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Abstract—The aim of the present paper is to obtain explicit
asymptotic expressions for the “transfer (diffraction) coefficients”
related to the diffraction of high frequency cylindrical waves from
the discontinuity occurred in the material properties as well as in the
thicknesses of a coated cylindrically curved metallic sheet characterized
by the second order GIBCs. Relying on the locality of the high
frequency diffraction phenomenon, the angular interval ¢ € (—m,7)
is extended to the abstract infinite space ¢ € (—00,00) wherein the
diffracting structure is replaced by a two-part cylindrically curved
second order impedance sheet p = a extending from ¢ = —o0 to
@ = o0o. The resulting boundary value problem is formulated as a
Hilbert equation which is solved asymptotically in the high frequency
limit. Some graphical results showing the effects of various parameters
on the transfer coefficients are presented.

1. INTRODUCTION

The diffraction of electromagnetic waves by a two-part surface is an
important topic in diffraction theory because it constitutes a canonical
problem for analyzing the scattering caused by an abrupt change in the
material properties of a surface and has been subjected to intensive
past investigations. These studies are mostly restricted to the cases
where the two-part surfaces are planar junctions between two thin
material half-planes or two thin material coatings applied on a metallic
plane, characterized by first order resistive, conductive or impedance
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(Leontovich) boundary conditions [1-5] extended the analysis to the
case where the discontinuity occurs on a cylindrically curved first order
impedance surface.

A better simulation of thin material sheets or dielectric coatings
on metallic surfaces are provided by the generalized impedance
boundary conditions (GIBCs) which involve field derivatives higher
than the first [6-10]. The application of GIBCs provides more
accurate models for coated metallic surface than the classical first order
impedance (Leontovich) boundary condition but the solutions of the
corresponding diffraction problems are neither unique nor reciprocal
even after the edge condition is imposed. In such a case an additional
constraint referred to as “junction condition” or “contact condition”
has to be taken into account. This junction condition is derived and
used extensively by [11-16].

The aim of the present paper is to obtain explicit asymptotic
expressions for the “transfer (diffraction) coefficients” related to the
diffraction of high frequency cylindrical waves generated by a magnetic
line source from the discontinuity occurred in the material properties
as well as in the thicknesses of a coated cylindrically curved metallic
sheet characterized by the second order GIBCs.

Relying on the locality of the high frequency diffraction
phenomena, the angular interval ¢ € (—m,7) is extended to the
abstract infinite space ¢ € (—o00,00) [17] wherein the diffracting
structure is replaced by a two-part cylindrically curved second order
impedance sheet p = a extending from ¢ = —oco to ¢ = oco. The
resulting boundary value problem is then formulated as a Hilbert
equation which is solved asymptotically in the high frequency limit
upon replacing the Bessel and Hankel functions involved with their
Debye approximations. The procedure of solving Hilbert and Wiener-
Hopf equations are described in detail in [18]. Some graphical results
showing the effects of various parameters on the transfer coefficients
are also presented.

2. FORMULATION OF THE PROBLEM

Let the magnetic line source K, with strength I and time dependence
e~ ™! be located at p = b, p = g, 2 € (—o0,00) while the cylindrical
surface is defined by S : {p =a < b, ¢ € (—00, ), z € (—00,00)}. We
assume that the extended metallic cylinders {p = a, ¢ € (0,00),2 €
(—00,00)} and {p = a, ¢ € (—0,0), z € (—o0,00)} are coated
with thin material layers whose relative constitutive parameters and
thicknesses are (g1, pir1, t1) and (g2, pr2, t2), respectively (see Fig. 1).
For kt;,/erjirj < 1 (j = 1,2) they can be characterized by the
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Figure 1. Geometry of the problem.

following second order GIBCs:

o 0% | iB; 0
paat Ty Bk =0 (o

aj = kt; <1 - 1) : (1b)

