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Abstract—The electromagnetic force between two misaligned coils
(coils with parallel axes) with uniform current density distribution
and rectangular cross section based on the derived semi-analytical
expressions was presented. Using the semi-analytical expressions for
magnetic force between filamentary misalignment circular coils we
calculate the propulsive and the transverse magnetic force. In order
to verify the validity of the expressions, we use the filament method
with Grover’s formula to calculate the magnetic force for two coils
with parallel axes. The results obtained by two methods are in a
very good agreement. In this paper, the derivation of the semi-
analytical expressions and the calculation results of the magnetic force
are introduced.

1. INTRODUCTION

The calculation of electromagnetic force between misaligned coils with
rectangular cross section is of great importance for the design of
motors, superconducting magnet, and hybrid magnet combined with
superconducting coils and water-cooled coils [1–5]. An interaction
force, such as axial force and radial force, exists for non-tilted coils
that are offset axially and radially as a result of possible misalignment
of coils during installation, vibration, gravity, or other reasons. It
is important to compute the mid-plane axial compressive force in
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a magnet comprised of several nested solenoid coils and the radial
force in a superconducting magnet with epoxy impregnated with
thick windings with one bobbin [5]. The magnetic force calculation
of a superconducting magnet is very useful for optimization the
support structure design. In a superconducting magnet, there is
no resistance during operation. For a hybrid magnet combined
with an outsert superconducting magnet and an inner water-cooled
magnet, it is very important to obtain the magnetic force between
two types of magnet, especially in the event of the inner water-
cooled magnet short circuit. In the event of an electric short circuit
produced by the inner water-cooled magnet, the magnetic center of the
water-cooled magnet displaces generating large forces on the outsert
superconducting magnet. The system must be able to withstand such
fault loads. Moreover, the interaction forces will have an impact upon
the design of the structural support when part of the water-cooled
coils becomes shorted and ceases to produce the magnetic field in
a hybrid magnet system [3, 4]. Thus, an accurate evaluation of the
interaction force is required. Many contributions to the interaction
force calculation with coaxial or parallel axes based on the analytical
or semi-analytical, and the filament method have been performed [1–
10]. The magnetic force can be obtained by using series which converge
slowly. Also forces can be calculated by multiple integrations that
can be tedious work, or they can be calculated by using modern
numerical methods such as Finite Element Method, Boundary Element
Method or Method of Moments. Recently the numerical methods are
inevitable in modern engineering calculations and design but in many
practical applications it is possible to use either analytical or semi-
analytical methods in the calculation of the magnetic force because of
coil geometries which appear in the form of circular coils of rectangular
cross section, thin wall solenoids or disk coils (pancakes). In this
paper, we derive a new semi-analytical expression to calculate the
interaction force between misaligned coils with uniform current density
and rectangular cross section. By using the semi-analytical expressions
for magnetic force between filamentary misalignment circular coils we
calculate the propulsive and the transverse magnetic force. To verify
the validity of the method, the filament method based on mutual
inductance gradient method with Grover’s formula was adopted. The
results obtained by two methods are in a very good agreement. In
this paper, the derivation of the semi-analytical expressions and the
calculation results of the magnetic force are introduced.



Progress In Electromagnetics Research B, Vol. 37, 2012 277

Figure 1. Filamentary circular coils with lateral misalignment (z and
z′ are parallel axes).

2. BASIC EXPRESSIONS

Let us take into consideration two filamentary circular coils with
parallel axes that carry currents of strength I1 and I2. The mutual
inductance between these coils of radius RP and RS respectively, can
be calculated by [11] (See Figure 1),
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K(k) — complete elliptic integral of the first kind [15, 16].
E(k) — complete elliptic integral of the second kind [15, 16].

The magnetic force between two current-carrying coils can be
derived from the general expression for their mutual inductance,

F = I1I2
∂M

∂g
(2)

where I1 and I2 are currents in the coils, M is their mutual inductance
and ‘g’ is the generalized coordinate or the variable which can represent
the axial or radial displacement. Thus the generalized coordinate
determines the type of the magnetic force:
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a) In the case of the axial magnetic force g = c. It is also called the
propulsion magnetic force (axial force).

b) In the case of the lateral magnetic force (radial force) g = d. It
is also called the transverse magnetic force due to the asymmetry.
Also we use the term the restoring magnetic force because of the
coil’s lateral displacement [12–14].

