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Abstract—Compressed sensing (CS) is a new technology for
recovering sparse data from undersampled measurements. It shows
great potential to reduce energy for sensor networks. First, a basic
global superposition model is proposed to obtain the measurements of
sensor data, where a sampling matrix is modeled as the channel impulse
response (CIR) matrix while the sparsifying matrix is expressed as the
distributed wavelet transform (DWT). However, both the sampling
and sparsifying matrixes depend on the location of sensors, so this
model is highly coherent. This violates the assumption of CS and easily
produces high data recovery error. In this paper, in order to reduce
the coherence, we propose to control the transmit power of some nodes
with the help of t-average-mutual-coherence, and recovery quality are
greatly improved. Finally, to make the approach more realistic and
energy-efficient, the CIR superposition is restricted in local clusters.
Two key parameters, the radius of power control region and the radius
of local clusters, are optimized based on the coherence and resource
consideration in sensor networks. Simulation results demonstrate that
the proposed scheme provides a high recovery quality for networked
data and verify that t-average-mutual-coherence is a good criterion for
optimizing the performance of CS in our scenario.

1. INTRODUCTION

Low cost sensors can be deployed in the environment for object
tracking, surveillance, control, etc. Since energy and bandwidth are
scarce resources in sensor networks, it is important to design an energy
efficient data collection method for wireless sensor networks.
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Given the low power of radio at each node, only a small fraction
of nodes will find themselves within transmission range of the fusion
center. A simple way is that each node transmits its own samples
to the fusion center via data hoping. Another method is to group
the nodes into clusters and perform data aggregation for the sensors
in each cluster [1]. This scheme exploits locally spatial correlation of
networked data to reduce the number of bits to be transmitted to the
fusion center.

Recently, compressed sensing (CS) [2, 3] provides a very different
approach for data sampling and compression in wireless sensor
networks [4–8], remote sensing [9, 10] and medical imaging [11]. The
main idea of CS is that any unknown signal x having a sparse
representation in one basis (sparsifying transform) can be recovered
from a small number of projections onto a second basis (sampling
matrix) which is incoherent with the first one.

Successful application of CS requires two key tenets: sparsity and
incoherence. In this paper, assuming that the networked data are
sparse in a given transform, e.g., distributed wavelet transform (DWT),
we propose a power control scheme to reduce the coherence between the
sampling matrix (for global superposition) and the sparsifying matrix
(for the distributed wavelet transform). We observe that the power
control is necessary to significantly reduce the data recovery error. T-
average-mutual-coherence is adopted to estimate two key parameters,
dmin and dmax, in the proposed schemes considering data recovery
quality and energy consumption. Besides, we found that restricting
the wireless superposition in local clusters will significantly save energy
and keep high recovery quality. Simulation results demonstrate that
the proposed scheme provides well recovered networked data.

The remainder of the paper is organized as follows. Section 2
introduces the theoretical background of CS and the related
applications in sensor network. In Section 3, the proposed system
models are proposed. How the proposed system works and how to
optimize two important parameters to provide low error recovered data
are also discussed. Section 4 gives simulation results. Discussion of the
proposed system is given in Section 5. Finally, Section 6 concludes the
paper.

2. BACKGROUND OF CS

Under CS framework, the measurements of x are y = Φx, where
Φ ∈ RM×N is a sampling matrix with far fewer rows than columns
(M ¿ N). The measurement y ∈ RM is much easier than the original
networked data x ∈ RN to be stored, transmitted, and retrieved since
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M ¿ N .
Let Ψ ∈ RN×N be a transform matrix, the representation of x in

Ψ domain is,
x = Ψα. (1)

If ‖α‖0 ¿ N , we call α the sparse representation of x. Therefore, the
measurements can be expressed as,

y = ΦΨα. (2)

The vector α can be accurately recovered from y as the unique solution
to

α̂ = arg minα ‖α‖1 s.t. y = ΦΨα (3)

if A = ΦΨ satisfies the restricted isometry property (RIP) [3]
condition.

