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Abstract—In this paper, a modified iterative fourier technique
(MIFT) for thinning uniformly spaced linear arrays featuring a
minimum sidelobe level as well as narrow beam is presented. Since
IFT is a thinning procedure which has to be performed many trial
times with different initial element distributions to get the optimum
solution, it is, to some extent, time consuming. Moreover, in each
trial of IFT, the number of iterations is usually low, which makes the
method tend to be trapped in local solution even with a large number
of trials. Therefore, the similar procedures for both MIFT and IFT
are to derive the element excitations from the prescribed array factor
using successive forward and backward Fourier transforms, and array
thinning is accomplished by setting the amplitudes of a predetermined
number of the largest element excitations to unity while the others
to zero during each iteration cycle. Furthermore, in MIFT, based
on the idea of gradual thinning which is inspired by perturbation
theory, an adaptively changed fill factor is proposed to modify IFT
with the purpose of accelerating computational speed and facilitating
convergence. The immediate result caused by this modified fill factor
can be embodied in two points. One point is that unlike the random
number of iterations contained in different trials of IFT, the number of
iterations in all trials of MIFT is a fixed value and only predetermined
by the array inherent features (symmetrical or asymmetrical) and
fill factor. Therefore, sufficient iterations are ensured in each trial
to effectively help the algorithm avoid trapping. The other point
is that when MIFT is performed, the array elements are gradually
truncated, which maintains the most useful element excitations while
maximally excludes the bad excitations, so that the optimum solution
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could be obtained through only a small number of trials and thereby
substantially save computational cost. The effectiveness of MIFT
will be demonstrated for various linear arrays and compared with the
published reports.

1. INTRODUCTION

One of the most typical problems involving antenna arrays is the
design of a set of feeding values that must be applied to the
ports of an array in order to obtain a radiation pattern complying
with certain specifications. This problem is usually referred to as
synthesis [1]. Various techniques have been developed for array
synthesis, such as the modified polynomial method [2], the general
method based on an iterative process [3], particle swarm optimization
methods (PSO) [4–11], genetic algorithms (GA) [12, 13], differential
evolution(DE) approaches [14–16], simulated annealing techniques [17],
hybrid methods [18–20], ant colony optimization ways (ACO) [21],
etc. [22–25].

Array thinning is one important way of synthesis through which
we expect not only to lower the sidelobe level (SLL) but also to reduce
the number of array elements and thereby cut down cost substantially.
In addition, the uniformly excited array is desired to minimize the
complexity in designing a feed network even though it may suffer from
high sidelobe level. To further lower SLL, array thinning is also a good
way to make a compromise between low SLL and narrow beam.

Although different algorithms, from GA, PSO, ACO to various
other methods, have been used for thinned array synthesis [26–32],
the common characteristic of these methods is that the number of
array elements should be small. For the array which contains plenty
of elements, the computation time will be considerably increased by
using above methods.

In recent years, a high efficiency method named iterative Fourier
technique (IFT) has been presented by Keizer for thinning uniformly
excited periodic arrays [33–35]. The method is actually a version of
the alternating projection techniques [36, 37]. It derives the element
excitations from the prescribed array factor using successive forward
and backward Fourier transformations. Array thinning is accomplished
by setting the amplitudes of the largest element excitations to unity
and the others to zero in each iteration cycle [33].

Although IFT had been proved very efficient for linear array
synthesis [33], the generally small number of iterations in each trial
may make the method trap in local solutions. In addition, the
method has to be performed many trial times with different starting
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points to get the optimum solution, which is to some extent time
consuming. Therefore, in this paper, a modified Fourier technique
(MIFT) is presented to accelerate computational speed and facilitate
convergence. The most notable difference between IFT and MIFT is
that an adaptively changed fill factor f is introduced. To depict this
modified version, we suppose that f0 is the object fill factor that has
an expected constant value. Therefore, in each trial of MIFT, f is
adaptively decreased from a value approaching 1.0 to the object value
f0 with the increment of iterations. More clearly, it means that in
one arbitrary trial, different iteration cycles correspond to different fill
factors and that when the iteration within that trial is terminated, f
will arrive at the object fill factor f0. It obviously differs from IFT
of which the fill factor has a constant value of f0 for all the iteration
cycles.

