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OF TIME-VARYING PARABOLIC DENSITY DISTRIBU-
TION
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Abstract—The trapezoidal recursive convolution (TRC) finite-
difference time-domain (FDTD) method is extended to study
the bistatic scattering radar cross sections (RCS) of conductive
targets covered with inhomogeneous, time-varying, magnetized
plasma medium. The two-dimensional TRC-FDTD formulations for
electromagnetic scattering of magnetized plasma are derived. Time-
varying parabolic density profiles of plasma are assumed in this
paper. The bistatic radar cross sections are calculated under different
conditions using 2-D TE model for a conductive cylinder covered with
magnetized plasma. The numerical results show that plasma cloaking
system can successfully reduce the bistatic RCS, that the plasma
stealth is effective, and that the appropriate parameters of plasma
can enhance its effectiveness.

1. INTRODUCTION

The finite-difference time-domain method has been widely used in
solving many electromagnetic problems including those concerned with
plasma media [1–8]. There has been considerable interest in the
scattering of electromagnetic wave from conductive target covered with
plasma, because it can be applied in plasma stealth technology. It
is well known that plasma can attenuate the energy of incident ME
wave. Much work concerning the scattering of the electromagnetic
(EM) wave by conductive target covered with plasma have been
discussed [9–11]. Recently frequency shifting of an EM wave in
time–varying plasma has been extensively studied and the reflections

Received 31 August 2011, Accepted 10 November 2011, Scheduled 15 November 2011
* Corresponding author: Song Liu (sliu@ncu.edu.cn).



14 Liu and Zhong

of the conductive target covered with inhomogeneous plasma were
calculated [12–14]. For there is an externally applied magnetic field
cases, the plasma exhibits anisotropic behavior and its permittivity
takes a tensor form. Wave propagation and scattering in an anisotropic
medium are nonreciprocal and the implementation of the conventional
FDTD method is difficult [15]. Over the last decade, the FDTD
and various algorithms have been extended to simulate anisotropic
media [16–20].

In this paper, the TRC-FDTD approach is extended to study
the bistatic RCS of conductive targets covered with inhomogeneous
magnetized plasma medium. Parabolic and Time-varying parabolic
density profiles of plasma are assumed in this paper. The two-
dimensional TRC-FDTD formulations for electromagnetic scattering
of magnetized plasma are derived. The bistatic radar cross sections
are calculated under different conditions using 2-D TE model for
a conductive cylinder covered with inhomogeneous, time-varying
magnetized plasma. The numerical results illustrate that plasma
cloaking target can successfully reduce the bistatic RCS, the plasma
stealth is effective, and the proper parameters of plasma can enhance
its effectiveness.

2. TRC-FDTD FORMULATIONS IN MAGNETIZED
PLASMA MEDIUM

The Maxwell’s curl equations in magnetized plasma are given by

∂D
∂t

= ∇×H, (1)

∂H
∂t

= − 1
µ0
∇×E. (2)

Considering the external static magnetic field is parallel to the z
axis. The tensor permittivity expression for the magnetized plasmas is

ε̃ij(ω) =

∣∣∣∣∣
εxx(ω) jεxy(ω) 0
−jεyx(ω) εyy(ω) 0

0 0 εzz(ω)

∣∣∣∣∣ , (3)

where the components of this tensor are

εxx(ω) = εyy(ω) = ε0

(
1−

(ωp

ω

)2 (
1− j ν

ω

)
(
1− j ν

ω

)2 − (
ωb
ω

)2

)
, (4)

εzz(ω) = ε0

(
1− ω2

p

ω(ω − jν)

)
, (5)
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εxy(ω) = εyx(ω) = ε0

(ωp

ω

)2 (
ωb
ω

)
(
1− j ν

ω

)2 − (
ωb
ω

)2 , (6)

where j =
√−1, ε0 is the permittivity of free space, ν is the electron

collision frequency, ωp =
√

nee2/mε0 is the plasma frequency, ne is
the electron number density, ωb = eB0/m is the electron cyclotron
frequency, B0 is the external magnetic field. e and m are the electric
charge and mass of an electron, respectively.

