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Abstract—Time harmonic electric and magnetic fields inside a
parallel plate DB boundary waveguide are derived and fractional
curl operator is utilized to study the fractional parallel plate DB
waveguides. The DB boundary conditions are incorporated by
assuming the behavior of boundary as perfect electric conductor (PEC)
for transverse electric mode and perfect magnetic conductor (PMC)
for transverse magnetic mode. For this purpose a general wave
propagating inside the parallel plate wave waveguide is assumed and
decomposed into TE and TM modes. Behavior of the fields and
transverse impedances of the walls of guide are studied with respect
to the fractional parameter describing the order of the fractional curl
operator. The results are compared with the corresponding results for
fractional waveguides with PEC walls.

1. INTRODUCTION

Fractional derivatives and integrals are mathematical operators
involving differentiation and integration of arbitrary (non-integer) real
or complex orders. Fractional calculus is a branch of mathematical
analysis that studies the properties of taking arbitrary real or complex
order differentiation and integration operators [1]. It generalizes the
classical calculus, so in this respect traditional calculus may be taken
as a special case of the fractional calculus. Using fractional calculus,
scientists and engineers have been interested in exploring the potential
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utilities and possible physical implications of mathematical machinery
of the subject of fractional calculus, i.e., fractional derivatives
and fractional integrals [2]. It has been demonstrated that these
mathematical operators are interesting and useful tools in various
disciplines of science and engineering [3–5]. Electromagnetic theory
has an important role in the modern world of science and engineering.
Maxwell equations encapsulate all this revolutionary discipline, whose
solutions have a great importance in current research and development
activities and fractionalization of solutions to the Maxwell equations
has been part of research interests since many years.

Fifteen years ago, Engheta particularly focused on finding out
what possible applications and/or physical role, the mathematical
operators of fractional calculus can have in electromagnetic theory [6–
11]. He applied the concept of fractional derivatives/integrals to certain
electromagnetic problems, and obtained interesting results and ideas
showing that these mathematical operators are interesting and useful
mathematical tools in electromagnetic theory. Some of these ideas
include the mathematical link between the electrostatic image methods
for the conducting sphere and the dielectric sphere [6], fractional
solutions for the scalar Helmholtz equation [7, 10], electrostatic
fractional image methods for perfectly conducting wedges and cones [8],
and the novel concept of fractional multipoles [9].

Tarasov proved that the electromagnetic fields in dielectric media,
whose susceptibility follows a fractional power-law dependence in a
wide frequency range, can be described by differential equations with
time derivatives of noninteger order [12, 13]. Fractional dimensional
space represents an effective physical description of confinement in
low-dimensional systems. The concept of fractional calculus to
obtain the solution of electrostatic problem in fractional dimensional
space, for the fractional order multipoles, is utilized by Muslih and
Baleanu [14]. They also introduced the form of fractional scalar
potential by finding the solutions of Laplace’s equation in fractional
dimensional space [15]. They derived potential of charge distribution
in fractional space using Gegenbauer polynomials. According to Zubair
et al., solutions of Helmholtz equation in fractional space can describe
the complex phenomenon of wave propagation in fractal media. With
this view, they established a generalized Helmholtz equation for wave
propagation in fractional space and found its analytical solution [16–
21].

Fractionalization of ordinary derivative and integral operators
motivated the researchers to find out the possible fractionalization
of other operators and their use in electromagnetics. Engheta
fractionalized the kernel of an integral transform and studied
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the paradigm of intermediate zones in electromagnetism [22, 23].
Fractionalization of the curl operator, a well known operator in vector
calculus, was also introduced by him [24]. He used the fractional
curl operator to find the new solutions, which may be regarded as
intermediate step between the two given solutions, to the Maxwell
equations.

