
Progress In Electromagnetics Research, Vol. 120, 293–307, 2011

BENDING ANALYSIS OF A DUAL-CORE PHOTONIC
CRYSTAL FIBER

D. Chen 1, 2, *, G. Hu 1, 2, X. A. Liu 1, 2, B. Peng 1, 2, and
G. Wu 1, 2

1Institute of Information Optics, Zhejiang Normal University,
Jinhua 321004, China
2Joint Research Laboratory of Optics of Zhejiang Normal University
and Zhejiang University, Jinhua 321004, China

Abstract—A dual-core photonic crystal fiber (DC-PCF) is proposed,
and bending characteristics of the DC-PCF are investigated. Two fiber
cores are employed in the cross-section of the DC-PCF, which result in
a mode coupling between the two fiber cores when the light propagates
inside the DC-PCF. The mode coupling between two fiber cores of
the DC-PCF is sensitive to the directional bending of the DC-PCF
which essentially provides a method to achieve bending sensing. A
DC-PCF-based bending sensor is proposed by injecting a broadband
light into one fiber core of the DC-PCF on one side and detecting
output spectrum from another fiber core of the DC-PCF on the other
side. In our simulations, a parabola curve which shows the relationship
between the wavelength shift of the transmission spectrum of the DC-
PCF-based bending sensor and the bending curvature of the DC-PCF
is presented.

1. INTRODUCTION

The appearance of photonic crystal fibers (PCFs) [1–10] with silica-
air microstructure is a milestone in the history of optical fibers,
which have achieved excellent optical properties in birefringence [11–
16], dispersion [17–20], single polarization single mode [21–25],
nonlinearity [26–30], and effective mode area [31–35] over the past
several years. It is well known that PCFs have shown excellent
performances in applications such as optical communications [36–38],
fiber lasers [39–42], supercontinuum sources [43–46] and also fiber
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sensors [47–56]. Fiber sensors based on PCFs have shown numerous
advantages such as temperature insensitivity for strain sensing [49, 50],
high sensitivity for gas sensing [51], biochemical sensing [52], refractive
index sensing [53] and pressure sensing [54, 55], and the flexibility to
form fiber sensors based on all-fiber Mach-Zehnder interferometers [56],
which are mainly due to the remarkable flexibility in the fiber structure
design of the PCF compared with the conventional optical fiber. It
is worthy to note that besides the one-core PCF, multi-core PCFs
including dual-core PCFs (DC-PCFs) have also been proposed for
special applications. DC-PCFs have been designed for coupling inside
PCFs [57–60], which can be used to achieve compact PCF couplers.
Koshiba’s group has proposed a wavelength MUX-DEMUX based on
a DC-PCF [61], a polarization splitter based on a three-core PCF [62],
a narrow band-pass filter [63] and a 1× 4 power splitter [64] based on
multi-core PCFs. Meanwhile, bending characteristics such as bending
loss of one-core PCFs were reported in the past several years [65–68].
However, to the best of our knowledge, so far there has been no research
on the bending characteristics of the DC-PCF.

In this paper, we introduce a DC-PCF with two fiber cores
separated by one air hole in the cross-section. The mode coupling
between the two fiber cores of the DC-PCF which is sensitive to the
directional bending of the DC-PCF is investigated. We show that
the mode coupling between two fiber cores of the DC-PCF essentially
provides a method to achieve bending sensing based on the DC-PCF. A
DC-PCF-based bending sensor is supposed to be achieved by injecting
a broadband light into one fiber core of the DC-PCF on one side and
detecting the output spectrum from another fiber core of the DC-PCF
on the other side. A parabola curve for the wavelength shift of the
transmission spectrum of the DC-PCF-based bending sensor and the
bending curvature of the DC-PCF is presented.