The relationship between the electric field and the electric flux
density is

Di(ω) = ε̃ij(ω) ·Ej(ω), (7)

In the time domain, by use of the convolution integral, we have

Dx(t)=ε0Ex(t)+ε0

∫ t

0
Ex(t−τ)χxx(τ)dτ−ε0

∫ t

0
Ey(t−τ)χxy(τ)dτ, (8)

Dy(t)=ε0Ey(t)+ε0

∫ t

0
Ey(t−τ)χyy(τ)dτ +ε0

∫ t

0
Ex(t−τ)χyx(τ)dτ, (9)

where t is the time.
The time-domain susceptibility functions has been obtained

from the frequency-domain permittivity functions by inverse Fourier
transformation, and are shown as follow

χxx(τ)=χyy(τ)

=
ω2

p

ν2+ω2
b

{ν−exp(−ντ)[ν cos(ωbτ)−ωb sin(ωbτ)]}U(τ), (10)

χxy(τ)=χyx(τ)

=
ω2

p

ν2+ω2
b

{ωb−exp(−ντ)[ωb cos(ωbτ)+ν sin(ωbτ)]}U(τ), (11)

where U(τ) is the unit step function.
The evaluation of (10) and (11) will be simplified if we introduce

a complex susceptibility function and simply take its real part when
computing the convolution. The complex susceptibilities can be given
by

χ̃xx(τ)=χ̃yy(τ)=
ω2

p

ν2 + ω2
b

(ν+jωb){1−exp [−(ν−jωb)τ ]}U(τ), (12)

χ̃xy(τ) = χ̃yx(τ)=
ω2

p

ν2 + ω2
b

(ωb−jν){1−exp [−(ν−jωb)τ ]}U(τ), (13)
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with

χxx(τ) = χyy(τ)=Re[χ̃xx(τ)]=Re[χ̃yy(τ)], (14)

χxy(τ) = χyx(τ)=Re[χ̃xy(τ)]=Re[χ̃yx(τ)], (15)

Using Yee’s notation, we let t = n∆t in (8)–(9), the each
component of D can be written as

D̃n
x = ε0E

n
x +ε0

∫ n∆t

0
Ex(n∆t−τ)χ̃xx(τ)dτ

−ε0

∫ n∆t

0
Ey(n∆t−τ)χ̃xy(τ)dτ, (16)

D̃n
y = ε0E

n
y +ε0

∫ n∆t

0
Ey(n∆t−τ)χ̃yy(τ)dτ

+ε0

∫ n∆t

0
Ex(n∆t−τ)χ̃yx(τ)dτ. (17)

Using TRC method [5], (16) is approximated using an average of
the electric fields over two consecutive time steps in the following form

Dn
x

ε0
= En

x +
n−1∑

m=0

[
En−m

x +En−m−1
x

2
χm

xx −
En−m

y + En−m−1
y

2
χm

yy

]
. (18)

Then, the Dx for n + 1 time steps can be written as

Dn+1
x

ε0
=En+1

x +
n∑

m=0

[
En−m+1

x +En−m
x

2
χm

xx−
En−m+1

y +En−m
y

2
χm

yy

]
, (19)

where

χm
xx = Re(χ̃m

xx) = Re

[∫ (m+1)∆t

m∆t
χ̃xx(τ)dτ

]

= Re

[∫ (m+1)∆t

m∆t
χ̃yy(τ)dτ

]
, (20)

χm
xy = Re(χ̃m

2 ) = Re

[∫ (m+1)∆t

m∆t
χ̃xy(τ)dτ

]

= Re

[∫ (m+1)∆t

m∆t
χ̃yx(τ)dτ

]
. (21)
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Substituting (12)–(13) in (20)–(21), we can acquire

χ̃m
xx =

∫ (m+1)∆t

m∆t
χ̃xx(τ)dτ =

∫ (m+1)∆t

m∆t
χ̃yy(τ)dτ

=
∫ (m+1)∆t

m∆t

ω2
p

ν2 + ω2
b

(ν + jωb) {1− exp [−(ν − jωb)τ ]}U(τ)dτ

=
ω2

p(ν + jωb)
ν2 + ω2

b

∆t− ω2
p

ν2 + ω2
b

ν + jωb

ν − jωb
{1− exp [−(ν − jωb)∆t]}

exp [−(ν − jωb)m∆t] , (22)