To demonstrate the good features of MIFT, we further suppose γ
to represent the total number of iterations in each trial of IFT or MIFT.
Because the quality of synthesis results largely depend on γ, a suitable
value of γ is generally very useful for getting good solutions. However,
in IFT, γ is mainly determined by the initial element distributions
and the requirement peak sidelobe level (RPSL), and the bad initial
distributions or unsuitable RPSL would make γ a low value (always less
than 10) so that the iteration is quickly broken off, and the algorithm
may be trapped in local solutions. Whereas in MIFT, γ is solely
determined by the array itself and the object fill factor f0, thus a
suitable and fixed value of γ is predetermined for all trials, which could
excellently help to facilitate convergence of the algorithm.

Then MIFT is performed for thinning various linear arrays. The
synthesis results show that for small and medium size arrays, the
method could effectively get the possible optimum solution but save
computational cost many times or even more than IFT, GA and ACO.
However, if the array is massively truncated, the mainlobe widening
will be un-neglected using MIFT, so we further modify MIFT in order
to maintain narrow beam as well as low sidelobe level. The synthesis
results also satisfy our requirement with high efficiency.

2. MODIFIED ITERATIVE FOURIER TECHNIQUES

The IFT is a high efficiency method for thinned array synthesis as
shown in the report [33]. However, as related above, the method is apt
to trap, and the algorithm’s convergence speed could also be further
accelerated. So in this section, we propose a modified version to realize
global convergence and accelerate computational speed.

As a start, we suppose a linear array with M elements equally
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spaced at distance d, and the array’s far field pattern F (u) can be
written as the product of the embedded element pattern EF and the
array factor AF [33],

F (u) = EF (u)AF (u) (1)

AF (u) =
M−1∑

m=0

Amejkmdu (2)

where Am (m = 1, 2 . . . , M) is the complex excitation of the mth
element, k the wave number, λ the wavelength, d the element spacing,
u = sin θ the direction cosine, and θ the pattern angle measured from
broadside of the array. Equation (2) represents a finite Fourier series
which relates the element excitation coefficients {Am} of the linear
array to their AF through a discrete inverse Fourier transform (IDFT).
A discrete direct Fourier transform (DFT) applied on AF will yield the
element excitation coefficients {Am} [33].

According to Keizer’s IFT method, the inverse fast Fourier
transform (IFFT) and forward fast Fourier transform (FFT) were
repeatedly implemented to get AF and {Am}, respectively. If there
is any sampling point in sidelobe region whose SLL exceeds RPSL, the
method will forcefully make the SLL below RPSL. Array thinning is
accomplished by setting the M · f0 samples of {Am} which have the
largest amplitudes equal to unity and others to zero in each iteration
cycle.

Furthermore, in MIFT, based on the idea of gradual thinning
which is inspired by perturbation theory, an adaptively changed fill
factor f is introduced into above procedures so that in each iteration
cycle of one arbitrary trial, the element excitations are gradually
truncated, which makes the most useful element excitations that
contribute to the sidelobe level retained, and thereby we expect to
find the optimum solution through only a small number of trials. The
detailed step of MIFT proceeds as follows.
1) Randomly initialize the element excitations Am (m = 1, 2 . . . , M)

with probability of 0.9 equal to one (turned on) and the rest equal
to zero.

2) Fourier transform is applied to the element excitations {Am} with
K point IFFT to arrive the array factor AF consisting of K
samples with K > M by applying zero padding.

3) Match the sidelobe region of AF to the sidelobe requirement and
make the AF values in the sidelobe region not exceed the RPSL
unchanged. The AF values in the mainlobe region are unchanged,
too.

4) Compute {Am} for the matched AF using K point forward FFT;
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5) Truncate the K samples of {Am} to M samples associated with
the array elements.

6) Set the M · f samples of {Am} which have the largest amplitudes
equal to one and others to zero, where f is the adaptively changed
fill factor whose initial value approaches 1.0.

