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Abstract—Two probe-compensated near-field-far-field transforma-
tions with spherical spiral scanning tailored for antennas having two
of their dimensions very different from the third one are developed
by properly applying the unified theory of spiral scans for nonspheri-
cal antennas. One is suitable for electrically long antennas, which are
considered as enclosed in a cylinder ended in two half-spheres. The
other adopts a surface formed by two circular “bowls” with the same
aperture diameter but different lateral bends to shape a quasi-planar
antenna. These flexible modelings fit very well many actual antennas
by properly setting their geometric parameters. Great reduction of
the number of data to be acquired is achieved, thus significantly re-
ducing the required measurement time. Numerical tests validating the
accuracy of the proposed techniques and their stability with respect to
random errors affecting the data are shown.

1. INTRODUCTION

The near-field-far-field (NF-FF) transformation technique with
spherical spiral scanning (Fig. 1), like the classical spherical one,
gives the full antenna pattern coverage, even though the data
processing is considerably more complex than the one needed by
planar and cylindrical NF facilities [1, 2]. Unlike the spherical
scanning, the spherical spiral one enables strong reduction of the
time it takes to collect the NF data and this is a very important
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issue for the antenna measurements community, since nowadays the
measurement time is much larger than the one needed to perform
the NF-FF transformations. Such a reduction is accomplished, as
suggested in [3], by employing continuous and synchronized movements
of the positioning systems of the probe and antenna under test
(AUT). Accordingly, NF-FF transformations using innovative spherical
spiral scannings have been recently developed [4–7]. They are
based on nonredundant sampling representations of electromagnetic
(EM) fields [8] and use appropriate optimal sampling interpolation
(OSI) formulas to reconstruct the NF data needed by the NF-FF
transformation with spherical scanning [9] from the nonredundant
samples acquired on the spiral. In particular, the nonredundant
sampling representation on the spiral and the related two-dimensional
OSI expansion have been developed by assuming the AUT enclosed
in the smallest sphere able to contain it [4–6] and choosing the
spiral step equal to the corresponding sample spacing needed to
interpolate the data along a meridian. Unfortunately, when dealing
with “nonspherical” antennas having two of their dimensions very
different from the third one, the spherical AUT modeling induces a
redundancy which gives rise to an useless increase in the number of the
NF data to be acquired [7]. To overcome this drawback, two effective
NF-FF transformations with spherical spiral scanning tailored to these
kinds of antennas have been developed in [7] by properly applying
the unified theory of spiral scannings for nonspherical antennas [10].
In particular, a prolate ellipsoidal modeling has been adopted when
dealing with elongated antennas, whereas an oblate ellipsoidal one has
been employed to model quasi-planar ones.

The goal of this contribution is to develop even more effective
NF-FF transformations with spherical spiral scanning tailored to
nonspherical antennas and based on highly flexible modelings, which
allow one to further reduce the number of the NF data to be acquired
(and the related measurement time) since they are able to better fit
the shape of many antennas by properly choosing their geometric
parameters. In particular, a rounded cylinder, namely a cylinder
ended in two half-spheres, will be adopted in the following to model an
electrically long antenna, whereas a quasi-planar one will be considered
as enclosed inside a double bowl, i.e., a surface formed by two circular
bowls with same aperture diameter but different lateral bends.

Note that, unlike as done in [7], where for simplicity an ideal probe
was assumed, the effects of the measurement probe are properly taken
into account here so that the developed NF-FF transformations are
probe-compensated.
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Figure 1. Spherical spiral scanning for an elongated antenna.

2. NONREDUNDANT REPRESENTATION OF THE
PROBE VOLTAGE ON A SPHERE FROM SAMPLES
COLLECTED ALONG A SPIRAL

Let us consider an AUT and a nondirective probe moving along a
spiral wrapping a sphere of radius d in the NF region and adopt the
spherical coordinate system (r, ϑ, ϕ) for denoting an observation point
P (Fig. 1). Since the voltage V measured by a nondirective probe
has the same effective spatial bandwidth as the field, the theoretical
results relevant to the nonredundant sampling representation of EM
fields [8] can be applied. Accordingly, by assuming the AUT as enclosed
in a proper rotational surface Σ bounding a convex domain and by
describing the spiral by means of a proper analytical parameterization
r = r(η), the probe “reduced voltage”.