χ̃m
xy =

∫ (m+1)∆t

m∆t
χ̃xy(τ)dτ =

∫ (m+1)∆t

m∆t
χ̃yx(τ)dτ

=
∫ (m+1)∆t

m∆t

ω2
p

ν2 + ω2
b

(ωb − jν) {1− exp [−(ν − jωb)τ ]}U(τ)dτ

=
ω2

p(ωb − jν)
ν2 + ω2

b

∆t− ω2
p

ν2 + ω2
p

(ωb − jν)
(ν − jωb)

{1− exp [−(ν − jωb)∆t]}

exp [−(ν − jωb)m∆t] . (23)

Letting

∆χm
xx = Re(∆χ̃m

xx) = Re
(
χ̃m

xx − χ̃m+1
xx

)
= χm

xx − χm+1
xx , (24)

∆χm
xy = Re(∆χ̃m

xy) = Re
(
χ̃m

xy − χ̃m+1
xy

)
= χm

xy − χm+1
xy . (25)

From (18) and (19), we obtain

Dn+1
x −Dn

x

ε0
=

(
1 +

χ0
xx

2

)
En+1

x −
(

1− χ0
xx

2

)
En

x −
(

χ0
xy

2

)
En+1

y

−
(

χ0
xy

2

)
En

y − ψn
xx + ψn

yxy, (26)

Equation (1) is discretized using the Yee grid and leap-frog integration

Dn+1
x −Dn

x

∆t
= (∇×H)n+1/2

x , (27)

In views of (26) and (27), we find
(

1 +
χ0

xx

2

)
En+1

x =
(

1− χ0
xx

2

)
En

x +
χ0

xy

2
En+1

y +
χ0

xy

2
En

y + ψn
xx

−ψn
yxy +

∆t

ε0
(∇×H)n+1/2

x . (28)
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where

χ0
xx = Re

(
χ̃0

xx

)
, χ0

xy = Re
(
χ̃0

xy

)
,

ψn
xx =

n−1∑

m=0

(
En−m

x + En−m−1
x

)

2
∆χm

xx,

ψyxy =
n−1∑

m=0

(
En−m

y + En−m−1
y

)

2
∆χm

xy.

By the same procedure
(

1 +
χ0

yy

2

)
En+1

y =

(
1− χ0

yy

2

)
En

y −
χ0

yx

2
En+1

x − χ0
yx

2
En

x +ψn
yy+ψn

xyx

+
∆t

ε0
(∇×H)n+1/2

y , (29)

where

χ0
yy = χ0

xx, χ0
yx = χ0

xy, ψn
yy =

n−1∑

m=0

(
En−m

y + En−m−1
y

)

2
∆χm

yy,

ψn
xyx =

n−1∑

m=0

(
En−m

x + En−m−1
x

)

2
∆χm

yx.

The TRC-FDTD updated equations for two-dimensional TE case
are derived

En+1
x =

(
1−

(
χ0

xx
2

)2
)
−

(
χ0

xy

2

)2

(
1 + χ0

xx
2

)2
+

(
χ0

xy

2

)2 En
x +

χ0
xy(

1 + χ0
xx
2

)2
+

(
χ0

xy

2

)2 En
y

+
χ0

xy

2(
1+ χ0

xx
2

)2
+

(
χ0

xy

2

)2 · (ψn
yy+ψn

xyx)+
1+ χ0

xx
2(

1+ χ0
xx
2

)2
+

(
χ0

xy

2

)2 (ψn
xx−ψn

yxy)

+
χ0

xy

2(
1 + χ0

xx
2

)2
+

(
χ0

xy

2

)2

(
∆t

ε0
(∇×H)n+1/2

y

)

+
1 + χ0

xx
2(

1 + χ0
xx
2

)2
+

(
χ0

xy

2

)2

(
∆t

ε0
(∇×H)n+1/2

x

)
, (30)
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En+1
y =

(
1−

(
χ0

xx
2

)2
)
−

(
χ0

xy

2

)2

(
1 + χ0

xx
2

)2
+

(
χ0

xy

2

)2 En
y −

χ0
xy(

1 + χ0
xx
2

)2
+

(
χ0

xy

2

)2 En
x

−
χ0

xy

2(
1+ χ0

xx
2

)2
+

(
χ0

xy

2

)2 · (ψn
xx − ψn

yxy)+
1+ χ0

xx
2(

1+ χ0
xx
2

)2
+

(
χ0

xy

2

)2 (ψn
yy+ψn

xyx)