For the sake of completeness, it is decided first to reproduce the
meanings of the following concepts given by Engheta [24]: what is
meant by fractionalization of a linear operator? How to fractionalize
a linear operator? That is, what is the mathematical recipe to
fractionalize a linear operator? Fractionalization of the curl operator
using this recipe and utilization of the fractional curl operator to
find intermediate/fractional solutions to the Maxwell equations for
ordinary medium has been discussed [24] and just results of their work
are presented here. Time harmonic dependency exp(−iωt) has been
considered throughout the paper.

1.1. Fractional Linear Operator in Electromagnetics

1.1.1. Conditions Required to Verify Fractionalization

Fractionalization of any mathematical problem requires two canonical
solutions of the problem under consideration and an operator that can
transform one canonical solution into the other. Fractionalization of
the connecting operator can reveal intermediate solutions between the
two canonical solutions. The conditions and recipe for fractionalization
of a linear operator L are reproduced below [24]. It must be
mentioned that this recipe has also been used to fractionalize the
Fourier transform [25]. The new fractionalized operator Lα with
fractional parameter α, under certain conditions, can be used to obtain
the intermediate cases between the canonical case 1 and case 2.

A linear operator L may become a fractional operator (i.e., Lα)
that provides the intermediate solutions to the original problems, if it
satisfies the following properties [11, 24].

I. For α = 1, the fractional operator Lα should become the original
operator L, which provides us with case 2 when it is applied to case 1.
It may be noted that situation for α = 1 is the initially given situation.

II. For α = 0, the operator Lα should become the identity
operator I and thus the case 1 can be mapped into itself.

III. For any two values α1 and α2 of fractional parameter, Lα

have the additive property in α, i.e.,

Lα1 · Lα2 = Lα2 · Lα1 = Lα1+α2 (1)

IV. In order to fractionalize given problem, the operator Lα
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should commute with the operator involved in the mathematical
description of the problem under consideration. For example: Lα(∇×
F) = ∇× (LαF).

1.1.2. Recipe for Fractionalization

It is assumed that, present discussion is about a class of linear operators
(or mappings) where the domain and range of any linear operator of
this class are similar to each other and have the same dimensions. That
is, Lα : Cn → Cn where Cn is a n dimensional vector space over the
field of complex numbers. Once a linear operator such as L is given,
the recipe for constructing the fractional operator Lα can be described
as follows [24].

1. One finds the eigenvectors and eigenvalues of the operator L in
the space Cn so that L · Am = amAm, where Am and am for
m = 1, 2, 3, . . . , n, are the eigenvectors and eigenvalues of the
operator L in space Cn respectively. In present analysis we are
dealing with space C3.

2. Provided Ams form a complete orthonormal basis in the space
Cn, any vector in this space can be expressed in terms of linear
combination of Am. Thus an arbitrary vector G in space Cn can
be written as

G =
∑n

m=1
gmAm (2)

where gms are co-efficients of expansion of G in terms of Ams.
3. Having obtained the eigenvectors and eigenvalues of the operator

L, the fractional operator Lα can be seen to have the same
eigenvectors Ams but with the eigenvalues as (am)α, i.e.,

Lα ·Am = (a)α
mAm (3)

When this fractional operator Lα operates on an arbitrary vector
G in the space Cn, one gets

Lα ·G = Lα
∑n

m=1
gmAm =

∑n

m=1
gmLα ·Am

=
∑n

m=1
gm(am)αAm (4)

The above equation essentially defines the fractional operator
Lα from the knowledge of operator L and its eigenvectors and
eigenvalues. In the next section, above recipe has been applied to
fractionalize the curl operator.
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1.1.3. Fractional Curl Operator and Maxwell Equations

Consider a three-dimensional vector field F as a function of three
cartesian space coordinates (x, y, z). Curl of this vector can be written
as

curlF =
(

∂Fz

∂y
− ∂Fy

∂z

)
x̂ +

(
∂Fx

∂z
− ∂Fz

∂x

)
ŷ +

(
∂Fy

∂x
− ∂Fx

∂y

)
ẑ (5)

where Fx, Fy, Fz are the cartesian components of vector F and x̂, ŷ,
ẑ are the unit vectors in the spatial domain. Assuming that spatial
Fourier transforms of both the vector functions (F and curlF) exist,
the Fourier transform of these two vectors can be written as