ﬂjz—z‘{t <1 —iij) <i—aitj>—1} (Lc)

v = ktj (prj — 1) (1d)

and

The Fourier transform technique is used within this paper, which
is appropriate to be defined as

o
i) = [ ulp)eedp @
—o0
Here 4 (v) is the Fourier transform of the function w(y). For
analysis purposes, it is convenient to express the total magnetic field
Hr (p,) = ur(p,p) which satisfies the Helmholtz equation in the
infinitely extended angular space ¢ € (—o0, 00)

? 10 1 92 Ik

Sy L) =1 o (p— 0 (p— 3

S+ o o gt 0 (00) =i 70 o) B o)

with
ur (pa 90) = Usc (p7 90) + Uine (Pa 90) > (4)
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where ug. (p, ) and uine (p, p) are the scattered and the incident fields,
respectively. The incident field is generated by the line source and it
is the particular solution of the Helmholtz equation given by (3). By
applying Fourier transform to this equation and solving the particular
solution by Green’s function method, the Fourier transform of the
incident field yields

m Ik eimpK { J|V| (k;p) ‘ngl) (y) y P < PK (5)

Uine PV) = =5
o) 2 Zo H® (kp) Ji (y) . p> pr

where we put y = kpg.

2.1. Derivation of the Simultaneous Hilbert Equations

Since jnc (p,v) is the particular solution of the equation given by
(5), the Fourier transform of the scattered field s (p,v) yields the
homogeneous solution which is

Use (p,v) = A(v) Hgl) (kp) (6)
where A (v) is the spectral coefficients to be solved and p > a. On
the other hand, the Fourier transform of the total field is the sum of
the Fourier transforms of the incident and scattered fields and can be
denoted by 4r (p,v). The total field satisfies the conditions

ar 0% ipy 0
Lﬂagﬂ—i_kap_/h} UT(aaso):O’ 90>0’ (7&)
ag 0?2 iy O
[;1:2&02—’_/?(%_72} UT((I,QD):Oa SO<0’ (7b)
0 0
UT(G,@):{_’je((P)’ iio (7e)
9 0, p <0
8puT (a, ) { _%ij (), >0 (7d)
with
J.(9) = O (ap), ¢ —0 (7e)
and
1

In the above equations, Z, is the intrinsic impedance of the surrounding
medium, and 7. (¢) and J, (¢) denote the densities of the induced
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electric and magnetic surface currents, respectively. Applying Fourier
transforms to the Equations (7a) and (7b).

o) = {[on (4) 4] B @ im0 0} )
5T een By >{[a1(g)2ﬂl] T (w)iw(ym} (82)

and

#0) = { |oa (%)’ m}ﬂ“m i (@)} A0)

Ik )
+gZ wsOKH {|: +72:| J\V| (.’E>—152J‘;| (1‘)} (Sb)
are obtained where
0 2 .

“ () = — o 07 i 9 ive

v o)=- [ B+ R0 ] o
and

+ = — = %872 @2_ we

vt 0) == [ |+ B e urla) e o

In the Equations (8a) and (8b), the prime over the Bessel and
Hankel functions denote the first order derivatives with respect to the
argument. With
o;
HWY (@) Jy) (@) - BV (2) J), () = —, (10)
T
the elimination of the spectral coefficient A (v) from the Equations (8a)
and (8b) yields

SEN

oy Ll G ] B @) - i @)}

{[or @+ 0] B @) - i1 ()]
{5 a9+ ] - [ (74}
{[or () + ] 1 (@) — i1 (@)}

which is nothing but the Hilbert equation needed to be solved, valid for
Smy = 0. It can be shown that the functions ®* (v) and ®~ (v) can
be approximated by the functions which satisfy the equations obtained

>~ (v)

— = owver (1)
fL'ZOe v (y)

(11)
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from (11) by replacing the Bessel and Hankel functions with their
Debye approximations given by [19] felsen, namely

H(l) \/7 —im/4 w[tan@z 6] 12
mzsin 6 (12a)
z71'/4 —iv[tan6,—6, } 12b
- (120

This gives
y {51 {00 (%)2 + 72} B2 [a1 ‘¥ ’)’1} } (138)
{on (8) + ] B (@) = i ()}
where

-1
Xj(y):{[aj(:)2+fyj]+ﬁj 1—(:)2} . j=1,2. (13b)