Ṽ (η) = V (η)ejψ(η), (1)
ψ(η) being a phase function to be determined, can be closely approx-
imated by a spatially bandlimited function [11]. The corresponding
bandlimitation error becomes negligible as the bandwidth exceeds a
critical value Wη [8], so that it can be effectively controlled by choos-
ing a bandwidth equal to χ ′ Wη, where χ′ is an excess bandwidth
factor, slightly greater than unity for electrically large antennas.

The unified theory of spiral scannings for nonspherical anten-
nas [10], obtained by paralleling the rigorous procedure [6] valid when
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adopting the spherical AUT modeling, allows one to develop the volt-
age representation on the sphere from a nonredundant number of its
samples collected along the spiral. To this end, it is necessary: i) to
determine a nonredundant representation along the spiral; ii) to choose
the step of the spiral such that it intersects any meridian at properly
spaced points. In particular, according to [10], the bandwidth Wη

and parameterization η relevant to a meridian, and the corresponding
phase function ψ are given by

Wη = β�′
/
2π (2)

η =
π

�′
[
R1 −R2 + s′1 + s′2

]
(3)

ψ =
β

2
[
R1 +R2 + s′1 − s′2

]
(4)

where β is the wavenumber, �′ is the length of the intersection curve
C ′ between the meridian plane through the observation point P and
Σ, s′1,2 are the arclength coordinates of the two tangency points P1,2

between the cone of vertex at P and C ′, and R1,2 the distances from
P to P1,2.

According to [10], the spiral can be got by projecting onto the
scanning sphere a proper spiral wrapping Σ, whose step is equal to
the sample spacing Δη = 2π/(2N ′′ + 1) needed to interpolate the
voltage along a meridian. Note that N ′′ = Int(χN ′) + 1, where
N ′ = Int(χ′Wη) + 1, χ > 1 is an oversampling factor [8] which allows
the control of the truncation error, and Int(x) denotes the integer part
of x. The projection is obtained via the curves at η = const. Therefore,
the equations of the spiral are:⎧⎨

⎩
x = d sin θ(η) cos φ
y = d sin θ(η) sin φ
z = d cos θ(η)

(5)

where φ is the parameter describing it and η = kφ = φ/(2N ′′ + 1). It
is worthwhile to note that the spiral angle θ, unlike the zenithal angle
ϑ, can take negative values.

The unified theory [10] also allows the determination of the
parameter ξ and phase factor γ to get a nonredundant representation
along the spiral. In particular, γ coincides with the phase function
ψ relevant to a meridian, and ξ is β/Wξ times the arclength of the
projecting point that lies on the spiral wrapping Σ. Moreover, Wξ is
chosen equal to β/π times the length of the spiral wrapping the surface
Σ from pole to pole.

In light of the above results, the reduced voltage at any point Q
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of the scanning spiral can be recovered via the OSI expansion [10]:

Ṽ (ξ) =
m0+p∑

m=m0−p+1

Ṽ (ξm)ΩM (ξ − ξm)DM ′′ (ξ − ξm) (6)

where 2p is the number of retained samples Ṽ (ξm), m0 = Int(ξ/Δξ)
the index of the sample nearest (on the left) to Q, and

ξm = mΔξ = 2πm
/
(2M ′′ + 1) (7)

with M ′′ = Int(χM ′) + 1 and M ′ = Int(χ′Wξ) + 1. Moreover,

DM ′′ (ξ) =
sin ((2M ′′ + 1)ξ/2)
(2M ′′ + 1) sin(ξ/2)

(8)

ΩM (ξ) =
TM

[
−1 + 2

(
cos(ξ/2)/ cos

(
ξ̄/2

))2
]

TM
[−1 + 2/ cos2

(
ξ̄/2

)] (9)

are the Dirichlet and Tschebyscheff Sampling functions, wherein TM (ξ)
is the Tschebyscheff polynomial of degree M = M ′′ − M ′ and ξ̄ =
pΔξ. It must be stressed that, when interpolating the voltage in the
neighbourhood of the poles (ϑ = 0 and ϑ = π), it is necessary to
increase the excess bandwidth factor χ′ to avoid a significant growth
of the bandlimitation error in these zones [4–7].

