

) → min (−5 ≤ xi ≤ 5), (11)

where xG = ( −2.9035, −2.9035, . . . , −2.9035)1×k is the global
minimum. In this example, the number of design variables k is set
as 10, and the objective function at xG is f(xG) = −391.661. We
apply our algorithm to find the global minimum. The number of the
initial sampling points which are generated randomly is 25 (in order
to compare with the results in the literature [30], we do not use OA to
generate them). The maximum number of function evaluations mmax

is set as 150, and we obtain the average global minimum of −389.7621
in 10 trials. The average convergence rate is shown in Fig. 3. In
contrast, the PSO needs 10,000 evaluations to converge to an average of
−388.832 in 10 trials [30], and the sequential approximate optimization
(SAO) needs 500 evaluations to converge to an average of −384.089 in
10 trials [30].
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Figure 3. Average convergence rate for 10-D Equation (11).

4.2. Optimization of a Combined-Oscillator Antenna

A transmitting antenna, named combined-oscillator (CO), was
designed for launching a transient pulse in the literature [31]. The
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geometry of the CO antenna is shown in Fig. 4. This antenna
presents a combination of electrical and magnetic oscillators which
can help to expand the matching band into the low-frequency region
in the limited volume of antenna. It has the voltage standing-wave
ratio (VSWR) less than 4 from 100 MHz to 1200MHz (Fig. 5), an
asymmetric power pattern in the meridional plane with an up-shift
of 15◦ (Fig. 6), and a symmetrical power pattern in the azimuthal
plane with the cardiac type (Fig. 7). This antenna has been used
as a steering antenna array element that radiates the ultra-wideband
electromagnetic pulse [31, 34].

The HSM-based EGO algorithm is applied to optimize the VSWR
and normalized power pattern [35] of the CO antenna. The number of
the design variables is twelve, and their ranges are listed in Table 1.
Other parameters shown in Fig. 4 are set as constants.

(a) (b)

(c) (d)

Figure 4. The geometry of the CO antenna: (a) side view, (b) side
view, (c) back view, (d) 3D view.
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Table 1. Design parameters for the CO antenna (unit: mm).

design parameter A B C D E (Eu=Ed) F (Fu=Fd)
lower bound 15 20 20 60 30 0
upper bound 30 60 60 200 50 20

design parameter w w1 a3 a4 h7 t2
lower bound 100 200 30 30 0 10
upper bound 250 500 60 60 50 20
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Figure 5. The Comparison of the
VSWR given in [31] and the one
obtained by the HSM-based EGO
algorithm.
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Figure 6. The Comparison of
the normalized power pattern in
the meridional plane given in [31]
and the one obtained by the HSM-
based EGO algorithm.

The design problem is defined as the minimization of the objective
function

F (x) = offset[mld(x)] + max{vswr(x, f), f ∈ [100MHz, 1200MHz]},
(12)

where x = {A, B,C, D,E, F,w, w1, a3, a4, h7, t2}, mld(x) is the main
lobe direction of the power pattern in the meridional plane for x. If
mld(x) ∈ [0, 10]or[350, 360], offset(z) = 0, otherwise offset(z) = z.

The number of initial sampling points which were determined by
OA is 27, and the maximum number of function evaluations mmax in
our algorithm is set as 200.

The optimal solution obtained by our algorithm is recorded in
Table 2. As shown in Fig. 5 and Fig. 6, the VSWR is improved
dramatically in the bandwidth ranging from 100 MHz to 1200 MHz,
while the main lobe direction of the power pattern in the meridional
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Figure 7. The Comparison of the normalized power pattern in the
azimuthal plane given in [31] and the one obtained by the HSM-based
EGO algorithm.

plane is 0◦ compared with 15◦ given in [31]. It is shown in Fig. 7 that
the main lobe of the power pattern in the azimuthal plane is narrower.
These improvements are very useful for the application of antenna in
the array.

4.3. Comparisons of the HSM-based EGO, GA-based EGO
and DES Algorithms

In order to show the performance of our algorithm, we also apply the
GA-based EGO and the DES algorithms to optimize the same CO
antenna respectively.

The initial set of the GA-based EGO is the same as the HSM-based
EGO algorithm. Furthermore, the maximum number of iterations in
the GA-based EGO algorithm is set as 300.

The population size of the DES algorithm is set as 30 and its
maximum number of iterations set as 20. Thus, there are total 600
function evaluations for the DES algorithm in this optimization.

Table 2 shows the best solutions obtained by these three
algorithms in 10 independent runs. The average convergence rates
for them are shown in Fig. 8. It is worth stressing that the
optimization time is dominated by the function evaluation — the
numerical simulation of the CO antenna by the electromagnetic solver
in this example. Therefore the performance of algorithm can be
indicated by the number of function evaluations.

It can be seen from Fig. 8 that the capabilities of our algorithm
both in the fast convergence and the global search are superior to those
of the GA-based EGO and DES algorithms in this 12-dimensional
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Table 2. Optimal parameters for the CO antenna obtained by
different algorithms (unit: mm).

Design Parameter A B C D E F

HSM-based EGO 15.0 52.3 59.6 200.0 30.0 15.5
GA-based EGO 15.0 60.0 59.8 200.0 35.7 10.0

DES 15.0 43.3 59.3 199.5 30.3 10.2
Design Parameter w w1 a3 a4 h7 t2
HSM-based EGO 240.0 417.6 50.3 49.7 30.3 20.0
GA-based EGO 143.8 325.5 44.2 25.5 30.5 20.0

DES 209.4 331.1 52.4 50.7 38.6 13.6
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Figure 8. Comparisons of the
average convergence rates by the
different algorithms.
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optimization. The fitness value of the HSM-based EGO algorithm
converges to 2.52 with 200 function evaluations, while the fitness values
of the GA-base EGO and DES algorithms are about 2.6 with 300
and 600 function evaluations respectively. In our simulations, the
electromagnetic solver CST MWS is employed and run on the ASUS
server with 4 cores, CPU: Xeon X3330 @ 2.66 GHz. The average
calculation time for the optimization are about 67 hours, 100 hours
and 200 hours for the HSM-based EGO, GA-based EGO and DES
algorithms respectively.

The VSWR and power patterns of the best solutions obtained by
these three algorithms are presented in Fig. 9–Fig. 11. We can see that
their comprehensive performances are comparable. These comparisons
show that our algorithm is very efficient in dealing with the high-
dimensional antenna design problems.
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meridional plane by the different
algorithms.
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Figure 11. Comparisons of the
normalized power patterns in the
azimuthal plane by the different
algorithms.

5. CONCLUSION

In this paper, we propose a HSM-based EGO algorithm for the high-
dimensional antenna optimization. We introduce a sampling strategy
implemented by the hybrid surrogate models into EGO algorithm.
Numerical examples show that the global optimum can be found in
a small number of function evaluations. Compared with the GA-based
EGO and DES algorithms, our algorithm obtains better results of
the convergence rate. It is shown that the design methodology is an
effective way for the high-dimensional antenna optimization.
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