
Progress In Electromagnetics Research Letters, Vol. 28, 1–8, 2012

PARALLEL FDTD SIMULATION USING NUMA
ACCELERATION TECHNIQUE

X.-M. Guo1, *, Q.-X. Guo1, W. Zhao2, and W.-H. Yu3

1School of Information Engineering, Communication University of
China, Beijing 100024, China
2School of Maths and Information Engineering, Hebei Normal
University of Science and Technology, Hebei 066000, China
3Electromagnetic Communication Laboratory, Pennsylvania State
University, University Park, PA 16802, USA

Abstract—In this paper, we introduce a new non-uniform memory
access (NUMA) acceleration algorithm for parallel finite-difference
time-domain (FDTD) method on NUMA architecture workstation.
We compare the performance of parallel FDTD method with and
without the NUMA acceleration technique. An ideal test case and
an engineering example show that the NUMA acceleration technique
can efficiently improve the computing performance of FDTD parallel
applications.

1. INTRODUCTION

The finite-difference time-domain (FDTD) method was originally
developed by Yee [l], in 1966. Because of its simplicity and flexibility,
this method has become one of the popular algorithms in solving a wide
variety of problems in electromagnetics. The nature of the FDTD [2–
4] method is that simulation of big and complicated electromagnetic
(EM) field problems requires a vast amount of computer operational
memory and runtime. Parallel-processing techniques [5–7] have been
broadly applied in FDTD method, and the parallel-processing FDTD
further accelerates the FDTD simulation by distributing the job to
multiple processors.

Today, both Intel and AMD use the non-uniform memory access
(NUMA) architecture in the multiple CPU chipset to achieve the best

Received 17 October 2011, Accepted 18 November 2011, Scheduled 28 November 2011
* Corresponding author: Xiao-Mei Guo (gxmqin@163.com).

2 Guo et al.

performance at a relatively low price. In this paper, we present a
NUMA acceleration algorithm in parallel FDTD methods. The results
show that NUMA acceleration technique can efficiently improve the
computing performance of FDTD parallel applications.

2. FDTD METHOD

The Yee algorithm using the coupled Maxwell’s curl equation to solve
both electric and magnetic fields in time and space.

The Maxwell equations describe how a time varying electric field
E generates a time varying magnetic field H and vice versa. In a region
of space without electric and magnetic current sources, the Maxwell
curl equations are:

∇×H = ε
∂E
∂t

+ σE (1)

∇×E = −µ
∂H
∂t

− σmH (2)

where ε and µ are constants called the electric permittivity and
the magnetic permeability respectively, σ and σm are the electric
conductivity and the equivalent magnetic loss.

It is well known that, in Yee’s algorithm, the electric and magnetic
fields are defined on an intertwined double mesh, where electric
field components are circulated by four magnetic field components
and magnetic field components are circulated by four electric field
components. For example, the electric field Ex can be expressed as
follows [8]:

En+1
x

(
i +

1
2
, j, k

)
= CA

(
i +

1
2
, j, k

)
· En

x

(
i +

1
2
, j, k

)

+CB

(
i +

1
2
, j, k

)
·
[
H

n+ 1
2

z

(
i +

1
2
, j +

1
2
, k

)

−H
n+ 1

2
z

(
i+

1
2
, j− 1

2
, k

)
+H

n+ 1
2

y

(
i+

1
2
, j, k− 1

2

)

−H
n+ 1

2
y

(
i +

1
2
, j, k +

1
2

)]
(3)

where

CA(i, j, k) =
1− σ(i,j,k)∆t

2ε(i,j,k)

1 + σ(i,j,k)∆t
2ε(i,j,k)

CB(i, j, k) =
∆t

ε(i, j, k)∆s
· 1

1 + σ(i,j,k)∆t
2ε(i,j,k)

Progress In Electromagnetics Research Letters, Vol. 28, 2012 3

As we can see from (3), the iterations of each component are only
related with four components around it without consideration of the
whole field. Parallelism is an inherent property of FDTD, so that
computation time should be reduced significantly using the parallel
architecture.

3. NUMA ACCELERATION TECHNIQUE

First, to make comparisons, we present a MPI-OPENMP hybrid
parallel FDTD algorithm:

• MPI initialization (MPI-Init (int*argc, char**argv););
• Using OpenMP multithreading, initialize fields, apply initial

conditions;
• Start time iterations:

Using OpenMP multithreading, update the H-field components;
Using MPI message passing, exchange the H-field of boundaries;
Using OpenMP multithreading, update the E-field components;
Apply boundary conditions;
Until predetermined time steps is reached;

• End (MPI-Finalize();).