2. STRUCTURE PRINCIPLE AND PERFORMANCE

Figure 1(a) shows the cross-section of the proposed DC-PCF. The DC-
PCF is formed by a triangular lattice of circular air holes with two
missing holes as two fiber cores (A and B) which are separated by one
air hole. The hole pitch is Λ, which is 2µm in this paper for bending
analysis. The diameter of the air hole is d. To simplify analysis,
refractive indices of the pure silica and air are assumed to be 1.45
and 1 (for the straight DC-PCF), respectively. A full-vector finite-
element method (FEM) and anisotropic perfectly matched layers are
used to investigate guided modes of the proposed DC-PCF. Due to the
existence of the two fiber cores in the DC-PCF, here we show two kinds
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Figure 1. (a) Cross-section of the DC-PCF. (b) Schematic diagram
for the x-bending DC-PCF. (c) Schematic diagram for the y-bending
DC-PCF.

of bending DC-PCFs. Figs. 1(b) and (c) show schematic diagrams for
the x-bending and y-bending DC-PCF, respectively. For the direct
simulation of optical propagation in the bending DC-PCF, we need to
employ an equivalent index profile (ne(x, y)) in the cross-section of the
DC-PCF, which is given by [68]

n2
e(x, y) = n2(x, y)

(
1 +

2x

R

)
(1)

for the x-bending DC-PCF, and

n2
e(x, y) = n2(x, y)

(
1 +

2y

R

)
(2)

for the y-bending DC-PCF, where R is the radius of curvature and
n(x, y) is the refractive index profile of the straight DC-PCF.

For a DC-PCF, two fiber cores in the cross-section lead to
two waveguides inside the DC-PCF which accompany with a mode
coupling. The coupling length which is defined as Lc = λ/(2|ne −
no|) [69] is an important parameter for the mode coupling. Note
that ne and no are the effective indices of the even mode and the
odd mode of the DC-PCF, and λ is the operation wavelength. To
understand the mode coupling of the two fiber cores in the DC-PCF,
we calculate the two basic modes (the even mode and the odd mode)
of the straight DC-PCF with parameters of Λ = 2µm and d = 1.4µm.
For example, when the operation wavelength is λ = 1550 nm, effective
indices of the x-polarized even mode and the x-polarized odd mode
are ne = 1.40458822 and no = 1.40429199, respectively. Thus, the
coupling length is Lc = λ/(2|ne − no|) = 2.62mm, which means the
optical power in the DC-PCF will be entirely transferred from one fiber
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core to another after a length of 2.62 mm. For a bending DC-PCF, the
coupling length is a function of the bending radius (or the bending
curvature, which is reciprocal of the bending radius). Fig. 2 shows
coupling length for the x-bending DC-PCF and the y-bending DC-
PCF with different bending curvatures at the operation wavelength
of 1550 nm. The coupling length for the y-bending DC-PCF almost
remains the same when the bending curvature increases from 0 to
20m−1, which is due to the fact that the symmetry of the index
profile (shown by Eq. (2)) in the horizontal direction for the y-bending
DC-PCF. However, the coupling length for the x-bending DC-PCF
decreases when the bending curvature increases from 0 to 20 m−1,
which is due to the change of the index profile (shown by Eq. (1)) in
the horizontal direction for the x-bending DC-PCF. Thus, the coupling
length of the DC-PCF is sensitive to the directional bending. In
addition, the coupling length is also sensitive to the polarization state
of the input light and the coupling length of the DC-PCF for the y-
polarized light is larger than that for the x-polarized light.

As discussed above, the coupling length is an important parameter
for the mode coupling which is sensitive to the bending curvature of
the DC-PCF. However, the coupling length of the DC-PCF can not
be simply measured by an equipment. Here we introduce a method
based on spectrum measurement. For a DC-PCF with a length (z),
suppose that the power of the injected light on the input side of the
fiber core-A and the fiber core-B is 1 and 0, respectively. According
to the conventional coupled-mode theory [69–73], the output power on
the output side of the fiber core-A and the fiber core-B of the DC-PCF

Figure 2. Coupling length for
the x-bending DC-PCF and the
y-bending DC-PCF with different
bending curvature.