7) Decrease f with step size of α, i.e., f = f − α, where α is a
positive value which makes only one element for asymmetrical
array and two elements for symmetrical array to be truncated in
each iteration cycle.

8) Repeat step 2) through step 7) until f arrives at the object fill
factor f0, then the iteration within that trial is terminated;

9) Step into the next trial: repeat step 1) through step 8) until the
specified number of trials is reached.

Comparing the two methods, it could be seen that MIFT has the
same steps as IFT from step 2) to step 6) [33, 34]. It differs from IFT
mainly in three aspects.

The first aspect is that unlike the equal 0/1 probability for all the
initial element distributions in IFT, the initial element distributions are
set equal to one with probability of 0.9 and to zero with probability
of 0.1 in MIFT. It means that the array is approaching full. The
second, also the most important aspect, is that in IFT, different
iteration cycles have the same fill factor f0 while in MIFT, the fill
factor is adaptively changed with the increment of iteration cycles.
The third aspect is that in each trial of IFT, different initial element
distributions make the value of γ a random one and that the algorithm
is performed iteratively until the same element distributions are
obtained by adjacent iterations. However, among different trials of
MIFT, γ is a fixed value, and the algorithm is broken off just when the
object fill factor f0 is arrived.

The advantage of MIFT could be explained by perturbation
theory. Suppose a system Φ which is partly deviated from the original
system Φ0. For simplicity, we suppose that ε0 and ε respectively
represent the solution of Φ0 and Φ. According to perturbation theory,
ε could be treated as the tiny disturbance to ε0 and written as.

ε = ε0 + δ (3)

We can see that ε consists of two parts: the first part, ε0, is
the main part of ε; the secondary part, δ, represents the part of
solution produced by the influence of environment input. Therefore,
the majority of inherent features of Φ0 could be inherited to Φ.

Accordingly, in the first step of MIFT, a near-filled initial array
would be enjoyed because it has higher directivity than the sparse-filled
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array (If the array is filled, the obtained results in all trials would be
identical). Then, through gradual thinning, we expect to obtain an
array which could succeed to the high directivity of the initial array as
much as possible.

Moreover, since the difference between different trials lies in the
fact that the initial element distributions are different, the initial array
and final solution are different, too. Therefore, both IFT and MIFT
need several independent trials among which the optimum solution
is selected. However, in each iteration cycle of IFT, the number
of truncated elements is M · (1 − f0), and this massively turned off
element illuminations may cause some very useful elements removed
and thereby severe deteriorate the synthesis solution. So in each trial
of MIFT, through an adaptively changed fill factor, only one element
for an asymmetrical array and two elements for a symmetrical array
(the two elements are symmetrical with their center at the origin)
which have the lowest amplitudes are truncated in each iteration cycle.
As a result, the optimum solution could be quickly found so that the
number of trials is substantially dropped, thus computational cost is
considerably saved. In the next section, we will perform thinned array
synthesis using MIFT for various linear arrays.

3. NUMERICAL RESULTS

We first considered demonstrating the difference between IFT and
MIFT. Suppose a 200-element thinned array with the object fill factor
f0 = 50%. The initial element distributions of the two methods within
the same trial should be identical before performing the comparison.
Then we performed ten independent trials of IFT and MIFT and
arbitrarily chose the synthesis result of one single trial to illustrate
the difference as shown in Figure 1.

Figures 1(a) and (b) respectively depict the normalized far field
patterns produced by IFT and MIFT. The maximum sidelobe level
(MSLL) obtained by MIFT is −19.01 dB, 1.96 dB lower than that
obtained by IFT. Moreover, the sidelobe region of the far field pattern
has intense oscillation, and the sidelobes of some points may rise
abnormally in IFT, whereas in MIFT, the phenomenon was excellently
restrained in a relative low level. Similar conclusions could also be
obtained through all the other trials.