The traditional model for multiprocessor support is Symmetric
Multi-Processor (SMP). In this model, each processor has equal access
to memory and I/O. As more processors are added, the processor bus
becomes a limitation for system performance.

System designers are using NUMA to increase processor speed
without increasing the load on the processor bus in recent years.
The architecture is non-uniform because each processor is close to
some parts of memory and farther from other parts of memory. The
processor quickly gains access to the memory to which it is close, while
it can take longer to gain access to memory that is farther away.

In NUMA architecture, CPUs are regularly arranged in a smaller
box that is so-called compute node. Each node has its own processors
and memory, and is connected to a larger cluster system through
a cache-coherent interconnect bus [9]. We improve the simulation
performance by explicitly pinning a thread to a specified core and data
to a specified node. The threads scheduled on processors are located
in the same node as the memory being used. If a thread is running and
accessing data on the same node, it is considered as a local access. If a
thread is running on one node but accessing data resident on a different
node, it is considered as a remote access. Accessing data remotely is
slower than accessing data locally [9]. If we do not bind a thread to a
particular core, the thread aften accesses data remotely [10, 11], but if

4 Guo et al.

we bind a thread to a particular core, the thread is running on this core;
the memory allocation to the thread is in the same node; the thread
cannot access other memory remotely. So the method can reduce the
runtime of the applications.

The algorithms are described as follows:

• MPI initialization (MPI-Init (int*argc, char**argv););
• Using OpenMP multithreading, set the number of threads;
• Using GetNumaHighestNodeNumber (&HighestNodeNumber),

Retrieve the highest numbered node in the system;
• Using GetNumaNodeProcessorMask (nodenumber, &Processor-

Mask), Retrieve the processor mask for the specified node;
• Using GetCurrentProcess function, Retrieve the current process;
• For processId = 0 to n do

Using VirtualAllocExNuma function, Reserve or commit a region
of memory within the virtual address space of the specified
process, and specifiy the NUMA node for the physical memory;
Using SetProcessAffinityMask (GetCurrentProcess(), Proces-
sAffinityMask), bind a thread on a particular core;
End for;

• Start time iterations:
Using OpenMP multithreading, update the H-field components;
Using MPI message passing, exchange the H-field of boundaries;
Using OpenMP multithreading, update the E-field components;
Apply boundary conditions;
Until predetermined time steps is reached;

• End (MPI-Finalize();).

Now, we use the parallel FDTD code to simulate an ideal test
case that is a hollow box with the simplest excitation and output,
and its domain is truncated by using the perfect electric conductor
(PEC). Excitation point source is Gaussian pulse. On a 4-CPU NUMA
architecture workstation, we ran the problem with different sizes using
parallel FDTD code without NUMA acceleration, and the parallel
FDTD code with NUMA acceleration. We can use the following
mathematical analysis to evaluate the algorithms:

Performance (Mcells/s) =
(Nx ×Ny ×Nz)×Number of timesteps

Simulation time (second)

Figure 1 shows the electric fields with and without NUMA
acceleration. The simulation results are in a very good agreement.
According to the above mathematical analysis, we have the simulation
summary in Figure 2. It is observed from Figure 2 that the NUMA

Progress In Electromagnetics Research Letters, Vol. 28, 2012 5

0 100 200 300 400 500
-2

0

2

4

6
x 10

-4

time step

E
x

without NUMA acceleration

with NUMA acceleration

Figure 1. Electric field Ex with and without NUMA acceleration.

10 15 20 25 30 35
50

100

150

200

number of cells (million)

p
e

rf
o

rm
a

n
c
e

 (
M

c
e

lls
/s

)

parallel FDTD code without NUMA

parallel FDTD code with NUMA

Figure 2. FDTD performance on CPU without NUMA and CPU
with NUMA for the ideal test case.

acceleration technique accelerates the FDTD code 2 to 3 times, and
the peak computation time of the NUMA FDTD code is 3 times faster
than the FDTD code without NUMA.

4. ENGINEERING EXAMPLE

In order to verify the acceleration effect, we now use the parallel
FDTD code with and without NUMA acceleration to simulate a
practical problem on a 4-CPU workstation (AMD Opteron 6168
1.9GHz processor, 64G RAM) and compare their running time. The
actual acceleration factor of the technique depends on the problem
type and output options. In our test, we have run many engineering
applications on several different NUMA architecture workstations. For
most engineering applications, the acceleration factor is between 1.5

6 Guo et al.

0 1000 2000 3000 4000 5000 6000 7000 8000

Time Steps
V

o
lt

ag
e

(V
)

0.6

0.4

0.2

0.0

-0.2

-0.4

Port 1

Port 2

Port 3

Port 4

S

11

21

31

41

S

S

S

0 5 10 15 20

Freq (GHz)

0

-10

-20

-30

-40

S

 (
d

B
)

1
1

(a) (b)

(c)

Figure 3. Pair microstrip lines. (a) Configuration. (b) Time domain
signal of each port. (c) S-parameter.

and 2.5. Simulation time includes the project preprocessing (including
material and mesh generations), iterations and postprocessing.

