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Abstract—An infinitely flanged coaxial line is analytically solved
with the mode-matching technique and Green’s function to propose a
precise yet fast-convergent scattering solution for complex permittivity
measurement. Based on virtual current cancelation, we formulate the
open half-space fields in terms of coaxial modes and related Green’s
functions and thus obtain the simultaneous equations with rapidly
convergent integrals. Numerical computations were performed in terms
of reflection coefficients and radiation patterns.

1. INTRODUCTION

A flanged coaxial line has been extensively studied to obtain material
characteristics for biological substances [1], non-destructive test [2],
resonant dielectric absorption [3], permittivity determination [4],
moisture layers [5], agricultural products [6], IC packages [7], and
concrete [8]. Even though the applications for material measurements
are somewhat different, the basic idea is very similar one another [1–
8]. Measuring the reflection coefficients with a fixed probe is utilized
to determine the complex permittivity of an unknown material. We
usually perform iteration procedures to reduce errors between pre-
obtained measurement results and simulations with various complex
permittivity.

As a result, the analytic formulations of scattering phenomena
for probe and material are very important to estimate material
characteristics. To obtain precise scattering equations, a variety of
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numerical methods have been proposed [9–16]. The Wiener-Hopf
method and unilateral Fourier transform [9] were applied to a problem
of radiation from a coaxial line with an infinite flange and thick
inner conductor. A quasi-static analysis [10] was proposed to get
an approximate closed-form solution. The Hankel transform and
mode-matching technique [11–13] allow us to formulate the scattered
fields in analytic representations. However, the radiation integrals
in [11–13] have singularities and oscillating behaviors, thus indicating
that the proposed integrals are complicated to deduce and inefficient
for numerical computations. In [14, 15], the authors used versatile
numerical algorithms such as the boundary integral equation [14] and
the two-dimensional finite-difference frequency-domain method [15],
respectively. Recently, by using the Sommerfeld identity similar
to the Hankel transform, an approximate but efficient exponential
series solution was given in [16] based on the matrix pencil method.
The analytic method based on the eigenfunctions satisfying the edge
condition was also used in [18, 19]. Even though the method in [18] is
analytic, the radiation integrals in [18] still have several singular points
which make numerical integrations difficult.

The aim of this work is to show an alternative method based on the
mode-matching technique and Green’s function. The Green’s function
approach combined with virtual current cancellation [17] and integral
path deforming also yields a fast-convergent radiation integral that is
free of singularity and very efficient for numerical integration. In the
following Section, we extend the methodology proposed in [17] to the
problem of a flanged coaxial line.
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Figure 1. Geometry of an infinitely flanged coaxial line.
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2. FIELD REPRESENTATION AND ANALYSIS

Consider the TM0s mode propagates through a coaxial line shown in
Figure 1 and is reflected at the end of a coaxial line (z = 0). Note that
s represents the mode number of an incident wave. The coaxial line
is truncated at z = 0 and connected to a perfectly conducting infinite
flange at z = 0. Due to the geometric discontinuity at z = 0, the
infinite number of guided waves are generated in region (I) (z ≤ 0) and
some incident power is transmitted into the free-space that is denoted
as region (II) (z > 0). We select the time convention as e−iωt which
is suppressed throughout. The incident and reflected electric fields Eρ

are conveniently defined as

Ei
ρ(ρ, z) = −η1κsC

′
0(κsρ)eiξsz (1)

Er
ρ(ρ, z) = −η1κsC

′
0(κsρ)e−iξsz, (2)

where ρ =
√

x2 + y2, η1 =
√

µ1/ε1, ξm =
√

k2
1 − κ2

m, k1 = ω
√

µ1ε1,
(·)′ denotes differentiation with respect to the argument,

C0(κmρ) =
{

J0(κmρ)N0(κmb)−N0(κmρ)J0(κmb) (m 6= 0)
2
π log b

ρ (m = 0) , (3)

J0(·) and N0(·) are the zeroth-order Bessel functions of the first and
second kinds, respectively, κ0 = 0, and κm is determined by equating
C0(κma) = 0 (m = 1, 2, . . .). A coaxial function C0(κmρ) satisfies the
Bessel’s differential equation as

[
1
ρ

d

dρ

(
ρ

d

dρ

)
+ κ2

m

]
C0(κmρ) = 0. (4)

When s = 0, (1) denotes a TEM mode. The incident Ei
ρ field is

scattered at the boundary at z = 0. Based on the Fourier-Bessel series,
the magnetic vector potential AI

z in region (I) (z < 0) is formulated to
represent the scattered fields as

AI
z(ρ, z) = µ1

∞∑

m=0

pmC0(κmρ)e−iξmz, (5)

where pm are the unknown modal coefficients to be determined with
simultaneous equations that will be shown in (20). The electric field in
region (I) EI

ρ(ρ, z) can be obtained with EI
ρ(ρ, z) = i

ωµ1ε1
∂2

∂z∂ρAI
z(ρ, z).