Then, to further demonstrate the effectiveness of MIFT, we
consider applying MIFT to various linear arrays for the purpose of
getting lower SLL as well as an appropriate beamwidth. The element
spacing is half wavelength, and the coupling effect between the array
elements is neglected. The number of sampling point of FFT is equal
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(a)

(b)

Figure 1. Normalized far-field pattern for a 200-element thinned array
with 50% fill factor. (a) IFT method. (b) MIFT method.

to 4096 for all the illustrations except the third case. In addition, all
the synthesis results are compared with the published reports [31, 33].

3.1. Symmetrical Thinned Array

A 200-element array, symmetric about its centre, is considered in the
first case and has an object fill factor f0 of 77%, RPSL of −24.80 dB.
The initial fill factor fI = 0.99, the step size α = 0.01 so that two
symmetrical elements could be truncated in each iteration cycle. The
fill factor f could be expressed by the equation

f = fI − α ∗ T f ≥ f0 (4)

where T (the value is 0, 1, 2, . . .) represents the number of iterations.
Figure 2 shows the synthesis result of 30 independent trials. For

convenience, in this paper, the pattern which has the minimum MSLL
among 30 trials is chosen as the optimum pattern that we expected.
This minimum MSLL is defined as the optimum sidelobe level (OSL).
Figure 2(a) depicts the normalized far field pattern of the optimum
element distributions among 30 trials featuring an OSL of −23.03 dB,
which is lower than the reported value of −22.92 dB [33].

The score of 30 trials is shown by the histogram in Figure 2(b)
that presents the frequency distribution of the MSLL performance
of the 30 thinned element distributions. It can be noted that all
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(a)

(b)

Figure 2. A 200-element symmetrical thinned array with 77% fill
factor. (a) The far-field pattern with optimum SLL among 30 trials.
(b) MSLL distribution of 30 independent trials.

the element distributions have a MSLL below −20 dB; 28 element
distributions have a MSLL below −21 dB; 11 element distributions
have a MSLL below −22 dB. If we normalize these various numbers
of element distributions by the total population and express them in
terms of the percentage, they are 100%, 93.33%, and 36.67% of the
total population, whereas the corresponding percentages by IFT are
45.7%, 13.53%, and 0.58% [33]. It can be seen that the result yielded
by MIFT has obviously high percentage of element distributions with
low MSLL than the result produced by IFT. It is a good demonstration
of the effectiveness of the proposed method.

Therefore, in MIFT, the bad solutions are massively excluded
so that only a small number of trials, corresponding to a small
number of iterations, is needed to reach the optimum solution. In
this illustration, each trial contains 23 iterations, which means γ = 23,
so the total number of iterations among 30 trials is 690. However,
in the published report, by IFT, 10000 trials are needed. If we
assume that there are 7 iterations (may be more) in each trial, then
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the total number of iterations is 7 × 104. We can see that MIFT
method needs approximately 1% of the iterations that IFT needs. So
the computational time is substantially dropped. It takes about 2.05
seconds by MIFT, whereas IFT needs about 120 seconds [33].

The binary string on the top of Figure 2(a) describes the
distribution of array elements state, where the value one represents
the state ‘turned on’, and the value zero represents the state ‘turned
off’. The top line of the binary string represents the state of 1–50
elements, and the second, third and fourth lines represent the states
of 51–100, 101–150, and 151–200 elements, respectively. Similarly, the
binary strings in the following illustrations have the same meaning.

In the second test case, MIFT is applied to the same antenna array
but with the object fill factor f0 of 66%, RPSL −24.55 dB. Figure 3
shows the synthesis result of 30 independent trials. The obtained OSL
is−22.84 dB, and the 3 dB beamwidth is 0.685 degree, which are almost
as well as those by IFT in the published report [33]. The histogram in

(b)

(a)

Figure 3. A 200-element symmetrical thinned array with 66% fill
factor. (a) The far-field pattern with optimum SLL among 30 trials.
(b) MSLL distribution of 30 independent trials.
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Figure 3(b) shows that 29, 21, 5 element distributions have the MSLL
respectively below −20 dB, −21 dB and −22 dB, that are 96.67%,
70% and 16.67% of the total population, while the corresponding
percentages by IFT are 58.54%, 17.08% and 0.91% [33]. It is also
demonstrated that the result produced by MIFT has an obviously high
percentage of element distributions with low MSLL than the result
yielded by IFT. In other words, the bad solutions are largely excluded
through MIFT.