2.1. Propulsion Magnetic Force

Applying (1), (2) and g = c, the propulsion magnetic force (axial
force) between two filamentary circular coils with parallel axes can be
obtained in the following form,
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If d = 0 we have the coaxial case [11],
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2.2. Restoring Magnetic Force

Applying (1), (2) and g = d, the restoring magnetic force (radial or
lateral force) between two filamentary circular coils with parallel axes
can be obtained in the following form,

FRadial =
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If d = 0 the restoring force (radial force) is equal zero because coils are
balanced [11].

RP — radius of the primary coil;
RS — radius of the secondary coil;
c — distance between planes of coils;
d — distance between axes.

In this paper the possible singular cases, where coils overlap
or touch, have not considered because they are not of the physical
importance or they are not physically possible. However, some of these
cases can be found analytically for d = RS or d = RP + RS [17].

3. CALCULATING METHOD

The electromagnetic force between two laterally misaligned coils (coils
with parallel axes) with uniform current density distribution and
rectangular cross section can be calculated by presented semi-analytical
expressions (3) and (5) and the filament method [1] and [12]. Let’s
take into consideration the system of two non-coaxial circular coils of
rectangular cross section with parallel axes, as shown in Figure 2, with
N1 and N2 being the number of turns of the windings.

It is assumed that the coils are compactly wound and the
insulation on the wires is thin, so that the electrical current can be
considered uniformly distributed over the whole cross sections of the
winding. The corresponding dimensions of these coils are shown in
Figure 2. The cross sectional area of the first coil I is divided into
(2K+1) by (2N+1) cells and the second coil II into (2m+1) by (2n+1)
cells (see Figure 3). Each cell in the first coil I contains one filament,
and the current density in the coil cross section is assumed to be
uniform, so that the filament currents are equal. The same assumption
applies to the second coil II [1]. This means that it is possible to
apply (3) or (5) to filament pairs in two coils. Using the filament
method and previously obtained formulas for axial and radial force
between two laterally misaligned circular filaments, magnetic force
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Figure 2. Two circular coils of rectangular cross section with lateral
misalignment (parallel axes).

Figure 3. Configuration of mesh coils: Two circular coils of
rectangular cross section with lateral misalignment (parallel axes).

components (axial and radial) between two circular coils of rectangular
cross section with parallel axes are given by,

FAxial =

N1N2
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where FAxial (h, l, g, p) and FRadial (h, l, g, p) are given by (3) and (5)
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respectively with,
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In our approach we take that the primary coil RP is larger than the
secondary coil RS .

Equations (6) and (7) can be used as the general formulas to
calculate the magnetic forces components (axial and radial) of all non-
coaxial circular coils (wall solenoids, pancakes, circular filaments) with
parallel axes. For example, the configuration, the thin wall solenoid
and the thin disk coil (pancake) with parallel axes, can be obtained
from the general cases (6) and (7) by replacing hP = b = 0 and omitting
two sums for variables h and p.

4. EXAMPLES

4.1. Example 1

In this example we calculated the restoring (radial) magnetic force
FR and the propulsive (axial) magnetic force FZ between the primary
circular coil RP = 42.5mm and the secondary circular coil RS = 20 mm
with the axial displacement d = 3 mm in the function of the distance
between planes c [18]. All currents are equal to 1 A.

In this example we have two circular coils with parallel axes.
Using the presented method in this paper we have: RP = 42.5mm;
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RS = 20 mm; d = 3 mm; c between 0 and 11 mm.
Professor J. T. Conway (private communication) kindly provided

the authors with the magnetic force results of an independently
developed method [17]. In [17], Conway calculated magnetic forces
between thin coils with parallel axes using Bessel functions. All results

Table 1. Restoring force as a function of the axial displacement.

c (m)
Restoring (radial)

force [17] Fr (10−7N)

Restoring (radial)

force (5) Fr (10−7N)

Discrepancy

%

0.00 0.7547749710028991 0.7547749710028991 0.00

0.001 0.7488583327209799 0.7488583327209799 0.00

0.002 0.7313671349198671 0.7313671349198671 0.00

0.003 0.7030546181947184 0.7030546181947184 0.00

0.004 0.6651032498899321 0.6651032498899321 0.00

0.005 0.6190265669551001 0.6190265669551001 0.00

0.006 0.5665516867960673 0.5665516867960673 0.00

0.007 0.5094972551589432 0.5094972551589432 0.00

0.008 0.4496601777908212 0.4496601777908212 0.00

0.009 0.3887211239892301 0.3887211239892301 0.00

0.010 0.3281745285065932 0.3281745285065932 0.00

0.011 0.2692846490788988 0.2692846490788988 0.00

Table 2. Propulsive force as a function of the axial displacement.