Fk {F(x, y, z)}
= F̃(kx, ky, kz)

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
F(x, y, z) exp (−ikxx− ikyy − ikzz)dx dy dz (6)

Fk {curlF(x, y, z)}
=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
curlF(x, y, z) exp (−ikxx− ikyy − ikzz)dx dy dz

= ik× F̃(kx, ky, kz) (7)

where a tilde over the vector F̃ denotes the Fourier transform of
vector F. Hence in the k-domain (kx, ky, kz), the curl operator can
be written as a cross product of vector ik with the vector F̃. The
fractionalization of curl operator is equivalent to the fractionalization of
this cross product operator. With the recipe described in the previous
section, fractionalization of the cross product operator as (ik×)α can
be obtained in the k-domain.

Engheta utilized the fractional curl operator to fractionalize the
principle of duality in electromagnetics [24]. Fractionalization of the
principle of duality yields new solutions to the Maxwell equations,
which may be regarded as intermediate step between the original
solution and dual to the original solution and have been termed as
fractional dual solutions. In an isotropic, homogeneous, and source
free medium described by wavenumber k and impedance η, new set of
solutions to the source-free Maxwell equations may be obtained using
the following relations [24]

Ẽfd =
[

1
(ik)α

(ik×)αẼ
]

(8a)

ηH̃fd =
[

1
(ik)α

(ik×)αηH̃
]

(8b)
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where subscript fd stands for the fractional dual. Inverse Fourier
transforming these back into the (x, y, z)-domain, the new set of
solutions are obtained as

Efd =
[

1
(ik)α

curlαE
]

(9a)

ηHfd =
[

1
(ik)α

curlα(ηH)
]

(9b)

From Eqs. (9), it can be seen that for α = 0, (Efd, ηHfd) gives
the original solutions whereas (Efd, ηHfd) gives dual to the original
solution to the Maxwell equations for α = 1. Therefore for all values of
α between zero and unity, (Efd, ηHfd) provides the new set of solutions
which can effectively be regarded as intermediate solutions between the
the original solution and dual to original solution. These solutions are
also called the fractional dual fields as expressed with the subscript fd.

1.2. Previous Contributions

As it has already been stated that concept of the fractional
curl operator and its utilization in electromagnetics was given by
Engheta [24]. Naqvi and Rizvi extended Engheta’s work on fractional
curl operator by determining sources corresponding the fractional
dual solutions to the Maxwell equations. Results of their valuable
work show that surface impedance of the planar reflector, which
is intermediate step between the PEC and PMC, is anisotropic in
nature [26]. Naqvi et al. further extended work on this topic by finding
fractional dual solutions to the Maxwell equations for reciprocal,
homogenous, and lossless chiral medium [27]. Lakhtakia pointed out
that any fractional operator that commutes with curl operator may
yield fractional solutions [23]. Naqvi and Abbas studied the role of
complex and higher order fractional curl operators in electromagnetic
wave propagation [28]. They also studied the fractional dual solutions
in double negative (DNG) medium [29]. Veliev further extended
the work on the fractional curl operator by finding the reflection
coefficients and surface impedance corresponding to fractional dual
planar surfaces with planar impedance surface as original problem [30].
The work on this topic entered into new era when concept of fractional
transmission lines, fractional waveguides, and fractional resonator in
electromagnetics were introduced [31–40] and nature of the modes
supported by fractional dual waveguides and impedance of the walls
were addressed. Modelling of transmission of electromagnetic plane
wave through a chiral slab using fractional curl operator and fractional
dual solutions in bi-isotropic medium are also available [41, 42].
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After the introduction of nihility concept by Lakhtakia [43],
Tretyakov et al. incorporated the nihility conditions to chiral
medium and proposed another metamaterial termed as chiral nihility
metamaterial [44, 45]. Chiral nihility is a metamaterial with following
properties of constitutive parameters at certain frequency [45].