Similarly, in each trial of the case, γ = 34, so the total number of
iterations among 30 trials is 1020, and the value is also far less than
the total number of iterations that IFT needed. Therefore, to get the
optimum solution, only 3.2 seconds are consumed by this method while
IFT needs about 120 seconds [33].

The convergence curves of MSLL of Figure 2 versus the various
magnitudes of fill factors are depicted in Figure 4: the blue curve
represents the best trial #11 with minimum MSLL of −23.03 dB;
the black curve represents the worst trial #14 with minimum MSLL
of −20.81 dB. To demonstrate the robustness of MIFT, we further
calculate the variation of average MSLL among 30 trials versus different
fill factors as the red curve shown in Figure 4. It could be seen that
with the decrement of the fill factor, the average MSLL is gradually
dropped and converged to a value near the OSL. So the average MSLL
has good convergence features.

Similarly, Figure 5 shows the convergence curves of MSLL of
Figure 3 versus different fill factors: the best trial #24 with minimum
MSLL of −22.84 dB and the worst trial #27 with minimum MSLL

Figure 4. Convergence curves
of the maximum SLL during
the MIFT thinning synthesis of
Figure 2.

Figure 5. Convergence curves
of the maximum SLL during
the MIFT thinning synthesis of
Figure 3.
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(a)

(b)

Figure 6. A 200-element asymmetrical thinned array with 69.5% fill
factor. (a) The far-field pattern with optimum SLL among 30 trials.
(b) MSLL distribution for 30 independent trials.

of −19.88 dB. The average MSLL among 30 trials also has good
convergence features.

3.2. Asymmetrical Thinned Array

A 200-element asymmetrical array with f0 of 69.5% and RPSL of
−26.20 dB is considered in the third case. The initial fill factor
fI = 0.995, the step size α = 0.005 so that one array element could
be truncated in each iteration cycle. The synthesis result is shown in
Figure 6.

The optimum thinned array element distributions shown in
Figure 6(a) produce a far field pattern with an OSL of −24.55 dB,
which is 0.25 dB lower than that by IFT in the literature report and
with 3 dB beamwidth almost invariable [33]. The total number of
iterations in this case is 1830. The computational time is 21 seconds
by MIFT, which is about one seventeenth of the time consumed by
IFT [33]. The sampling point K is raised to 16384 in this case to get
the lowest SLL value.
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(a)

(b)

Figure 7. A 200-element asymmetrical thinned array with 39% fill
factor. (a) The far-field pattern with optimum SLL among 30 trials.
(b) MSLL distribution for 30 independent trials.

Applying MIFT to a massively thinned array with f0 of 39% and
RPSL of −18.10 dB is considered in the fourth case. The obtained
result, as depicted in Figure 7, has an OSL of −17.63 dB, but the 3 dB
beamwidth η is 0.703 degree, which is obviously broadened than 0.546
degree in the published report [33], so it is not a desired solution. To
get a solution featuring low SLL and narrow beam simultaneously, the
MIFT will be further modified in Section 3.4.

Similar to the foregoing cases, Figures 8 and 9 respectively depict
the convergence curves of MSLL in Figures 6 and 7. The curves also
fully demonstrate the good convergence features of MSLL. Table 1
shows the comparative results of the above four illustrations produced
by MIFT and IFT.

3.3. The Influence of Sampling Point

The sampling point K is an important parameter in DFT. According to
the theory of frequency-domain sampling [38], to reconstruct the array
factor AF without aliasing, K should satisfy the relationship K ≥ M ,
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Figure 8. Convergence curves
of the maximum SLL during
the MIFT thinning synthesis of
Figure 6.

Figure 9. Convergence curves
of the maximum SLL during
the MIFT thinning synthesis of
Figure 7.

Table 1. The comparative results of the four illustrations produced
by MIFT and IFT.