When the factorization procedure is applied, (13a) becomes

SN
x{ﬂl o2 (&) ”2} o on (3 *’”H, (13¢)
(o ]

Xj (v) and X; (v) (j = 1,2) appearing in the above equation, are the
split functions, regular and free of zeros in the half-planes Smvr > x
and Smv < x, respectively, resulting from the factorization of x; (v)
n (13b) as

>

X; (V) = xj () x5 (v) (15a)
X; (V) = x5 (-v). (15b)

Note that x* (v) can be expressed as

1 1
S +
1Tk ((1) , 1/) K < @ V)
+ " "

X (v) =
Va/ ) (@ £ v)

(16)
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with
—1
1 1 1
R() =]t L an
R ONET
X
and
m__ i, o
0= o [ﬂj+\/ﬁ§+4aj(aj+%)} (18a)
@ _ L1, S
0 = =g |6 VB +ai 0+ ) | (18b)

As it was shown in [12], KT (1/7,v) can be expressed explicitly in terms
of the well-known Maliuzhinetz function. When the second term of the
Equation (14) is decomposed, the Hilbert equation become

s gty X Moy o0F () 1 O (v
L) e )= e () (9)

where QT (v) and @~ (v) stand for the integrals

1 Ik >, 3 (1)
+ - 4 itor (1) X2

x {Blos @)+ =Ba | ()* 4]} ar (20)
{ {al (5)2 + 71] Y (z) —ip (x)} (r—v)

Replacing the Hankel functions by their Debye approximations allows
us to calculate the integral @~ (v) by the well-known saddle-point
method. The saddle-point occurs at 7 = zsintyx when ¥ < 7/2
and the asymptotic evaluation gives

w? — 32)

0~ (v) - ol

v —w) (21a)

with w = xsin ¢,
o (Boy1 —Biv2) o
2 Py = Bia) 21b
(Brag — Baan) 210)
and
Tk eim/4 gikRi X; (w) (Brag — Paa) cos g

Q= 227 /21 VERK XT (w) [(oq sin? ¢ + 71) + 51 Cosd)K]

The meanings of ¢ and Rg are shown in Fig. 3.

. (21c¢)
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If ¢ > /2, it can be shown that no saddle-point exists for the
integral related to Q] (v). In this case this integral can be evaluated
by using the residue technique. By virtue of the Jordan’s Lemma and
Cauchy’s Theorem, it is equal to (27i) times the residues associated
with the poles occurring at the zeros of f (v) lying in the upper half-

plane, namely; at vy, vs, vs, ... Since the contribution of the first pole
is dominant over the others, one can write
2 2
- - (vi —5%)
V) = —Q 22a
@ ) =0 (222)
with
= Ik ; X3 (1) (Brag — Pacry)
Q= — eWWKHIgl) y) 2 22b
x3Z, W) xi () () (220)
and
2
Fw = o (2) 4| B @) - i @ (220
x

The solution of the Hilbert equation is then found to be

(w? — 5%)
B Q [(l/—w) +C|, Y < 7T/2
5 () = X L (23)
' Q [((sz—_zi)) +C|, i >7/2

2.2. Determination of Unknown Constants C and C

Since the standard edge conditions are not sufficient to obtain a unique
solution, additional constraints must be considered to determine the
constants C and C. For the edged structures with second-order GIBC’s,
the required constraint is obtained by the help of the approach given
in [11] and [20] [1975] as

lim J,(¢) = lim J,(¢) (24a)
p—0t =0~
or
8 a9 8
lim == lim —1J 24b
51 5 I(p) = 5 W 50 (¢) (24b)
with

I(p) =ur(a,¢). (24c)
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Taking into account the expressions (4) and (6) for ur (p, ), one gets

I(p) = % /Z [ﬂmc (a,v) + A(v) HV (w)] e P dy. (25)

Equation (8a) together with the Debye approximations of the Bessel
and Hankel functions yield

AW) = 1 ) ()~ S B () Y (y)

o

{CIGIRENEAT —ww ")