In terms of the Sturm-Liouville theory, the eigenfunctions C0(κmρ) are
orthogonal each other and constitute a complete basis set for region
(I). Therefore, we can consider pm the expansion coefficients for the
Fourier-Bessel series.
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Figure 2. Artificial geometry for virtual current cancellation.

The magnetic vector potential AII
z in open half-space region

(z > 0) can be obtained based on virtual current cancelation. Even
though virtual currents induced on a virtual coaxial line at ρ = a, b and
z > 0 illustrated in Figure 2 are artificial, this concept facilitates the
simplified yet precise field representations in open region. It should be
noted that we assume the virtual coaxial line at ρ = a, b and z > 0 to be
made of PEC (Perfect Electric Conductor). Since a virtual coaxial line
is introduced in open region (z > 0), we can easily match the potential
Em(ρ, z) (z > 0) for the virtual coaxial line and AI

z(ρ, z) (z < 0) by a
standard mode-matching technique. In the next step, the component
RE

m(ρ, z) is generated to remove the inevitable discontinuities at ρ = a
and b caused by a virtual coaxial line. By this basic concept of virtual
current cancelation, we can formulate the magnetic vector potential
AII

z for open half-space region (z > 0) as

AII
z (ρ, z) = µ2

∞∑

m=0

rm

[
Em(ρ, z) + RE

m(ρ, z)
]
, (6)

where rm are the unknown modal coefficients for region (II),

Em(ρ, z) = C0(κmρ)
eiηmz

iηm
, (7)

ηm =
√

k2
2 − κ2

m, and k2 = ω
√

µ2ε2. In order to determine the
coefficients rm, the normal electric field continuity ∂Ez/∂z − ρe/ε at
z = 0 should be utilized. The z-directed electric field Ez is represented
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as Ez(ρ, z) = i
ωµε(

∂2

∂z2 +k2)AI
z(ρ, z). Enforcing the normal electric field

continuity at z = 0, we get

rm = −ε2
ε1

iξmpm. (8)

where we assume ∂/∂zRE
m(ρ, z)|z=0 = 0. Note that the condition

∂/∂zRE
m(ρ, z)|z=0 = 0 will be verified later.

In terms of the Green’s function relation, the component RE
m(ρ, z)

to cancel out Em(ρ, z) is formulated as

RE
m(ρ, z) = −

∫
∂

∂n′
[
Em(r̄′)

]
Gzz

A (r̄, r̄′)dr̄′, (9)

where n is an outward normal direction denoted in Figure 2 and
Gzz

A (r̄, r̄′) is the z-directional Green’s function excited by the z-directed
source in terms of a magnetic vector potential A. Substituting (7)
into (9) yields

RE
m(ρ, z)=−2i

π

∫ ∞

0

cos(ζz)
κ2−κ2

m

[
J0(κmb)
J0(κma)

fE(ρ, a; κ)−fE(ρ, b; κ)
]
dζ, (10)

where κ =
√

k2
2 − ζ2 and

fE(ρ, ρ′;κ) =

{
J0(κρ′)H(1)

0 (κρ) for ρ > ρ′

J0(κρ)H(1)
0 (κρ′) for ρ < ρ′

. (11)

Since (10) has singular points at κ = ±κm, (10) is not efficient for
numerical computations. As such, we use the integral path deformation
proposed in [17]. According to [17], we replace ζ with ζ = k2v(v − i).
Then,

RE
m(ρ, z) = −2k2i

π

∫ ∞

0

(2v − i) cos(ζz)
κ2 − κ2

m

×
[

J0(κmb)
J0(κma)

fE(ρ, a; κ)− fE(ρ, b; κ)
]

dv. (12)

Considering (12), we can prove ∂/∂zRE
m(ρ, z)|z=0 = 0. Although the

integrand in (12) is oscillating when v À 1 and z À 1, the integrand
does not have any singularities. Thus, we can integrate (12) very easily
to get the magnetic vector potential AII

z in (6) for the open region near
z ≈ 0.