The OSI formula (6) can be used to get the “intermediate
samples”, i.e., the voltages at the intersection points between the spiral
and the meridian passing through P . Once they have been evaluated,
the voltage at P can be recovered via the following OSI expansion:

Ṽ (η(ϑ), ϕ) =
n0+q∑

n=n0−q+1

Ṽ (ηn)ΩN (η − ηn) DN ′′ (η − ηn) (10)

where N = N ′′ −N ′, n0 = Int [(η − η0)/Δη)], 2q is the number of the
retained intermediate samples Ṽ (ηn),

ηn = ηn(ϕ) = kϕ+ nΔη = η0 + nΔη (11)

and the other symbols have the same or analogous meaning as in (6). It
is then possible to recover the NF data needed to perform the spherical
NF-FF transformation [9], as modified in [12, 13].

3. ELONGATED ANTENNAS CASE

A very flexible modeling to deal with an electrically long antenna is
obtained by considering the surface Σ as formed by a cylinder of height
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Figure 2. Rounded cylinder modeling.

h′ ended in two half-spheres of radius a′ (Figs. 1 and 2). In such
a way, it is possible to very well fit many real antennas by properly
choosing the values of the parameters h′ and a′. The expressions of the
bandwidth Wη and parameterization η relevant to a meridian, and the
corresponding phase function ψ, can be obtained by the general ones
(2)–(4) by properly taking into account the geometry of the surface Σ
(Fig. 2). It can be easily verified that, in such a case, the length of the
intersection curve C ′ is �′ = 2 (h′ + πa′), whereas the expressions of
R1,2 and s′1, 2 change depending on the position of the tangency points
P1,2. As a consequence, for ϑ ranging in [0, π], three cases must be
considered (see Fig. 2):

1) 0 ≤ ϑ ≤ sin−1(a′/d)

R1 =
√

(d sinϑ)2 + (d cos ϑ− h′/2)2 − a′2 (12)

s′1 = a′ sin−1

(
a′d sinϑ+R1 (h′/2 − d cos ϑ)

R2
1 + a′2

)
(13)

R2 = R1 ; s′2 = a′ sin−1

(
a′d sinϑ−R2 (h′/2 − d cos ϑ)

R2
2 + a′2

)
(14)

2) sin−1(a′/d) < ϑ ≤ π − sin−1(a′/d)
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R1 and s′1 are given by (12) and (13)

R2 =
√

(d sinϑ)2 + (d cos ϑ+ h′/2)2 − a′2 (15)

s′2 = h′ + a′
[
π − sin−1

(
a′d sinϑ+R2 (h′/2 + d cos ϑ)

R2
2 + a′2

)]
(16)

3) π − sin−1(a′/d) < ϑ ≤ π
R2 and s′2 are given by (15) and (16),

R1 =
√

(d sin ϑ)2 + (d cos ϑ+ h′/2)2 − a′2 (17)

s′1 = h′ + a′
[
π

2
− sin−1

(
R1d sinϑ+ a′ (h′/2 + d cos ϑ)

R2
1 + a′2

)]
(18)

The spiral and the expressions of the parameter ξ for describing
it and the related phase factor γ, can be determined according to the
unified theory of spiral scans. In particular, the spiral is obtained by
projecting the one wrapping the surface Σ on the sphere via the curves
at η = const, displayed in Fig. 3 with those at ψ = const.

The following simulations refer to a spiral wrapping a sphere
of radius d = 35λ and to a uniform planar array of elementary
Huygens sources polarized along the z axis, spaced by 0.5λ (λ being the
wavelength). These sources cover a zone in the plane y = 0, formed
by a rectangle ended in two half-circles. The sizes of the rectangle
are: 2a′ = 10λ and h′ = 36λ. An open-ended circular waveguide,

η = const.ψ = const.