Definition of RIP [3]: For each integer s = 1, 2, . . ., define the
isometry constant δs of a matrix A as the smallest number such that

(1− δs) ‖α‖2
2 < ‖Aα‖2

2 < (1 + δs) ‖α‖2
2 (4)

holds for all s-sparse vectors α that satisfies ‖α‖0 = s. When this
property holds (δs is not too close to 1), A approximately preserves
the Euclidean length of s-sparse signals α, so that one can hope to
reconstruct α.

The RIP property of A can guarantee the exact recovery of original
signal x from measurements y. In reality, it is difficult to verify RIP
in polynomial time due to its combinatorial flavor [12]. Alternatively,
mutual coherence provides a measure of the worst similarity between
the columns, as such two closely related columns may confuse any
pursuit technique [13]. However, mutual coherence does not do justice
to the actual behavior of sparse representations and the performance of
pursuit algorithms. Instead, Elad [13] proposed an “average” measure
of coherence, which is more likely to describe the true behavior of
sparse representations and the performance of pursuit algorithms.

Definition of t-averaged mutual-coherence (TAMC) [13]: TAMC
is defined as the average of all absolute normalized inner products
between different columns in A (denoted as νi,j) that are above
threshold t. Put formally,

µt {A} =

∑
1≤i,j≤N,i6=j (νi,j ≥ t) · νi,j∑

1≤i,j≤N,i6=j (νi,j ≥ t)
(5)

where the value of threshold t is known and fixed, µ0.2{A} > t.
Typically t = 0.2 [13], and we denote the average mutual-coherence
of those above 0.2 by µ0.2{A}.

In sensor network, sampling matrix Φ is usually pre-designed,
e.g., each sensor locally draws M elements of the random projection
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vectors by using its network address as the seed of a pseudorandom
number generator. Based on the CS theory, Jia et al. [8] consider a
sparse event detection scenario where the channel impulse response
(CIR) matrix is used as a natural sampling matrix. Another
attractive technique delivers random projections of the networked
data by exploiting uncoded (analog) coherent transmission [4, 6, 8, 14],
which requires only one transmission per random projection. From
the nodes in the network to the receiver, the CS projections are
simultaneously calculated (by the superposition of radio waves) and
communicated directly in the air interface using amplitude-modulated
coherent transmissions of randomly weighted sensed values.

The original networked data x may be sparse itself or can be
sparsified with a suitable transform. One example of the self-sparse
x in sensor network is the sparse event detection where most of the
entries in x are non-zeros [8]. Usually, the networked data vector
x is sparse with a proper Ψ in Equation (1). Most of the previous
works [7, 15, 16] consider a regular sensor network. However, sensors
are usually deployed on an irregular grid. So it is expected to find
some sparse representations to sparsify irregular grid sensor networked
data.

3. PROPOSED METHODS

In this paper, we consider a scenario where sensor nodes are deployed
in an irregular grid. Aiming at improving the data recovery quality,=
and reducing the network energy consumption, three system models
are proposed to generate random projections of networked data by
exploiting uncoded coherent transmission within CS framework. The
three models are as follows:

1) Basic CIR model. It uses CIR matrix as the sampling matrix and
Distributed Wavelet Transform (DWT) matrix as the sparsifying
transform matrix. However, the large mutual coherence between
CIR matrix and DWT matrix results in large recovery error of the
networked data. Basic CIR model is a highly coherent model.

2) Low-coherent CIR (LC-CIR) model. It reduces the coherence of
the basic model by controlling the transmission power of some
nearest nodes around projection nodes, which significantly reduces
the recovery error.

3) Low-coherent Local CIR (LCL-CIR) model. CIR is restricted in
local clusters to save channel estimation and communication cost,
and the recovery error is still acceptable. The wedding of power
control and local CIR makes this model more efficient.
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Figure 1. Logic flow of designing the three models.