Figure 3. Output spectra
(from fiber core-B) of the 10-cm
DC-PCF when the (x-) bending
curvature is 0, 4, 7, 10, and
12m−1, respectively.
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can be given by

P1(z, λ) = cos2(Sz) + cos2(η) sin2(Sz) (3)

and
P2(z, λ) = sin2(η) sin2(Sz), (4)

respectively. The maximum power transferred from the fiber core-A
to the fiber core-B is

P2|max = sin2(η) (5)

which occurs at the coupling length z = Lc = π/(2S). Note that we
have

S = |ne − no|π/λ, (6)

S =
√

δ2 + κ2, (7)
tan(η) = δ/κ, (8)

and
δ = |na − nb|π/λ, (9)

where na and nb are the effective index of the individual fiber core-
A and the individual fiber core-B, respectively. For a straight DC-
PCF, we have δ = 0 since the fiber core-A and the fiber core-B
are symmetrical in the DC-PCF. Thus, Eqs. (3), (4) and (5) can be
rewritten as

P1(z, λ) = cos2(Sz), (10)

P2(z, λ) = sin2(Sz), (11)

and
P2|max = 1. (12)

We calculate the transmission spectrum (from fiber core-A to fiber
core-B) of the 10-cm DC-PCF when the (x-) bending curvature is 0,
4, 7, 10, and 12m−1, respectively, which are shown in Fig. 3. The
sine-like transmission spectrum is due to P2(z, λ) described in Eq. (4),
where |ne−no| slowly varies for the operation wavelength. The period
of the sine-like transmission spectrum is corresponding to the length of
the DC-PCF, which does not affect the wavelength shift corresponding
to the bending curvature of the DC-PCF. A blue shift of the output
spectrum of the 10-cm DC-PCF together with the decrease of the
maximum power transferred from the fiber core-A to the fiber core-
B is observed when the bending curvature of the DC-PCF increases.
This could also be indicated by the mode profiles of the even mode and
the odd mode of the DC-PCF. Fig. 4 shows the mode profiles (electric
field) for (a) the even mode and (b) the odd mode of the straight DC-
PCF, and normalized amplitude of the electric field for (c) the even
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Figure 4. Mode profiles (electric field) for (a) the even mode and
(b) the odd mode of the straight DC-PCF; Normalized amplitude of
the electric field for (c) the even mode and (d) the odd mode of the
x-bending DC-PCF with bending curvature of 0, 4, 7, 10, and 12 m−1,
respectively.

mode and (d) the odd mode of the x-bending DC-PCF with a bending
curvature of 0, 4, 7, 10, and 12 m−1, respectively.

The dependence between the transmission spectrum of the 10-cm
DC-PCF and the bending curvature indicates a method to achieve
bending sensing. Fig. 5 shows the two parabola curves for the
wavelength shift of the peak wavelength of the transmission spectrum
(from fiber core-A to fiber core-B) of the 10-cm DC-PCF and the
bending curvature for the x-polarized light and y-polarized light.
Thus, a DC-PCF-based bending sensor can be achieved by injecting
broadband polarized light into one fiber core of DC-PCF on one side
and detecting output spectrum from another fiber core of the DC-
PCF on the other side. Our calculations show that the DC-PCF-
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Figure 5. Wavelength shift of the peak wavelength of the transmission
spectrum (from fiber core-A to fiber core-B) of the 10-cm DC-PCF and
the bending curvature for the injected x-polarized light and injected
y-polarized light.

based bending sensor can have a measurement range of at least 20 m−1

and a sensitivity of 1.388 nm/(m−1) (2.776 nm/(m−1)) for the bending
curvature 10 m−1 (20m−1) when we consider a broadband y-polarized
light. Note that the sensitivity (S = ∆λ/∆c) of a bending sensor is
defined as the ratio of the wavelength change and the bending curvature
change.