ε → 0, µ → 0, κ 6= 0

Thus the resulting constitutive relations for isotropic chiral nihility
metamaterial reduce to

D = iκ
√

ε0µ0H (10a)
B = −iκ

√
ε0µ0E (10b)

Tellegen nihility [46] states that

ε → 0, µ → 0, κ → 0, χ 6= 0

and corresponding expressions for constitutive relations for Tellegen
nihility metamaterial are

D = χ
√

ε0µ0H (11a)
B = χ

√
ε0µ0E (11b)

Study of nihility/chiral nihility metamaterials is a topic of current
research by several researchers [47–57]. Naqvi contributed many
research articles on chiral nihility and fractional dual solutions in chiral
nihility metamaterial [51–57].

1.3. DB Boundary Conditions

Before the advent of the idea ‘DB boundary interface’ as proposed
by Lindell and Sihvola [58, 59], all the known interfaces dealt with
tangential components of electric and magnetic fields. But the DB
boundary is analyzed on the basis of normal components of flux
densities D and B [59, 60]. Waves polarized transverse electric (TE)
and transverse magnetic (TM) with respect to the normal of the
boundary are reflected as from perfect electric conductor (PEC) and
perfect magnetic conductor (PMC) planes (i.e., DB interface behaves
like PEC and PMC) [61]. It is worth mentioning here that, all of the
previous boundary conditions in electromagnetics are associated to the
electromagnetic field vectors E and H. The boundary conditions for
DB interface may be written as [59–65]

n̂ ·D = 0 (12a)
n̂ ·B = 0 (12b)

where n̂ is normal vector to the interface.
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Although PEC and PMC boundaries become special cases of DB
boundary for TE and TM excitation respectively but using analysis
of fractional DB waveguides it is highlighted that DB boundary
has different characteristics from PEC and PMC. For this purpose,
fractional dual DB waveguides are studied. The aim of present
discussion is to find the fields and impedances of the walls for fractional
dual parallel plate DB waveguides and to highlight its differences with
fractional dual parallel plate PEC waveguides.

2. GENERAL WAVE BEHAVIOR ALONG A GUIDING
STRUCTURE

Consider a waveguide consisting of two parallel plates separated by a
dielectric medium with constitutive parameters ε and µ. One plate is
located at y = 0, while other plate is located at y = b. The plates
are assumed to be of infinite extent and the direction of propagation
is considered as positive z-axis. Electric and magnetic fields in the
source free dielectric region must satisfy the following homogeneous
vector Helmholtz equations

∇2E(x, y, z) + k2E(x, y, z) = 0 (13a)
∇2H(x, y, z) + k2H(x, y, z) = 0 (13b)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplacian operator and k = ω
√

µε

is the wave number. Taking z-dependance as exp(iβz), Equation (13)
can be reduced to two dimensional vector Helmholtz equation as

∇2
xyE(x, y) + h2E(x, y) = 0 (14a)

∇2
xyH(x, y) + h2H(x, y) = 0 (14b)

where h2 = k2 − β2, β is the propagation constant.
Since propagation is along z-direction and the waveguide

dimensions are considered infinite in xz-plane, so x-dependence can be
ignored in the above equations. Under this condition, Equation (14)
becomes ordinary second order differential equation as

d2E(y)
dy2

+ h2E(y) = 0 (15a)

d2H(y)
dy2

+ h2H(y) = 0 (15b)

As a general procedure to solve waveguide problems, the Helmholtz
equation is solved for the axial field components only. The transverse
field components may be obtained using the axial components of the
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fields and Maxwell equations. So scalar Helmholtz equations for the
axial components can be written as

d2Ez

dy2
+ h2Ez = 0 (15c)

d2Hz

dy2
+ h2Hz = 0 (15d)

General solution of the above equations is

Ez = an cos(hy) + bn sin(hy) (15e)

Hz = cn cos(hy) + dn sin(hy) (15f)

where an, bn, cn, and dn are constants and can be found from the
boundary conditions.