For example, the configuration of two vias that connect a pair of
microstrip transmission lines on the top layer of a three-layer printed
circuit board (PCB) with another pair of microstrip transmission
lines on the bottom layer of the PCB is simulated. Reflected and
transmitted time domain signals and S-parameter are calculated.
Configuration and results are shown in Figures 3(a) and (b). Internal
plane between two substrates with 0.5 mm thickness is the ground
plane, and the thickness of both ground plane and microstrips is
18µm. The diameter of two vias is 0.5 mm, and the diameters of
holes are 0.25 mm. The width of the two microstrips is 0.2 mm, and
the gap between the strip lines is 0.7 mm. The total dimensions of the

Progress In Electromagnetics Research Letters, Vol. 28, 2012 7

microwave circuit in the horizontal directions are 30 mm × 10mm. It
takes 20 minutes 51 seconds to finish 8000 time steps with NUMA
and 48 minutes 10 seconds without NUMA. The results with and
without NUMA acceleration are the same, shown in Figure 3(c), but
the simulation time with the NUMA acceleration has been decreased
significantly.

5. CONCLUSION

A NUMA acceleration technique in parallel FDTD methods has been
presented in this letter. The technique has achieved an excellent
performance. Our examples show that the computation time of the
FDTD application with NUMA acceleration technique is decreased
significantly.

REFERENCES

1. Yee, K. S., “Numerical solution of initial boundary value
problems involving Maxwell’s equations in isotropic media,” IEEE
Transactions on Antennas and Propagation, Vol. 14, No. 5, 302–
307, May 1966.

2. Garcia, S. G., F. Costen, M. Fernandez Pantoja, L. D. Angulo, and
J. Alvarez, “Efficient excitation of waveguides in Crank-Nicolson
FDTD,” Progress In Electromagnetics Research Letters, Vol. 17,
27–38, 2010.

3. Cao, D.-A. and Q.-X. Chu, “FDTD analysis of chiral discontinu-
ities in waveguides,” Progress In Electromagnetics Research Let-
ters, Vol. 20, 19–26, 2011.

4. Ai, X., Y. Han, C. Y. Li, and X.-W. Shi, “Analysis of dispersion
relation of piecewise linear recursive convolution FDTD method
for space-varying plasma,” Progress In Electromagnetics Research
Letters, Vol. 22, 83–93, 2011.

5. Jensen, M. A., A. Fijany, and Y. Rahmat-Samii, “Time-parallel
computational strategy for FDTD solution of Maxwell’s equa-
tions,” IEEE Antennas and Propagation Society International
Symp., Vol. 1, 380–383, Jun. 1994.

6. Guiffaut, C. and K. Mahdjoubi, “A parallel FDTD algorithm
using the MPI library,” IEEE Antennas and Propagation
Magazine, Vol. 43, No. 2, 94–103, Apr. 2001.

7. Yu, W., R. Mittra, T. Su, Y. Liu, and X. Yang, Parallel Finite
Difference Time Domain Method, Artech House, MA, Jun. 2006.

8 Guo et al.

8. Taflove, A. and S. Hagness, Computational Electromagnetics: The
Finite-difference Time-domain Method, 3rd edition, Artech House,
MA, 2005.

9. Jagasia, H., “Performance guidelines for developers on AMD
AthlonTM 64 and OpteronTM ccNUMA multiprocessor sys-
tems running Microsoft Windows,” Advanced Micro. Devices,
May 2006.

10. Broquedis, F., N. Furmento, B. Goglin, R. Namyst, and
P.-A. Wacrenier, “Dynamic task and data placement over
NUMA architectures: An OpenMP runtime perspective,” 5th
International Workshop on OpenMP, IWOMP 2009, Ser. Lecture
Notes in Computer Science, Vol. 5568, 79–92, Springer, Dresden,
Germany, Jun. 2009.

11. McCurdy, C. and J. S. Vetter, “Memphis: Finding and fixing
NUMA-related performance problems on multi-core platforms,”
Proceedings of ISPASS 2010, 87–96, 2010.