The logic flow of designing the three models is summarized
in Figure 1. In the following, we will analyze each model, make
comparisons in terms of recovered data quality, and optimize two key
parameters dmin and dmax using TAMC.

3.1. Basic CIR Model

Consider the basic CIR model as shown in Figure 2. There are N
sensors randomly located in a field, each generating a data sample to
be measured xj (j = 1, . . . , N). These data samples x = [x1, . . . , xN ]
are called networked data [4], which will be transmitted to the fusion
center. M = O(s log N) sensors are chosen from N sensors as
projection nodes. They capture the random linear projections from
N sensors.

Fusion Centre

m M1

1 n2 N

Analog transmission

Digital transmission

...... ......

...... ......

N-1

M Projection nodes

N Sensor nodes

Figure 2. The basic CIR model.

Before proceeding further, we shall make the following assump-
tions:

1) The locations of the sensors are fixed and known a priori.
2) Networked data vector is sparse or highly compressible in DWT

domain, i.e., it contains s largest coefficients. Setting the rest
coefficients zero will not cause much information loss.

3) The CIR of each link between projection node and any sensor is
known at the fusion center.
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4) Each sensor has a local oscillator synchronized to the carrier
frequency fc, and the network is distributed phase synchronized
in the sense that the sensor transmissions arrive at the projection
nodes in a phase coherent fashion.

3.1.1. Basic CIR

In the basic CIR model, all sensors simultaneously broadcast a piece
of data with the same transmission power Pt. As a result, at every
projection node, the received signals are simultaneously added in air
by the superposition of radio waves, i.e., analog modulated signals are
interfering with each other, and also deteriorated by propagation loss
and thermal noise. The received signal vector can be written as,

y = Gx (6)
where G is the CIR matrix whose component can be written as

G(m,n) = (dm,n)−β |hm,n| (7)
where dm,n is the distance between the mth projection node and the
nth sensor node. β is the propagation loss factor which is 2 for free
space [8, 17] and other values for different scenarios [17, 18]. hm,n is
the Raleigh fading modeled as complex Gaussian noise with zero mean
and unit variance [8]. The coherent receptions for each projection node
are none-interfering, which may be achieved via time-division. Thus,
G depends on the network topology.

Matrix G exploits the average property of multiple access control
and nature of broadcasting in wireless channel. The channel estimation
methods can be found in [19, 20] and the references in them. Phase
coherent reception can be accomplished either through training-based
channel estimation for stationary channels or at a small cost of
SNR degradation by employing differential encoding for a fast fading
channel [21].

3.1.2. DWT Basis

Distributed wavelet transform (DWT) [22] is successfully applied to
sparsify the network data [4, 22] acquired by the sensors deployed in
an irregular grid. Once the fusion center knows the locations of all
sensor nodes, DWT basis can be computed. The DWT basis will not
change if the sensors locations do not change. The DWT basis only
depends on network topology. Given a time snapshot of a measured
spatial field, DWT replaces the 2-D set of measurements with a set
of transform coefficients that, for piecewise smooth fields, are sparser
than the original data,

x = Dα (8)
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(a) (b) (c)

(d) (e) (f)

Figure 3. Sparsity of networked data in a DWT basis. (a) Network
topology comprised of 1000 nodes, (b) networked data, (c) coefficients
after DWT transform, (d)–(f) are three atoms of DWT basis which are
localized. Note: The field size in Figure 2(a) is R × R = 100 × 100m
with N = 1000 sensors. The number of nonzero wavelet coefficients in
Figure 2(c) is s = 10. Note: The locations of nodes are generated as
random values drawn from the standard uniform distribution on the
open interval (0, 100).

where x ∈ RN represents the original networked data, α ∈ RN the
transform coefficient vector which contains s (s ¿ N) nonzeros, and
D ∈ RN×N the DWT basis.