−
χ0

xy

2(
1 + χ0

xx
2

)2
+

(
χ0

xy

2

)2

(
∆t

ε0
(∇×H)n+1/2

x

)

+
1 + χ0

xx
2(

1 + χ0
xx
2

)2
+

(
χ0

xy

2

)2

(
∆t

ε0
(∇×H)n+1/2

y

)
, (31)

where

ψn
xx = Re

(
ψ̃n

xx

)

= Re
(

∆χ0
xx

2
En

x +
∆χ0

xx

2
En−1

x + exp [−(ν − jωb)∆t] ψ̃n−1
xx

)
,

ψn
yxy = Re(ψ̃n

xy)

= Re

(
∆χ0

xy

2
En

y +
∆χ0

xy

2
En−1

y + exp [−(ν − jωb)∆t] ψ̃n−1
yxy

)
,

ψn
yy = Re(ψ̃n

yy)

= Re

(
∆χ0

yy

2
En

y +
∆χ0

yy

2
En−1

y + exp [−(ν − jωb)∆t] ψ̃n−1
yy

)
,

ψn
xyx = Re(ψ̃n

yx)

= Re

(
∆χ0

yx

2
En

x +
∆χ0

yx

2
En−1

x + exp [−(ν − jωb)∆t] ψ̃n−1
xyx

)
.

The Hz component is updated as traditional FDTD. In addition,
in the iterative equations, when one field value is dispersed at one
space point and other fields are not located at the point, these values
are not available directly from the Yee’s FDTD cell. Instead, they must
be interpolated from neighboring quantities. Therefore, the following



20 Liu and Zhong

average approximations are used, i.e.,

En
y

(
i +

1
2
, j

)
=

1
4

[
En

y

(
i, j +

1
2

)
+ En

y

(
i, j − 1

2

)

+En
y

(
i + 1, j +

1
2

)
+ En

y

(
i + 1, j − 1

2

)]
, (32)

ψn
yy

(
i +

1
2
, j

)
=

1
4

[
ψn

yy

(
i, j +

1
2

)
+ ψn

yy

(
i, j − 1

2

)

+ψn
yy

(
i + 1, j +

1
2

)
+ ψn

yy

(
i + 1, j − 1

2

)]
.(33)

Similar expressions can be obtained for other field components.

3. THE BISTATIC RCS OF CONDUCTING CYLINDER
COVERED WITH MAGNETIZED PLASMA

In this section, we will provide some numerical solutions to the problem
of electromagnetic scattering by an infinitely long perfectly conducting
cylinder covered with inhomogeneous time-varying, collision, cold,
magnetized plasma. The radius of cylinder is a = 0.15m, its axis is
along ẑ axis. The external biasing magnetic field is parallel to ẑ axis.
The Parabolic and Time-varying parabolic density profiles of plasma
are assumed in this paper. The incident plane wave of frequency
f = 1 GHz is assumed to have an electric field amplitude equal to
unity, to propagate in the +x̂ direction and to be polarized in parallel
to ŷ axis. The FDTD parameters: the size of space step δ = 0.015m.
The time step ∆t = 0.5δ/c, where c is the speed of light in vacuum.
The computational domain is subdivided into 80 × 80δ2. Five cells
PML absorbing boundaries were used at the terminations of the space
to eliminate unwanted reflections [21]. The simulations were allowed
to run for 1100 time steps.

The plasma electron density derived in the laboratory distributes
as parabolic density profile. The plasma frequency is given by

ωp(r) = ωp1 + ωp2
r

d
, (34)

where r is the vertical distance between any point in plasma and
the surface of the conductive target, d is the thickness of the plasma
coating.

The plasma electron density derived in the laboratory distributes
as Time-varying parabolic density profile. The plasma frequency is
given by

ωp(r, t) =
(
ωp1 + ωp2

r

d

) t

Tr
(35)
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where ωp1 = 3.14×109 rad/s, ωp2 = 20π×109 rad/s, Tr is the relaxation
time of plasma.