T ] 80 i o]

For |1k | < m/2 we may use Debye approximations for the second
term at the right-hand side of the above equation which gives

{[au;)?m]—m 1—(;)2}
(e

Substituting the above relation in (25), one can obtain

X (26)

A(v) = xa(V) @™ (v)~tinc(a, v) )

I(g)=- / Z[xl (V)8 (1) +28ine (a, ) x1 (V)Br 1—(”)2]ewczy. (28)

2m J_ T

The above relation can be rewritten as

[ =5 [ Ve +Wele (29)
with
Vo) =T @ O W - (2) e
and
)
W) =xi (v)xz (v)Q [(V_w) +C (30b)

Here, V (v) can be decomposed as V (v) =V~ (v) + VT (v) where

Vi) = gt [ e @m wamyi- (2)°
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This integral can be evaluated via the saddle-point technique where
the saddle-point occurs at 7 = zsinx. This gives

2 Xi(w) 1

(Braz — Becr) i (w) (v — w)
On the other hand, W (v) needs to be decomposed as well. The
term x| (v) x5 (v) can be arranged as

VT (v) =

(32)

§ ST (v) -5~ (v)
W)y, (v) = v [ 33a
X1 ( )X2 ( ) (610&2—ﬁ2041) (V2_52) ( )
with
X7 (v)
ST () =L a0+ aw (33b)
X5 (V)
and
S™(v) = Xz_ ) + a, + ajv. (33c)
xi (v)
Here, the constants a, and aq are introduced to eliminate the poles of
S~ (v) and ST (v) at v = —s and v = s, respectively. Thus a, and ay
read
1T xi (s) X3 (5)]
a, == |B1 + 2 (34a)
21 X3 (s) X1 (s)]
and
1T xi(s) X3 ()]
a1 = — |f — B2 : (34b)
25 | x3 (5) T xi ()]

Finally, W (v) is decomposed as

_ 22 CSt(w) | ST [(w-s)
wr (V)_Q(ﬂmz—ﬂzal){ (v—w) +(V2_52)[ (v=w) e }(353)
and
o 2? Stw) S~ [(w’=5)
W)= Q(ﬁ1062—52041){ (V_w)+(V2_S2)[ (v—w) +C }(35]0)

The integral in (29) can be rearranged as
1 o0

I(p) = — [V+ (V) +Ww+ (1/)] e~ VP dy

2 ) _
42% / Z[V W) +W™ (v) e ™?dv. (36)
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where

m2

(Braz—Bacn)
X{ S‘f‘(y)) [(w2_32) +C] B (ao—l—aﬂU)} (37a)

(1?2=s2)| (v—w) (v—w)

VW) + W) = Q

and

V)W W) = e @) B ) ) o1 (2)

o x

z2 (ao+a1w)_ S~ (v) (w2—52)
(51042—52011){ >[<u—w> } )

(v—w)  (v2—s?
For ¢ — 0%, the second integral at the right-hand side of (36)
vanishes as V'~ (v) and W~ (v) are both regular in the lower half-plane.
Considering now the asymptotic expansions of VT (v) and W (v),
using

+Q +C

1 1 w —9
(V_w>~;[1+;+o(u )] (38a)
and
oy T
X (V) \/OTjI/ (38b)
one obtains
2

VI + W= (Brag—fF2a1)

. Coais?—a,
X{(alc ao alw)+(p1 a1s aw)

+0 (u—?’)} (39a)

v V2
with
p1= <ﬁlg + ao> (39b)

which gives

$2

(Brag — fra)
X{ (a1C—ao—a1w)—i—ig0(p1C—a1 52 —aow) +0 (@2) } . (39¢)

By applying a similar approach for ¢ — 07, the second integral at the
right-hand side of (36) vanishes as V't (v) and W (v) are both regular

ul (a,O*) ~ —2miQ
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in the lower half-plane. Considering now the asymptotic expansions of
V= (v) and W~ (v), using (38a) and (38b), one gets

332

(Braz — faan)
y { (ap + ayw — a1C) N (aow + a1s* — paC) ) (1/3)} (40a)