Using the Green’s second integral identity, the magnetic vector
potential AII

z (ρ, z) in (6) is also simplified to a finite integral as

Em(ρ, z) + RE
m(ρ, z) = −

∫ b

a
C0(κmρ′)Kρz(ρ′)ρ′dρ′ + ∆0(ρ, z), (13)
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where r =
√

ρ2 + z2, θ = cos−1(z/r),

Kρz(ρ′) =
∫ 2π

0

eik2R0

2πR0
dφ′ = i

∫ ∞

0
fE(ρ, ρ′; κ) cos(ζz)dζ (14)

R0 =
√

r2 − 2ρρ′ cosφ′ + (ρ′)2 (15)

∆0(ρ, z) = δm0
i2k2a

π
log

(
b

a

)

×
∫ ∞

0

(2v − i)
κ2

cos(ζz)
∂

∂ρ′
fE(ρ, ρ′; κ)

∣∣∣
ρ′=a

dv, (16)

and δml is the Kronecker delta. When we adopt the spherical
coordinate system (r, θ, φ) and r →∞, the far-field for the magnetic
vector potential AII

z (ρ, z) in (6) is asymptotically given by

AII
z (r, θ) ∼ µ2

ε2
ε1

ieik2r

r

∞∑

m=0

pmξm

[
F cx

0 (κm, k2 sin θ)

+δm0
2a

π
log

(
b

a

)
J1(k2 sin θ)

k2 sin θ

]
, (17)

where

F cx
0 (κm, κ) =

2
π(κ2

m − κ2)J0(κma)
×

[
J0(κma)J0(κb)

−J0(κa)J0(κmb) + κaJ1(κa) log
(

b

a

)
δm0

]
. (18)

Similarly, the Eθ field in the far-field is represented as

EII
θ (r, θ) ∼ η2

ε2
ε1

eik2r

r
k2 sin θ

∞∑

m=0

pmξm

[
F cx

0 (κm, k2 sin θ)

+δm0
2a

π
log

(
b

a

)
J1(k2 sin θ)

k2 sin θ

]
. (19)

Differentiating (5) and (6) with respect to the ρ-axis and applying the
Hφ field continuity at z = 0 gives the final simultaneous equations for
pm as

∞∑

m=0

pmIE(m, l) = sE,l, (20)

where

IE(m, l) = Dmδml +
ε2
ε1

iξm

[
Dm

iηm
δml + IE

ml

]
(21)

sE,l = −2Dsδsl (22)



Progress In Electromagnetics Research Letters, Vol. 28, 2012 155

Dm =
2
π2

[
1− J2

0 (κmb)
J2

0 (κma)
+ 2 log

(
b

a

)
δm0

]
(23)

IE
ml = −2k2κli

π

∫ ∞

0

(2v − i)κ
(κ2 − κ2

m)(κ2 − κ2
l )

×
[

J0(κmb)
J0(κma)

J0(κa)fE
l (a; κ)−H

(1)
0 (κb)fE

l (b; κ)
]
dv (24)

fE
l (a; κ) = κbH

(1)
0 (κb)C ′

0(κlb)− κaH
(1)
0 (κa)C ′

0(κla) (25)

fE
l (b; κ) = κbJ0(κb)C ′

0(κlb)− κaJ0(κa)C ′
0(κla). (26)

3. NUMERICAL COMPUTATIONS

We solved the simultaneous equations given by (20) and compared
with [2, 16]. Figure 3 illustrates the behaviors of reflection coefficients
when a TEM mode (s = 0) impinges on the flanged open end of a
coaxial line. In this figure, M is the number of truncated modes. Our
computational results based on (20) agree very well with [2, 16] when
M ≥ 2. A dominant mode solution (M = 1) is only valid for low
frequency.

In Figure 4, we can observe the magnitude variations of the
integrand for IE

ml in (24). The radiation integral with deformed integral
path IE

ml does not have any singularity: this is desirable for numerical
integration. Furthermore, the integrand shown in Figure 4 has fast-
convergent characteristics when the integration variable v becomes
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Figure 3. Behaviors of reflection coefficients (Γ) with s = 0 (TEM
incidence), a = 1.4364 [mm], b = 4.725 [mm], ε1 = ε2 = 2.05ε0, and
µ1 = µ2 = µ0. (a) Magnitude of Γ. (b) Phase of Γ.
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Figure 5. Behaviors of radiation
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large. Our computational experience indicates that the maximum
value of v for numerical integration can be five to ten in order to
obtain numerical convergence for most of cases.

Figure 5 shows the behaviors of radiation patterns of a flanged
coaxial line. Contrary to the reflection characteristics in Figure 3, a
dominant mode solution (M = 1) is almost the same as the higher-
mode solutions (M ≥ 2). In addition, the radiation pattern of a
flanged coaxial line has peak antenna gain at θ = 90◦ which is similar
to a flanged monopole antenna. This indicates that the reflection
characteristics are mainly determined near the open end and flange
of a coaxial line.

4. CONCLUSIONS

Using the Green’s function and mode-matching technique, an analytic
and numerically efficient analytic approach is proposed for an infinitely
flanged coaxial line. The reflection behaviors of a flanged coaxial line
were compared with other results and showed good agreements. The
permittivity measurement and estimation with a flanged coaxial line
can be more precisely performed with the proposed analytic solutions
with fast-convergent radiation integrals.
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