3.1. Effects of Plasma Thickness on RCS

In this subsection, the relationships between RCS and bistatic angle
with the plasma thickness varying are discussed. Fig. 1 plots RCS of
the conductive cylinder covered by plasma with a parabolic density
profile versus bistatic angle, where the plasma collision frequency
v = 6 GHz, and the electron cyclotron frequency ωb = 3Grad/s, among
them the RCS (d = 0) without plasma cloaking is also plotted for
comparison. It is clear from Fig. 1 that a plasma cloaking system can
successfully reduce RCS, and these curves of RCS become bilateral
unsymmetry in the scattering angle interval of 0◦ to 360◦. This is
mainly due to the fact that the two components of electric field are
coupled on account of the external magnetic field. We also can see
from these plots that the RCS decreases with an increasing thickness
of plasma in the most scope of bistatic angle. However, in the range
of 30◦ ∼ 90◦, and 285◦ ∼ 330◦, the RCS obviously increase with the
increase of thickness of plasma. The simulation results demonstrate
that an appropriate plasma thickness may efficiently reduce the RCS
of the conducting cylinder coating plasma.

3.2. Effects of Electron Cyclotron Frequency on RCS

We fix the plasma thickness d = 0.15m, let ωb = 3Grad/s and
ωb = 9Grad/s, respectively, other parameters are the same as above.
The RCS of the conductive cylinder covered by plasma with a parabolic
density profile versus bistatic angle are given in Fig. 2.
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Figure 1. RCS versus bistatic angle in different plasma coating
thickness.
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From Fig. 2, it is also observed that these curves of the RCS are
no longer bilateral symmetry in the area of scattering angles from
0◦ to 360◦. Most of RCS obviously increases with the increase of
the electron cyclotron frequency, whereas, the partial RCS decrease
with the increase of the electron cyclotron frequency in interval of
315◦ ∼ 340◦. The reason mainly is that the larger external magnetic
field is, the stronger the coupling between the components of the
electric field correspondingly, and the polarization directions of the
electric field have been changed in plasma too.

3.3. Effects of Relaxation Time on RCS

The plasma thickness d = 0.075m, the electron cyclotron frequency
is 3 Grad/s, the relaxation time are 200, 500, and 1000 time steps,
respectively. Other parameters are the same as above. Fig. 3 plots
RCS of the conductive cylinder covered by plasma with a Time-varying
parabolic density profile versus bistatic angle.

The testing results show that the longer relaxation time is, the
larger the RCS at the fixed the plasma thickness and the electron
cyclotron frequency, as shown in Fig. 3. In general, when the frequency
of the incident electromagnetic wave is given, the longer relaxation time
must prolong the arrival time of the maximum density of plasma layer.
The bigger the plasma electron density is, the more the numbers of
polarized electron, which implies that the plasma layer has a stronger
absorbing ability.

For the conductive cylinder, the above results indicate that
the plasma cloaking layer can efficiently reduce the RCS in the
backscattering (θ = 180◦) and small bistatic angle range. Nevertheless,

0 30 60 90 120 150 180 210 240 270 300 330 360
-30

-25

-20

-15

-10

-5

0

5

10

15

θ  ( Degrees )

 d=0
 d=0.15m, wb=3Grad/s
 d=0.15m, wb=9Grad/s

R
C

S
 (
d
B

m
)

Figure 2. RCS versus bistatic
angle in different the electron
cyclotron frequency.
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the RCS not only did not decrease and instead it slightly increase in the
forward scattering (θ = 0◦) and large bistatic angle range. In fact, the
plasma cloaking layer can enlarge the projecting area of conductive
cylinder. The RCS of the forward scattering is approximately
proportional to the projecting area of the target.

4. CONCLUSION

In this paper, the TRC-FDTD is applied to anisotropic magnetized
plasma media. 2-D TRC-FDTD formulations for electromagnetic
scattering of magnetized plasma are derived. Parabolic and Time-
varying parabolic density profiles of plasma are assumed in this
paper. The bistatic radar cross sections are calculated under different
conditions using 2-D TE model for a conductive cylinder covered with
magnetized plasma medium. The numerical results illustrate that
the conductive cylinder cloaking plasma can successfully reduce the
bistatic RCS, the plasma stealth is effective, and the proper parameters
of plasma can enhance its effectiveness. It is also shown that the RCS
of the conductive cylinder covered with plasma cloaking depends on
many factors such as the electron density distributes profile of plasma,
plasma thickness, and the relaxation time of time-varying plasma, etc.
The studies can help us use the proper plasma distribution and have
a significant application in aircraft stealthy technology.
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