Using Maxwell curl equations, the transverse components can be
expressed in terms of longitudinal components (Ez,Hz), i.e.,

Ex =
1
h2

(
iβ

∂Ez

∂x
+ ik

∂ηHz

∂y

)
(16a)

Ey =
1
h2

(
iβ

∂Ez

∂y
− ik

∂ηHz

∂x

)
(16b)

Hx =
1
h2

(
iβ

∂Hz

∂x
− ik

η

∂Ez

∂y

)
(16c)

Hy =
1
h2

(
iβ

∂Hz

∂y
+

ik

η

∂Ez

∂x

)
(16d)

where η =
√

µ
ε is impedance of the medium inside the guide. In

the preceding part of this paper, parallel plate waveguide with DB
boundary walls has been considered and the fractional dual solutions
have been determined and analyzed.

3. PARALLEL PLATE DB BOUNDARY WALLS
WAVEGUIDE

A wave of general polarization propagating in positive z-direction
through a parallel plate waveguide can be written as a linear sum of
the transverse electric (TEz) modes and transverse magnetic (TM z)
modes. A DB boundary can be simulated as the boundary which
behaves like perfect electric conductor (PEC) boundary for (TEz)
modes and perfect magnetic conductor (PMC) boundary for (TM z)
modes. Therefore fields inside a parallel plate DB waveguide may
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be obtained by linear superposition of two canonical solutions which
are transverse electric (TEz) mode solution for PEC waveguide and
transverse magnetic (TM z) mode solution for PMC waveguide. Both
the cases have been discussed separately.

3.1. Fractional Dual Solutions of Canonical Cases

Case 1: Transverse electric (TEz) mode propagation through
a PEC waveguide

Let us first consider that (TEz) mode is propagating through a
PEC waveguide described in Section 2. For this mode, axial component
of the electric field is zero while for the magnetic fields it is given as
in Equation (15f). Using Equations (16), the corresponding transverse
components can be written as

Ex =
(

ik

h

)
[−cn sin(hy) + dn cos(hy)] (17a)

Hy =
(

iβ

h

)
[−cn sin(hy) + dn cos(hy)] (17b)

Ey = 0 (17c)

Hx = 0 (17d)

Using boundary conditions for PEC boundary that is Ex,z = 0|y=0,b,
we get the particular solutions as

Ex =
(

ik

h

)
[−Cn sin(hy)] (18a)

ηHy =
(

iβ

h

)
[−Cn sin(hy)] (18b)

ηHz = Cn cos(hy) (18c)

Ey = 0 (18d)

Hx = 0 (18e)

where Cn = cnη h =
nπ

b
n = 1, 2, 3 . . .

Re-introducing the z-dependance exp(iβz) and writing Equations (18)
in exponential form we can obtain electric and magnetic fields inside
the dielectric region as sum of two plane waves as

E = E1 + E2 (19a)

ηH = ηE1 + ηH2 (19b)
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Figure 1. Plane wave representation of the fields inside the waveguide.

where (E1,H1) are the electric and magnetic fields associated with one
plane wave. These fields are given below

E1 =
(

Cn

2

)(
k

h
x̂
)

exp(−ihy + iβz) (20a)

ηH1 =
(

Cn

2

)(
β

h
ŷ + ẑ

)
exp(−ihy + iβz) (20b)

Quantities (E2, ηH2) are the electric and magnetic fields associated
with the second plane wave and are given below

E2 =
(

Cn

2

)(
−k

h
x̂
)

exp(ihy + iβz) (21a)

ηH2 =
(

Cn

2

)(
−β

h
ŷ + ẑ

)
exp(ihy + iβz) (21b)