When the DC-PCF is used for bending curvature measurement,
the confinement loss of the DC-PCF should also be evaluated. The
calculated confinement loss of the DC-PCF with parameters of Λ =
2µm and d = 1.4µm has the order of magnitude of 10−5 dB/km
when the bending curvature of the DC-PCF is in the range from 0
to 100 m−1. Thus the confinement loss of the 10-cm DC-PCF used
for bending sensing can be ignored since it is much smaller than the
loss of a 10-cm standard single mode fiber. The calculated confinement
loss of DC-PCFs with parameters of (Λ = 2.2µm and d = 1.4µm) or
(Λ = 2µm and d = 1.3µm) has the order of magnitude of 10−4 dB/km
or 10−3 dB/km when the bending curvature of DC-PCFs is in the range
from 0 to 100 m−1, which indicate the confinement loss of these DC-
PCFs can also be ignored when they are used for bending sensing.
The calculate wavelength shifts of three types of 10-cm DC-PCFs
with parameters of (Λ = 2µm and d = 1.4µm), (Λ = 2.2µm and
d = 1.4µm) or (Λ = 2µm and d = 1.3µm) for the bending curvature
of 4 are 1.0 nm, 1.9 nm, and 0.9 nm, respectively. Our calculations
show that DC-PCF with a larger hole pitch and a larger air hole size
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can achieve a higher sensitivity of the DC-PCF-based bending sensor,
which, however may lead to larger confinement loss and smaller sensing
range. The sensing range of the proposed bending sensor is limited
firstly to the confinement loss of the bending DC-PCF and secondly to
the broadband light source and the optical spectrum analyzer. For the
proposed bending sensor based on a 10-cm DC-PCF with parameters
of (Λ = 2µm and d = 1.4µm) has a sensing range from 0 to 100 m−1,
when the broadband light source and the optical spectrum analyzer
can support its application.

3. DISCUSSION AND CONCLUSION

The fabrication of the DC-PCF will be easy by using the current PCF
fabrication techniques available. Several multi-one PCFs have been
fabricated and demonstrated [32, 42] recently. However, an imperfect
fabrication of the DC-PCF will results in difficulties for bending sensing
application. The operation principle of a DC-PCF-based bending
sensor is due to the mode coupling between two fiber cores of the
DC-PCF. When the size of a designed DC-PCF is changed during the
fabrication, the working curve (parabola curve in Fig. 5) will also be
changed, which may lead to a different sensitivity and sensing range.
When the symmetry of the designed DC-PCF is changed during the
fabrication, the zero bending curvature point in the working curve will
shift. Thus, a DC-PCF-based bending sensor should be calibrated
before it is practically used.

A challenging technique for the DC-PCF based sensor is how
to connect the DC-PCF to the light source or the optical spectrum
analyzer, since the fiber core size and the distance between the two
fiber cores of the DC-PCF is too small compared with the fiber core of
the single mode fiber. It may be overcome by firstly splicing a one-core
PCF to the DC-PCF where the fiber cores of the one-core PCF and
the DC-PCF are the same, and then splicing the single mode fiber to
the one-core PCF. Chiang et al. has also provided useful method for
the connection between the PCF and the single mode fiber [74].

Considering the index change effect for pressure, strain, and
temperature, the DC-PCF can also be designed for pressure sensing,
strain sensing, temperature sensing. However, previously reported
works have shown that the PCF-based sensor is not very sensitive
to temperature [49, 50] and pressure [47, 48, 54]. Only extreme high
temperature or high pressure can be an effective external perturbation
for the proposed DC-PCF-based bending sensor. In most instances,
the DC-PCF-based bending sensor can work well without external
perturbations.
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In conclusion, we have analyzed a bending DC-DCF with two
fiber cores separated by one air hole in the cross-section. The mode
coupling of two fiber cores inside the DC-PCF has been introduced
by considering the fiber bending. Simulations have shown we can
achieve bending sensing by measuring the wavelength shift of the
output spectrum at one fiber core on output side of the DC-DCF with a
fixed length when the broadband polarized light is injected into another
fiber core on input side of the DC-DCF. The performance of a 10-cm
DC-PCF-based bending sensor has been presented.
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