c (m)
Propulsive (axial)

force [17] Fz (10−7N)

Propulsive (axial)

force (3) Fz (10−7N)

Discrepancy

%

0.00 0.00 0.00 0.00

0.001 −0.5105701188241947 −0.5105701188241947 0.00

0.002 −1.012935792952149 −1.012935792952149 0.00

0.003 −1.499264624141375 −1.499264624141375 0.00

0.004 −1.962433850245375 −1.962433850245375 0.00

0.005 −2.396304448823946 −2.396304448823946 0.00

0.006 −2.795912286657358 −2.795912286657358 0.00

0.007 −3.157568384768270 −3.157568384768270 0.00

0.008 −3.478871535458957 −3.478871535458957 0.00

0.009 −3.758645407463232 −3.758645407463232 0.00

0.010 −3.996817851575968 −3.996817851575968 0.00

0.011 −4.194262218421366 −4.194262218421366 0.00
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obtained by two different approaches are in an excellent agreement.
Results given in Tables 1 and 2 can be obtained by the general approach
to calculate the magnetic force between two inclined circular loops
positioned in any desired position [18].

4.2. Example 2

In this example we calculate the magnetic force between two
misalignment superconducting coils of rectangular cross section with
the following parameters (See Table 3) by using the presented method.
In this calculations the propulsion magnetic force is equal zero because

Table 3. Parameters of two coils.

Coil 1 Coil 2
Inner radius (m) 0.071247 0.0969645
Outer radius (m) 0.085217 0.1384935
Length (mm) 0.142748 0.02413
Turns 1142 516
Operating current (A) 1 1

Table 4. Radial force as a function of the perpendicular displacement
d of two coil axes for the plans displacement c = 0. All coils were
divided into 15× 15 cells.

d (m)
Radial force [6]

Fr (mN)

Radial force

New Formula (7)

Fr (mN)

Discrepancy %

0.00 0.00 0.00

0.001 3.40505 3.40458990 0.014

0.002 6.80992 6.80877851 0.017

0.003 10.2145 10.21216381 0.023

0.004 13.6185 13.61433904 0.031

0.005 17.0217 17.01490137 0.040

0.006 20.4239 20.41342339 0.048

0.007 23.8246 23.80949684 0.063

0.008 27.2312 27.20265102 0.105

0.009 30.6202 30.59236145 0.091

0.010 34.0141 33.97781178 0.107

0.011 37.4045 37.35721526 0.127
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the axial displacement is c = 0. Thus, we calculate the transverse
magnetic force due to the asymmetry. This force is also called the radial
force because of the misalignment between coil axes. The formula (5)
and the filament method are used to calculate this transverse force.

From Table 4 we can see that all results are in an excellent
agreement. In [6] the radial magnetic force has been obtained by the
numerical integration of the corresponding mutual inductance. By
the presented approach the radial magnetic force has been obtained
analytically from the corresponding mutual inductance.

Table 5. Restoring force as a function of the displacements c and d.

c (m) d (m)
Restoring (radial)

force [17] Fr (mN)

Restoring (radial)

force (7) Fr (mN)

Discrepancy

%

1 0.00 0.00 0.00 −−
1 0.25 0.08803276352092297 0.08807528425458836 −0.0483

1 1.60 0.1531385579896640 0.1532212771849620 −0.0540

1 1.80 0.1091886537529803 0.1092130468988103 −0.0223

1 2.00 0.082670448939348621 0.08268189982474698 −0.0139

2 0.00 0.00 0.00 −−
2 0.25 0.001769922085711410 0.001769769675422563 0.0086

2 1.60 0.007976934384393575 0.007989348816576713 −0.1556

2 1.80 0.008213720450320286 0.008214867134661340 −0.0139

2 2.00 0.008293430192680301 0.008293551270960194 −0.0002

4 0.00 0.00 0.00 −−
4 0.20 −0.01780084807975283 −0.01779673699619279 0.0231

4 0.40 −0.03409821949683405 −0.03409017771231838 0.0236

4 0.60 −0.04747598898370043 −0.04746468985578763 0.0236

4 0.8 −0.05680944022850079 −0.05679627036548910 0.0232

4 1.00 −0.06154330066062597 −0.06153013551372345 0.0214

4 1.20 −0.06186545017657643 −0.06185407132004862 0.0184

4 1.40 −0.05863925116950669 −0.05863076087986731 0.0145

4 1.60 −0.05310687157983925 −0.05310077707588774 0.0115

4 1.80 −0.04650575410830453 −0.04650239566159696 0.0072

4 2.00 −0.03978445530522750 −0.03978301284735945 0.0036

4 2.50 −0.02548430444017866 −0.02548470318101553 −0.0016

4 3.00 −0.01581831714012551 −0.01581889900482538 −0.0037

4 4.00 −0.005954746150013040 −0.005955051200306290 −0.0051
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4.3. Example 3