V W+ W (v)=2Q

v V2
with
Ja
p2= <ﬁz —\/OT; + ao> (40D)
which gives

72

(Brag — Baa)
x{(ao+a1w—aiC)+ip (a,w+ars>—paC) +0(¢*)} . (40c)

Substituting (39c) and (40c) in (24b) yields

ul (a,Of) ~ 2miQ

c=2s2 4. (41)

Qo

For 1i > 7/2 a similar procedure is applied giving

C=2g24 vy. (42)

Qo

3. ANALYSIS OF THE FIELDS

The explicit expression of the field at any point (p, ) outside the
reflector and the source can be found by asymptotically evaluating the
inverse Fourier transform of @ (p,v). According to the positions of
the line source and the observation point, the expressions of the field
components have different physical interpretations. These cases will be
considered separately. Taking into account (6) and (8a) the scattered
field in the region can be obtained by evaluating the integrals

Ik R V) v
W) ==y [ HD () H (ko) Do (130)
o J—00

with

90 = [an (5) + ] 2y @) - i80, ) (130)
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and
1 [ o (W) HY (kp) _.
(2) - e 4
Uge (p7 90) o /OO f(l/) € dv. ( 30)
The scattered field is then
use (p, ) = uly) (p, ) +ul) (p, 0). (44)

3.1. The Case in Which the Edge is Illuminated by a Direct
Ray

3.1.1. Reflected Field

When ¢ < 7/2, the edge is illuminated directly by the line source.
Additionally, if the observation point lies in the region where ¢ < 7/2,
the integral given by (43a) can be evaluated asymptotically by the
saddle-point technique. In this condition, the saddle-point occurs at
vs = xsind. Hence, the explicit expression of u(!) (p, ) reads

IR, i
u (p,0) = up = ui (Ry) Ty (R R )l SR KR (45)
Gl r Ly

which is nothing but the reflected field. Here u; (R,) is the incident
field evaluated at the point M,.

Tk efirr/4 etk R;
w) = (55 ) o

2Z,) \2r \/kR;
and the reflection coefficient 7). is defined by

T (a1 s%nz ¥ 4 1 — B1 cos 19) ' (47)
(al sin“ ¢ + 1 + B cos 19)

(46)

The meanings of the parameters I, R,, R, and 9 are shown in Fig. 2.

3.1.2. Edge Diffracted Field

The integral (43¢) can also be evaluated asymptotically by the saddle-
point method when the observation point is in the same region as
above. For this integral, the saddle-point occurs at vy = —x sin ) with
1) being the observation angle. This gives

otk R

u? (p,9) = ue (p, ) = ui (Rc) TeeTRl (48)
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Figure 2. Geometrical parameters pertaining to the reflected field.

with the edge diffraction coefficient T, is defined by

2 . cos
Tee ’ =/ =/
(Wi, ) x° (Oq sin?¢) + 1 + (31 cos zb)
cos Vg
(o sin® g + 71 + B1 cos i)
XX; (zsine) x5 (vsink) 1

Xi (zsing) X7 (zsinr) (sing + sin g )

X { (B2y1—F172) [14'21 (sinep+sintpg) |+ (Brog— Pacr) sin 4 sin ¢K}~
(49)

The meanings of R and v are shown in Fig. 3.

3.1.8. Creeping Modes

When the observation point lies in the region ¢ > 7/2 the integral
(43c) can no longer be evaluated by the saddle-point method. In order
to get an expression valid in this region, this integral can be evaluated
by the residue method. The singularities of the integrand of (43c)
lying below the real axis consist of the simple poles at the zeros of
f (v), namely at —vy, —vo, ... By using the Jordan’s Lemma, we can
show that the integral (43c) is equal to (—27i) times the sum of the
residues at these poles. The dominant contribution comes from the
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Figure 3. Illumination by a direct ray.