This situation can be shown as in Figure 1.
Once we have obtained electric and magnetic fields inside

the dielectric region in terms of two plane waves, recipe for
fractionalization [24, 32] can be applied to get the fractional dual
solutions as

ETE
PECfd= Cn

(
k

h

)[
−iCα sin

(
hy+

απ

2

)
x̂+

β

k
Sα cos

(
hy+

απ

2

)
ŷ

−i
h

k
Sα sin

(
hy +

απ

2

)
ẑ
]

exp
[
i
(
βz +

απ

2

)]
(22a)

ηHTE
PECfd= Cn

(
k

h

)[
−Sα cos

(
hy+

απ

2

)
x̂−i

β

k
Cα sin

(
hy+

απ

2

)
ŷ

+
h

k
Cα cos

(
hy +

απ

2

)
ẑ
]

exp
[
i
(
βz +

απ

2

)]
(22b)
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where

Cα = cos
(απ

2

)

Sα = sin
(απ

2

)

Case 2: Transverse magnetic (TEz) mode propagation
through a PMC waveguide

Similar to the treatment done in Case 1, using Equation (15e) and
Equations (16), we can write the results for transverse magnetic mode
propagating through a PMC waveguide as

ETM
PMCfd = An

(
k

h

)[
−Sα cos

(
hy+

απ

2

)
x̂−i

β

k
Cα sin

(
hy+

απ

2

)
ŷ

+
h

k
Cα cos

(
hy +

απ

2

)
ẑ
]

exp
[
i
(
βz +

απ

2

)]
(23a)

ηHTM
PMCfd = An

(
k

h

)[
iCα sin

(
hy+

απ

2

)
x̂−β

k
Sα cos

(
hy+

απ

2

)
ŷ

+
ih

k
Sα sin

(
hy +

απ

2

)
ẑ
]

exp
[
i
(
βz +

απ

2

)]
(23b)

3.2. Fractional Dual Parallel Plate DB Waveguide

Fractional dual solutions for the DB waveguide can be written by
taking linear sum of the fractional dual fields of the above two cases as

Efd = ETE
PECfd + ETM

PMCfd

ηHfd = ηHTE
PECfd + ηHTM

PMCfd

which give

Efd =
(

k

h

)
exp

[
i
(
βz+

απ

2

)]
{−(AnSαCy+α+iCnCαSy+α)x̂

+
β

k
(CnSαCy+α − iAnCαSy+α)ŷ

+
h

k
(AnCαCy+α − iCnSαSy+α)ẑ

}
(24a)

ηHfd =
(

k

h

)
exp

[
i
(
βz+

απ

2

)]
{−(CnSαCy+α−iAnCαSy+α)x̂

−β

k
(AnSαCy+α + iCnCαSy+α)ŷ

+
h

k
(CnCαCy+α + iAnSαSy+α)ẑ

}
(24b)
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with

Cα = cos
(

απ
2

)
Cy+α = cos

(
hy + απ

2

)
Sα = sin

(
απ
2

)
Sy+α = sin

(
hy + απ

2

)

An, Cn are the constant to be determined from initial conditions. The
fields given in Equation (24) have been plotted in Figure 2 for different
values of the α at an observation point (hy, βz) = (π/4, π/4).

(a) (b)

Figure 2. Plots of fractional dual TEz polarized fields at a point
(hy, βz) = (π/4, π/4), (a) real parts, (b) imaginary parts.
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From Figure 2, it can be seen that fractional dual fields satisfy the
principle of duality, i.e., for α = 0

Efdx = Ex, ηHfdx = ηHx

Efdy = Ey, ηHfdy = ηHy

Efdz = Ez, ηHfdz = ηHz

and for α = 1

Efdx = ηHx, ηHfdx = −Ex

Efdy = ηHy, ηHfdy = −Ey

Efdz = ηHz, ηHfdz = −Ez

4. RESULTS AND DISCUSSION

4.1. Behavior of Fields inside the Fractional Parallel Plate
DB Waveguide

In order to study the behavior of fields inside the fractional parallel
plate DB waveguide, electric and magnetic field lines are plotted in the
yz-plane and are shown in Figure 3. We have selected yz-plane as an
observation plane. The instantaneous field expressions are obtained
by multiplying the phasor vector expressions (24) with exp(jωt) and
taking the real part of the product. Equation describing the behavior
of electric field lines at a given time t can be found from the following
relation.