Figure 3. Rounded cylinder modeling: Curves ψ = const and η =
const.
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Figure 4. Amplitude of V ′ on the meridian at ϕ = 90◦. Solid line:
Exact. Crosses: Interpolated.
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Figure 5. Phase of V ′ on the meridian at ϕ = 90◦. Solid line: Exact.
Crosses: Interpolated.

with radius ρ′ = 0.338λ, is considered as measurement probe. Figs. 4
and 5 show the reconstruction of the amplitude and phase of the
rotated probe voltage V ′ on the meridian at ϕ = 90◦. As can be
seen, there is an excellent agreement between the exact voltage and
the reconstructed one. It is useful to note that we have adopted, in
the zones of the spiral determined by the 40 samples around the poles,
an excess bandwidth factor such that the sample spacing is reduced
exactly by a factor 7. The accuracy in the interpolation process is
also confirmed by the values of the mean-square errors (normalized
to the voltage maximum value on the sphere) reported in Fig. 6 for
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p = q ranging from 3 to 10, χ′ = 1.20 (save for the polar zones),
and χ = 1.10, 1.15, 1.20, 1.25. As expected, they decrease to very
low values on increasing the oversampling factor and/or the number
of retained samples. The algorithm robustness has been verified by
adding random errors to the exact samples. These errors simulate a
background noise (bounded to Δa in amplitude and with arbitrary
phase) and an uncertainty on the samples of ±Δar in amplitude and
±Δα in phase. As shown in Fig. 7, the algorithm works well also in
presence of error affected data.

At last, the developed interpolation algorithm has been applied
to retrieve the NF data required to carry out the spherical NF-FF
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Figure 6. Normalized mean-square errors in the reconstruction of V ′.

-70

-60

-50

-40

-30

-20

-10

0

-90 -60 -30 0 30 6 0

R
el

at
iv

e 
vo

lta
ge

 a
m

pl
itu

de
 (

dB
)

ϑ (degrees)

p =  q = 6

χ  =  1.20

χ' =  1.20

Δa = -50 dB

Δα = 5°

Δa   = 0.5 dBr

0 9

Figure 7. Amplitude of V ′ on the meridian at ϕ = 90◦. Solid line:
Exact. Crosses: Interpolated from error affected data.



52 D’Agostino et al.

-100

-80

-60

-40

-20

0

-90 -60 -30 0 30 60 90

R
el

at
iv

e 
fi

el
d 

am
pl

itu
de

 (
dB

)

ϑ (degrees)

p = q = 6

χ  =  1.20

χ ' =  1.20

Figure 8. E-plane pattern. Solid line: Exact. Crosses: Reconstructed
from NF measurements.

-80

-70

-60

-50

-40

-30

-20

-10

0

90 120 150 180 210 240 270

R
el

at
iv

e 
fi

el
d 

am
pl

itu
de

 (
dB

)

ϕ (degrees)

p = q = 6

χ  =  1.20

χ ' =  1.20

Figure 9. H-plane pattern. Solid line: exact. Crosses: Reconstructed
from NF measurements.

transformation [9], as modified in [12, 13]. The reconstructions of the
antenna FF pattern in the principal planes are shown in Figs. 8 and 9.
As can be seen, the reconstructions are very accurate. Note that the
number of samples on the spiral is 14 162, remarkably less than the
one (57 550) required by the approach proposed in [6]. In particular,
the number of “regular samples” at spacing Δξ is 13 202, whereas the
number of “extra samples” at reduced spacing is 960. Moreover, the
number of samples collected along the spiral results to be much less
than that (130 562) needed by the classical NF-FF transformation with
spherical scanning [9].
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4. QUASI-PLANAR ANTENNAS CASE

When dealing with antennas which exhibit a quasi-planar geometry,
a very flexible modeling can be obtained by considering them as
enclosed by a surface Σ formed by two circular “bowls” with the same
aperture diameter 2a, (Figs. 10 and 11). It is worth noting that their
lateral surfaces have not the same bend because they are generally
determined by rotating two different circular arcs, each equal to a
quarter of circumference (with radius c and c′). This model allows a
very good fitting of many antennas by properly setting the values of
the parameters c, c′ and a. As a matter of fact, Σ coincides with a
sphere if c = c′ = a, it becomes a half-sphere if c = 0 and c′ = a, and
it reduces to a circular dish for c = c′ = 0.