first pole and is equal to

©~ (—11) Hy (kp)
fr(n)

with ®~ (v) is given in (23). By replacing H,E}) (kp) by its uniform

asymptotic expression valid for kp — oo we arrive at a result which
can be arranged as

u?) (p, @) = ie™®

(50)

o — eikRz
u® (p,¢) ~ u; (Ri) Te(cl)ewlMle/aTcg)ikRi

The meanings of My and Ry are shown in Fig. 3 and the factor 7, C(g ) is
the surface diffraction coefficient related to the coating as

70 = 2 s o (52)
i/ 2HY (z) f' ()

Te(c1 ) appearing in (51) is the transfer coefficient showing the
modifications to be considered when thelincident field is transformed
into a creeping mode at the edge M;. Te(c) is defined by

T) _ <2> A €i57r/8X§r () X3 (w) [ HY (x)

“ ™ Xt () xi (w) Y Buf’ (1)
cos P Vo

(al sin? g + v1 + By cos 1/1K) (11 4+ zsinyg)

X [(ﬂﬂl —5172)<1+V121 +asinyk Zl>+ WVM sin ¢K] (53)

(51)

X

o
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If the observation angle ¢ is negative, in order to make use of Jordan’s
Lemma, the integration path in (43c) must be enclosed to cover the
upper half-plane. Thus, we can show that the integral (43c) is equal to
(27i) times the sum of the residues at the poles i, p2, ps, ... which
are the zeros of the function g (v) defined by

90 = [aa (2)" 2] 0 () - a1 ). (51)

Hence, the creeping wave for ¢ < 0 yields
ikR3

U(2) (p7 90) U, (RK) Te(g)eiﬂlm/aT(Q) e

cs r RS :

Here Te(g) is the transfer coefficient showing the modifications to be
considered when the incident field is transformed into a creeping mode

(55)

at the edge M7 for ¢ < 0 and T, C(S2 ) is surface diffraction coefficient of
the surface at ¢ < 0. They are found to be

7o) _ <2> Y X (W) xd () [ (@)
“ m X7 (w) x3 (u1) \ Bag’ (1)
VT cosk
(o sin? i +v1 + B cos ¥k ) (1 — w)

X

X {(5271—5172) [1—21 (1 —w)} —(Braz—B201) MIS];W{} (56)
and
5/4
T = Zlﬂlem/v N 57
!/ zHY () g/ ()
respectively.

3.2. The Case in Which the Edge is Illuminated by a
Creeping Mode

3.2.1. Creeping Modes Generated by the Incident Field

When ¢x > 7/2, at a certain point My of the scatterer, the
line between the source and M, will be tangent to the scatterer
where a surface diffraction process occurs and excites creeping modes
propagating towards the edge point M; (see Fig. 3). If the observation
point lies in the region ¢ < /2 the term u (p,¢) cannot be
detectable as reflected field. The evaluation of this integral yields
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Figure 4. Surface diffraction in creeping mode illumination.

6ik:R5

VERs

Here, the meanings of My, M5 and Rs are shown in Fig. 4 and the

surface diffraction coefficients Tésl ) = TS((} ) are given by (52).

ul) (p, ) = u; (My) TS (My) e MaMs/a (D) (M)

(58)

3.2.2. Edge FExcited Direct Ray

In order to obtain edge excited fields in the region p > a when the edge
is illuminated by a creeping mode, we have to reconsider the integral
(45b). The analysis in Subsubsection 3.1.2 can be carried over to the
present case provided that (22a) is taken into account for @~ (v) and
the solution for g > 7/2 is valid in (23). So, by direct application of
the above analysis we obtain the result

ez’kﬁzl

VERy

u® (p, @) = u; (L) TV eI /o, (59)

where TS(C1 ) is defined as in (52) while

- (2) Y s xs () X5 (sing) | HLY (@)
“\r xi (1) xi (@siney) | Buf’ (1)
" cos N
(o1 sin® ¢ + y1 + By cos ) (zsine + vy)
X [(/32'71 —ﬂ172)<1+ U%UC sin i+ leﬂ)—i‘(ﬁlo@—ﬁzal)

o] o

vy siny

} . (60)
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Figure 5. Creeping mode illumination.