dy

Efdy
=

dz

Efdz

Finally integration of the equation gives us the field lines behavior.
These plots are for the mode propagating through the guide at an

angle π/6 so that β/k = cos(π/6), h/k = sin(π/6). Initial conditions
for both the modes are taken as same. Solid lines show the electric
as well as magnetic field plots for DB waveguide while the fields of
PEC waveguide are shown by dashed lines as a reference. From the
figure we see that there is no normal component of the electric as well as
magnetic field for α = 0. This is because the plates of the guide behave
as perfect electric conductors for transverse electric components while
they behave as perfect magnetic conductor for transverse magnetic
modes. For the reference PEC results, there is no tangential component
of the electric filed at the guide surface while magnetic field has no
normal component. As value of α increases from 0, normal components
of both the fields in DB guide start appearing and become maximum
at α = 0.5. After this value normal components start decreasing and
again become zero at α = 1.
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Figure 3. Field lines in yz-plane at different values of α; solid lines
are for the fractional DB waveguides while dashed lines are for the
fractional PEC waveguides.

It may be noted that electric field distribution in the DB
waveguide is same as the magnetic field distribution for the limiting
values of α while it is different for the intermediate values. Further it
may be noted that field behavior for the original and dual situation is
similar.
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4.2. Transverse Impedances of Wall

Wave impedance is defined by ratio of the transverse components of
the electric and magnetic fields as

Zfdxz = −Efdx

Hfdz
= η

k

h

AnSαCy+α + iCnCαSy+α

CnCαCy+α + iAnSαSy+α

Zfdzx =
Efdz

Hfdx
= η

h

k

AnCαCy+α − iCnSαSy+α

CnSαCy+α − iAnCαSy+α

At y = 0, these impedances become impedance of the new reflecting
boundary called the fractional dual boundary. The normalized
impedance matrix of the DB boundary wall taking An = Cn can be
written as

z
fd

=
{

k

h
zfdxzx̂ẑ +

h

k
zfdzxẑx̂

}
, 0 ≤ α ≤ 1

where

zfdxz =
SαCα + iCαSα

CαCα + iSαSα

zfdzx =
CαCα − iSαSα

SαCα − iCαSα

These impedance components have been plotted for whole range of α
as in Figure 4.

Figure 4. Transverse impedance of walls of fractional DB waveguides
vs. fractional parameter α.

It may be noted that zfdxz corresponds to the impedance for TEz

modes and zfdzx corresponds to the impedance for TM z modes. Since
DB boundary behaves as PEC for the TEz modes so it is zero at α = 0
and α = 1 while it is complex for the intermediate range of α. Similarly
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Since DB boundary behaves as PMC for the TM z modes so impedance
is infinitely high at α = 0 and α = 1, while it is finite complex for the
intermediate range of α.

5. CONCLUSIONS

Fractional dual solutions to the Maxwell equations for fields inside
a parallel plate DB waveguide are derived using the fractional curl
operator. The waveguides described by such fields are termed as
fractional dual parallel plate DB waveguides. Electric field distribution
in the fractional DB waveguides is same as the magnetic field
distribution for the limiting integer values of the fractional parameter
(α = 0, 1) while it is different for the intermediate values, i.e.,
0 < α < 1. For limiting cases, transverse impedance of DB wall
is zero for transverse electric mode and infinitely high for transverse
magnetic mode while it is non zero complex value for the intermediate
situations. Fractional dual waveguide explains the situation which is
an intermediate step of DB boundary waveguide and its dual situation
obtained through duality principle.
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