Fill factor

(%)

Optimum

SLL

(dB)

3 dB

Beamwidth

η (degree)

time

consumed

(second)

Effective

length

L (λ)

MIFT IFT[33] MIFT IFT[33] MIFT IFT[33] MIFT IFT[33]

77 −23.03 −22.92 0.591 0.588 2.05 120 100 100

66 −22.84 −22.86 0.685 0.685 3.20 120 92 93

69.5 −24.55 −24.30 0.645 0.643 21.0 360 99.5 99

39 −17.63 −17.33 0.703 0.546 11.90 180 79 95.5

where M represents the size of the array. So for a 200-element position
array, K should be no less than 200. Furthermore, if we wish to have
a better picture that could provide sufficient details of AF , it could be
realized by means of zero padding.

However, in both MIFT and IFT, the amount of zero padding
obviously influences synthesis result. If zero padding is not enough,
the low resolution may make some points of AF lost, and these points
may have high sidelobe levels. If zero padding is excessive, the high
resolution will make more points with their SLL exceeding RPSL in
the sidelobe region. Accordingly, more points with their SLL have to
be lowered to adapt to the sidelobe threshold during performing IFT or
MIFT and thereby considerably change AF , which will in turn change
the MSLL of the renewed AF after performing IFT or MIFT, and we
cannot ensure whether the MSLL of the renewed AF is improved or
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Table 2. The optimum results of above four illustrations produced by
MIFT for various sampling points.

Fill factor

(%)
77 (case 1) 66 (case 2) 69.5 (case 3) 39 (case 4)

Sampling

point

OSL

(dB)

η

(deg)

OSL

(dB)

η

(deg)

OSL

(dB)

η

(deg)

OSL

(dB)

η

(deg)

1024 −22.97 0.588 −22.29 0.671 −24.38 0.643 −17.43 0.643

2048 −22.83 0.588 −22.59 0.699 −24.33 0.650 −17.67 0.713

3072 −23.03 0.592 −22.36 0.690 −24.25 0.643 −17.68 0.835

4096 −23.03 0.591 −22.84 0.685 −24.39 0.650 −17.63 0.703

8192 −22.92 0.575 −22.07 0.692 −24.57 0.649 −17.85 0.860

16384 −22.88 0.590 −22.53 0.692 −24.55 0.645 −17.70 0.761

deteriorated.
To explore how the different sampling points influence the

synthesis result, based on the illustrations in Sections 3.1, 3.2, we
further perform array thinning using MIFT with various sampling
points. The obtained results are shown in Table 2.

From Table 2, we can see that K has random influences on
the synthesis result. Generally, we consider an appropriate K
corresponding to the value which yields the lowest SLL as well as
narrow beam. Thus we can see from Table 2 that the best value of K
for the third case is 8192 or 16384, but 4096 for the other cases.

Nevertheless, although the possible optimum result may be
obtained by a low sampling point, it may be just an illusion because
of low resolution. For example, in case 1, when K = 1024, the
obtained optimum element distributions among 30 trials produce a
far field pattern with OSL of −22.97 dB and 3 dB beamwidth 0.588
degree. Although the result seemingly satisfies our requirement, when
we further calculate AF based on this optimum element distributions
by more zero padding with K = 4096 and 16384, both the obtained
AF have OSL of −22.85 dB, which is about 0.12 dB higher than the
value when K = 1024, so we regard 1024 as an improper sampling
point.

Therefore, we suppose two steps that help us to select the size
of K. The first step is to select the value which could produce the
lowest SLL with a little compromise of beamwidth. The second step is
based on the selected K and the corresponding element distributions
in the first step. We further calculate AF by more zero padding with
sampling point such as 4K, 16K to get the detailed information of AF .
If the MSLL of the renewed AF is almost invariable, we regard K as
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the most suited sampling point, or else we have to reselect K trial and
error according to the two steps just related above.

3.4. Further Modification

In most cases, lower SLL can be obtained only at the price of widening
mainlobe. One purpose of the array synthesis is to make a compromise
between low SLL and narrow beam. In addition, as related above,
although MIFT has been successfully used for moderately truncated
arrays, it suffers from beam broadening when the array elements are
massively truncated. In this section, MIFT is further modified in order
to maintain low SLL but with a little sacrifice of beamwidth.