Calculate the magnetic forces components (radial and axial) between
two annular disk coils have each an inner radius of 0.2 meters and
an outer radius of 0.5 meters. They each have 100 turns and carry
a current of 1 A, and lie in parallel planes whose distance is c =
0.25meters. The perpendicular distance between disk axes is d =
0.1meters [17].

For this coil configuration we have: RP = RS = 0.35m; hP =
hS = 0.3 m; c = 0.25m; d = 0.1m; N1 = N2 = 100.

Table 6. Axial force as a function of the displacements c and d.

c (m) d (m)
Axial force [17]

Fz (mN)

Axial force (6)

Fz (mN)

Discrepancy

%

1 0.00 −0.5088585254130683 −0.5088680027625635 −0.0019

1 0.25 −0.5106532345800797 −0.5106628227432488 −0.0019

1 1.60 0.05732233766284198 0.05732135448766339 0.0017

1 1.80 0.04935774531856688 0.04935428003786784 0.0070

1 2.00 0.04212255772204719 0.04212286126085873 −0.0007

2 0.00 −0.8732685887568437 −0.8733203385114650 −0.0059

2 0.25 −0.8830657051272686 −0.8831164681288158 −0.0057

2 1.60 0.1216388121322102 0.1215874752201285 0.0422

2 1.80 0.09606359736932102 0.09606972065534075 −0.0064

2 2.00 0.07599982753120883 0.07600560970423159 −0.0076

4 0.00 −0.1337719779377484 −0.1337481946892885 0.0178

4 0.2 −0.1308800690491950 −0.1308569183016921 0.0177

4 0.4 −0.1224507787416183 −0.1224297518204799 0.0172

4 0.60 −0.1092666682965876 −0.1092493369495652 0.0159

4 0.80 −0.09268551190836821 −0.09267319913193720 0.0133

4 1.00 −0.07450764477038003 −0.07450082958746171 0.0091

4 1.2 −0.05662748259117095 −0.05662556142757078 0.0034

4 1.40 −0.04060639962446616 −0.04060790600880450 −0.0037

4 1.60 −0.02736627895538159 −0.02736952042136963 −0.0100

4 1.80 −0.01713606134061835 −0.01713968048539047 −0.0211

4 2.00 −0.009636442818923221 −0.009639683058409764 −0.0336

4 3.00 0.004090232290608137 0.004089485851307155 0.0182

4 4.00 0.004582772637494307 0.004582653431493695 0.0026

4 5.00 0.003321490185427485 0.003321489705794569 0.00001
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The total magnetic force obtained by [17] is,

F =
√

F 2
Radial + F 2

Axial = 9.209137115829183mN

Appling modified Equations (6) and (7) for this coil configuration, the
total magnetic force is,

F =
√

F 2
Radial + F 2

Axial = 9.209351630507772mN

The number of divisions was N = n = 50. All results are in a very
good agreement with the absolute discrepancy about 0.00233%.

4.4. Example 4

Calculate the magnetic force between two thin non coaxial wall
solenoids displaced by the perpendicular distance d and with the coil
centers displaced by an axial distance c [17]. The larger solenoid has
radius R1 = 1 and its end planes lie at z1 = 0 and z2 = 4. The smaller
solenoid has radius R2 = 0.5 and has end planes at z3 = 1 + c and
z4 = 3 + c. Both solenoids have 100 turns and each carries a current
of 1 A. All distances are in meters.

From Tables 5 and 6 we can see that results obtained by two
approaches are in a very good agreement. The number of divisions was
K = m = 50. If in all previous calculations the number of coil divisions
increases the results will be more precise but the computational time
will increase considerably. For practical engineering and physicist
applications it is reasonable not to take a lot of conductor divisions.
As we can see in previous example the absolute average discrepancy is
about 0.02% and less.

5. CONCLUSION

In this paper, we propose new formulas for calculation the magnetic
force between circular coils with misaligned axes regarding the axial
and radial displacement. Obtained formulas are given in semi-
analytical form. The presented method can be used in the large scale of
practical applications either for micro coils or for large coils. Presented
examples show that all results obtained by the presented approach are
in an excellent agreement with already published data.
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