The expressions of the bandwidth Wη and parameterization η
relevant to a meridian, and the related phase function ψ, can be
obtained by the general ones (2)–(4) by properly taking into account
the geometry of the surface Σ (Fig. 11). The length of the curve
C ′ becomes �′ = 2[(a− c) + (a− c′) + (c+ c′)π/2]. As before, the
expressions of R1,2 and s′1,2 change depending on the location of the
tangency points P1, 2, but now five cases must be considered (see
Fig. 11) for ϑ ranging in [0, π]:

yx

z

dϑ

P(d, ϑ, ϕ)

ϕ
2a

Σ

O

Figure 10. Spherical spiral scanning for a quasi-planar antenna.
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1) 0 ≤ ϑ ≤ ϑA = sin−1(a/d)

R1 =
√
d2 + b2 + 2bd sin ϑ− c2; s′1 = − (b+ cα1) (19)

α1 = tan−1 (R1/c) − tan−1 [(b+ d sinϑ)/d cos ϑ] (20)

R2 =
√
d2 + b2 − 2bd sin ϑ− c2; s′2 = b+ cα2 (21)

α2 = tan−1 (R2/c) − tan−1 [(b− d sinϑ)/d cos ϑ] (22)

2) ϑA < ϑ ≤ ϑB = cos−1(c/d)
R1, s′1, and α1 are given by (19) and (20)

R2 =
√
d2 + b′2 − 2b′d sinϑ− c′2; s′2 = b+ c (π/2) + c′α2 (23)

α2 = tan−1
(
R2

/
c′

) − tan−1
[
d cos ϑ

/
(d sinϑ− b′)

]
(24)

3) ϑB < ϑ ≤ ϑC = π − cos−1(c′/d)
R2, s′2, and α2 are given by (23) and (24)

R1 =
√
d2 + b2 − 2bd sinϑ− c2; s′1 = b+ c (α1 + π/2) (25)

α1 = − tan−1 (R1/c) − tan−1 [d cos ϑ/(d sinϑ− b)] (26)

4) ϑC < ϑ ≤ ϑD = π − sin−1(a/d)
R1, s′1, and α1 are given by (25) and (26)

R2 =
√
d2+b′2 + 2b′d sinϑ−c′2; s′2 =b+2b′+(c+c′)(π/2)+c′α2(27)

α2 = tan−1
(
R2

/
c′

) − tan−1
[
(d sin ϑ+ b′)

/|d cos ϑ|] (28)

5) ϑD < ϑ ≤ π
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R2, s′2, and α2 are given by (27) and (28)

R1 =
√
d2+b′2−2b′d sinϑ−c′2; s′1 =b+c(π/2)+c′(π/2−α1)(29)

α1 = tan−1
(
R1

/
c′

) − tan−1
[
(b′ − d sin ϑ)

/|d cos ϑ|] (30)

The scanning spiral, the parameter ξ for describing it, and the
corresponding phase factor γ are then determined according to the
unified theory of spiral scannings.
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The reported numerical tests are relevant to a spiral lying on
sphere of radius d = 35λ and to three uniform planar circular arrays
placed at z = −4λ, 0λ, 4λ, having radius equal to 16λ, 20λ and 16λ,
respectively. Their elements are elementary Huygens sources linearly
polarized along y and are radially and azimuthally spaced by 0.5λ.
Such an antenna has been fitted by the described source modeling
with c = c′ = 4.5λ and a = 20λ, and again an open-ended circular
waveguide, having radius ρ′ = 0.338λ, has been considered as probe.
Fig. 12 shows the reconstruction of the amplitude of the probe voltage
V on the meridian at ϕ = 0◦. As can be seen, there is a very good
agreement between the exact voltage and the reconstructed one. Note
that we have adopted, in the zones of the spiral determined by the 46
samples around the poles, an excess bandwidth factor such that the
sample spacing is reduced by a factor 11. The accuracy in the NF
interpolation is also confirmed by the values of the mean-square errors
(normalized to the voltage maximum value on the sphere) relevant to
the probe voltage V and shown in Fig. 13 for p = q ranging from 3 to
10, χ′ = 1.20, and some χ values. Also, in such a case, the algorithm
has proved to be stable with respect to random errors affecting the NF
data, but these results are not reported here for space saving. At last,
the reconstruction of the FF pattern in theH-plane is shown in Fig. 14.
As can be seen, the reconstruction is very accurate, thus assessing the
effectiveness of the technique.

Note that the number of samples on the spiral is 28194,
significantly less than the one (43 664) needed by the approach in [6]. In
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particular, the number of “regular samples” at spacing Δξ is 27 274,
whereas the number of “extra samples” at reduced spacing is 920.
Moreover, the number of samples collected along the spiral is much
less than that (130 562) required by the NF-FF transformation with
spherical scanning [9].
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