Suppose an arbitrary normalized far field pattern as shown in
Figure 10. The symbols of triangle in the figure represent the sampling
points in the sidelobe region, while the symbols of asterisk represent
the sampling points in the mainlobe region. The points A, B, C, D, E,
F , G, etc., represent the successive sampling points in the left mainlobe
region with point A the first null of the left mainlobe. Accordingly, the
mirror points, A1, B1, C1, D1, E1, F1, G1, represent the successive
sampling points in the right mainlobe region with point A1 the first
null, too.

Furthermore, in Figure 10, we suppose that the upper doted line
represents the requirement peak SLL and that the bottom dotted
line represents the specified SLL which is lower than RPSL. In both
IFT and MIFT, if there are some points in sidelobe region with their
SLL above RPSL, we will forcefully lower their SLL to one constant
value named specified SLL. The SLL values of the sampling points
in mainlobe region are unchanged even though they may violate the

Figure 10. An arbitrary normalized far field pattern to illustrate the
modified MIFT.
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sidelobe threshold. Nevertheless, in the modified MIFT, in addition to
the above operations, we successively choose Q sampling points located
at the edge of the mainlobe region and then, forcefully make the SLLs
of these points lower than their actual values. In detail, we suppose
Q = 4, then the sampling points A, B and their mirror points A1,
B1 are chosen as those to be lowered. This operation could be easily
realized through adding only a few lines of MATLAB code to MIFT.

For example, if we assume that the initial sidelobe levels of points
A, B and A1, B1 are −35.9 dB, −31.3 dB, −35.5 dB, and −31.2 dB,
respectively, the variation value β = −20 dB, then the corrected
SLL values of A, B, A1, B1 are −55.9 dB, −51.3 dB and −55.5 dB,
−51.2 dB.

Figure 11 shows the synthesis result using modified MIFT for a
200-element asymmetrical array with f0 of 39%, where we set Q = 12,
β = −20 dB. The obtained OSL is −17.24 dB with 3 dB beamwidth
0.549 degree. The result is almost as good as that produced by
IFT [33]. However, the time cost is only 11 seconds, about one
sixteenth of the time consumed by IFT [33]. Furthermore, if we set
Q = 16 with β invariable, the obtained optimum far field pattern has
OSL of −16.85 dB and η of 0.528 degree.

(a)

(b)

Figure 11. A 200-element asymmetrical thinned array with 39% fill
factor. (a) The far-field pattern with optimum SLL among 30 trials.
(b) MSLL distribution for 30 independent trials.
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More trials show that β has less important influences on the
synthesis result than Q does. So β could be treated as a constant
value in modified MIFT. Table 3 shows the synthesis results of the
same array using the modified MIFT among various Q values, where
β = −20 dB. We can see that through modulating the magnitude of
parameter Q, we could efficiently obtain a possible optimum solution
with low SLL as well as narrow beam.

3.5. Comparing with Other Optimum Algorithms

To further demonstrate the robustness of MIFT, in this section, we
compare the array synthesis results by MIFT with those by GA and
ACO in the published reports [31, 32].

We consider a linear array of 100 isotropic antennas symmetrically
spaced 0.5λ apart along x-axis with its center at the origin. Then
MIFT is performed to thin this antenna array in three cases: 1) 20%
thinning; 2) 22% thinning; 3) 24% thinning.

Table 3. The synthesis results using modified MIFT among various
Q values.

Q Optimum SLL (dB) 3 dB Beamwidth η (degree) Effective length (λ)

6 −17.15 0.601 94

12 −17.24 0.549 99.5

16 −16.85 0.528 100

30 −16.4 0.504 100

Figure 12. The normalized
far field pattern of a 100-element
symmetrical array that was 20%
thinned by MIFT.

Figure 13. The normalized
far field pattern of a 100-element
symmetrical array that was 22%
thinned by MIFT.
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Table 4. Comparative results produced by MIFT, GA, and ACO.