Here, the meanings of L, M; and R; is shown in Fig. 5. T, is the
transfer coefficient related to the transformation of the creeping mode
into an edge excited diffracted ray occurring at the edge M;. Notice
that this result satisfies the reciprocity principle, since T, is equal to
T.. provided that g is replaced by .

3.2.8. Creeping Mode FEzxcited by the FEdge

The creeping mode generated by the edge can easily be obtained
by carrying over the same analysis as in § 3.1.3 to the present case
provided that (22a) is taken into account for @~ (v) and the solution
for g > m/2 is valid in (23). The solution for ¢ > 7/2 can be written
in form

kRQ

u® (p. ) = ug (L) TP PR/ i iR/ €7 (g))
kRo
with T, c(cl ) given by
2 1
T _ {x; <u1>] Hy, (x)
« X1+ (Vl) 21/151]” (Vl)

x [(5271—6172) <1+Z(1)2V1> +(Bras—foarr) (11)2] (62)

is the transfer coefficient which dictates the modifications that the
incident creeping mode suffers at the edge M7 during its transformation
into an edge excited creeping mode.
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On the other hand, when ¢ < 0, in order to make use of Jordan’s
Lemma, the integration path in (43c) must be enclosed to cover the
upper half-plane. Thus, we can show that the integral (43c) is equal to
(27i) times the sum of the residues at the poles 1, pa2, ps, ...
are the zeros of the function g (v) defined by (54). Hence, the creeping

wave for ¢ < 0 yields

u® (p, @) = u; (L) T DM /a @) i MMy fag(2) £

Figure 6.

Figure 7.
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with Tég ) given by

7@ _ X (n) xi () \/ HY (2)HY (2) 1
“ X7 (1) x3 () \ BiBaf’ (v1) ¢ (p1) (g1 — v1)

X {(52’71 —B179) [1 + % (11 —Ml)] 'u;yl (Braz —ﬁgal)} .(64)

o

4. COMPUTATIONAL RESULTS

For numerical purposes, the solution of f(v) = 0, g(v) = 0 and
the numerical values of f’ (v1) and ¢ (u,,) are required. By applying
a similar procedure described in [21], the first zero of f(v) can be
obtained as:

o\ /3
v=x—T7 <) /3 (65)
x
with
/6 eN1/3 (an z\1/3
~—1.019 7(7) M 41019 (—) i/3 . (66
i 10195 \2 {x2 [“ 5) 7| Fmy e (66)
60
Z -0t B
T 80t e | J
< — s
I . )
£ 90t o
o
E;-mo.| P
< | JF
g |
5 110r / h=1,a=2,y, =45y =60°u =8

8, =124, 1 ,=10,t, =7/30,t,= /30

-120 L L 1 1
0 20 40 60 80 100

Relative Dielectric Permittivity L

Figure 8. Variation of direct ray illumination coefficients with respect
to the relative permittivity ,;.
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Similarly the first zero of g(v) can be obtained as

o\ 1/3
p=z -7 <x> e/ (67)

with

i57/6

e x\1/3 [ as e\ s
72~—1.019+m(5) {xQ[x+1.019 (5) e™/3| 4y b (68)

In Figs. 6-10, the dependences of the coefficients Tp., Te(,} ’2), Tee and

1,2 )
Tc(c’ ) on various parameters are shown.

5. CONCLUDING REMARKS

In this paper, the diffraction of electromagnetic waves generated
by a line source by a cylindrically curved metallic sheet which is
partially coated by dielectric layers of different physical properties and
thicknesses is investigated rigorously. The problem is formulated in
an infinitely extended angular space from which explicit asymptotic
expressions for the diffraction coefficients are obtained through the
asymptotic solution of a Hilbert problem.

For /8 — 0 and v/8 — n which corresponds to the case
where coatings are modelled with the first order impedance boundary
conditions (n = Z/Z,), we get

xi(v) _ P2
X2 (v) 51G( )

where G(v) is the same function as defined in Equation (6a) of the
paper of Biiyiikaksoy and Uzgoéren which is published in 1987 [5]. In
this case, all the coefficients defined in Section 3 coincide with the ones
given in [5].
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