Percentage

of

thinning (%)

MIFT GA [31] ACO [32]

SLL

(dB)

3 dB

beamwidth

(degree)

time

consumed

(second)

SLL

(dB)

SLL

(dB)

20 −21.06 1.154 1.1 / −20.52

22 −20.98 1.193 1.1 −20.56 /

24 −20.53 1.22 1.2 −20.53 /

Table 5. Turned off element numbers by MIFT for all cases.

Percentage of
thinning (%)

Turned off element numbers

20
±29, ±31, ±34, ±36, ±39,
±42, ±43, ±45, ±46, ±47

22
±31, ±32, ±36, ±37, ±39, ±40,

±42, ±43, ±45, ±47, ±49

24
±29, ±30, ±34, ±36, ±38, ±40,

±41, ±43, ±44, ±46, ±49, ±50

Figure 12 shows the optimum far field pattern of the 20% thinned
array produced by MIFT among 30 trials, where φ is the azimuth angle
of the far field point measured from x-axis.

The obtained optimum SLL is −21.06 dB, which is lower than the
SLL of −20.52 dB that is obtained by ACO [32]. Similarly, Figure 13
shows the far field pattern of the same array but 22% thinned, the
obtained optimum SLL is −20.98 dB, which is about 0.42 dB lower
than GA result [31].

Table 4 shows the comparative results produced by MIFT, GA
and ACO. Table 5 shows the turned off element numbers by MIFT for
all cases. All the results are obtained by a PC equipped with an Intel
Pentium Dual core E5200 Processor running at 2.5 GHz provided with
2GB RAM.

4. CONCLUSION

The synthesis results by MIFT show a good agreement between the
desired and synthesized specifications for all above cases with high
efficiency. So it is an effective method for thinning uniformly excited
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array. Furthermore, when we compare IFT with MIFT, it can be found
that in MIFT, bad solutions are excluded in maximum extent through
gradual thinning ways so that the optimum solution can be reached
by only a small number of trials. Therefore, plenty of the iterations
and thereby plenty of computational time are saved. Nevertheless, the
method can save computer time only for small or medium size array.
For a large array containing plenty of elements, the time consumed
by MIFT would be much more than the time needed by IFT. For
example, if we suppose that a uniformly excited planar array contains
5000 element positions, if the object fill factor f0 = 50%, the total
number of trials is 30, then the total number of iterations by MIFT
is about 7.5 × 104. However, when it comes to IFT, we assume that
1000 trials are included and that each trial contains 10 iteration cycles,
the total number of iterations will be 1× 104, which is only about one
seventh of the total iterations needed by MIFT.

However, because IFT is apt to fall into local solutions, whereas
MIFT provides a good way to avoid trapping, thus for a large array,
the optimum solution for thinned array synthesis may be obtained by
combining the two methods together.
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320 Wang, Jiao, and Tan

S. Barro, and F. J. Ares-Pena, “Fast array thinning using global
optimization methods,” Journal of Electromagnetic Waves and
Applications, Vol. 24, No. 16, 2259–2271, 2010.

28. Wang, J., B. Yang, S. H. Wu, and J. Chen, “A novel
binary particle swarm optimization with feedback for synthesizing
thinned planar arrays,” Journal of Electromagnetic Waves and
Applications, Vol. 25, No. 14–15, 1985–1998, 2011.

29. Bucci, O. M., T. Isernia, and A. F. Morabito, “A deterministic
approach to the synthesis of pencil beams through planar thinned
arrays,” Progress In Electromagnetics Research, Vol. 101, 217–230,
2010.

30. Jin, N. and Y. Rahmat-Samii, “Advances in particle swarm
optimization for antenna designs: Real-number, binary, single-
objective and multi-objective implementations,” IEEE Trans. on
Antennas and Propag., Vol. 55, No. 3, 556–567, 2007.

31. Mahanti, G. K., N. N. Pathak, and P. K. Mahanti, “Synthesis of
thinned linear antenna arrays with fixed sidelobe level using real-
coded genetic algorithm,” Progress In Electromagnetics Research,
Vol. 75, 319–328, 2007.
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