For example, a sensor network contains 1000 nodes in Figure 3(a),
whose networked data shown in Figure 3(b), can be sparsely
represented by the DWT coefficients in Figure 3(c). Three columns
(atoms) of D shown in Figures 3(d)–(f) imply that DWT basis is
localized. This localization property comes from the principle of DWT
for networked data [22].

3.1.3. Data Recovery

Incorporating the DWT basis, the basic CIR model can be expressed
as,

y = GDα (9)
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In this model, CIR matrix is employed as a natural CS sampling
matrix to obtain the M random projections of the networked data.
The measurements y are sequentially received at the projection nodes.
Then, all projection nodes transmit measurements to the fusion center
independently. Finally, the fusion center decodes the N dimensional
vector x = Dα from the M dimensional vector y.

Within the CS framework, the sparse coefficients α are estimated
by solving the `1 norm minimization problem

α̂ = arg minα ‖α‖1 s.t. y = GDα (10)

so that one can recover the network data x̂ = Dα̂.
Successful recovery of α̂ relies on the RIP condition in

Equation (6). As stated in Section 2, the TAMC of A = GD can be
used to analyze the behavior of sparse representations data recovery.

Recovery error of networked data from M = 200 measurements

(a) (b)

(c) (d)

Figure 4. The recovery errors of different models. (a) Error of the
basic CIR model (dmin = 0 and dmax = 50). (b) Error of the LC-CIR
model with lowest coherence (dmin = 50 and dmax = 50). (c) Error
of the LC-CIR model (dmin = 10 and dmax = 50). (d) Error of the
LCL-CIR model (dmin = 10 and dmax = 15).
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is really large as shown in Figure 4(a) for a given deployed sensors in
Figure 3(a), although s = 10 nonzero wavelet coefficients can sparsely
represent the network data. The computed TAMC is µ0.2{A} =
µ0.2{GD} = 0.51, which is large.

Intuitively, both G and D matrixes depend on network topology
and present localization property: neighboring nodes have large
weights while distant nodes have small weights. This is why the basic
CIR model is highly-coherent.

3.2. Low-coherent CIR Model

In this subsection, we will discuss how to design a proper A to achieve
low coherence thus reduce the recovery error.

Ideally, if the term (dm,n)−β in Equation (6) is removed (saying
β = 0), the |hm,n| will generate a random matrix composed of complex
Gaussian noise with zero mean and unit variance. Random matrix has
low coherence with any other sparsifying matrix [2–4]. The coherence
µ0.2 (A) is reduced to 0.26 shown in Table 1. Accordingly, very low
recovery error is achieved in Figure 4(b) for β = 0. This example
points out the way to reduce the coherence of A, that is breaking the
localization property caused by β in matrix G.

Table 1. T-averaged mutual-coherence (TAMC) for the proposed
models.

Model Sensing matrix A µ0.2 (A) Recovered error

Basic CIR G×D 0.51 Figure 4(a)

LC-CIR

(lowest coherence)
G×P×D 0.26 Figure 4(b)

LC-CIR G×PL ×D 0.30 Figure 4(c)

LCL-CIR GL ×PL ×D 0.32 Figure 4(d)

Since the nodes are static, the location of sensors will not change,
and both G and D will not change either. In order to reduce the
coherence, we design a control matrix,

Pm,n = (dm,n)β (11)

to reduce the TAMC of A. By multiplying Pm,n and Gm,n, we have
Pm,n×Gm,n = |hm,n| which can successfully eliminate the localization
property of G. The realization of P in sensor network is to control the
transmission power from sensor nodes to projection nodes.

To reduce the number of nodes which require power control, we
restrict the power control in a circle with radius dmin, centered at a
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projection node. The received signal vector can be written as,

y = GPLx = GPLDα = Aα (12)

where PL represents the local power control matrix, whose components
can be represented as,

PL(m,n) =

{ (
dm,n

dmin

)β
, dm,n < dmin

1, otherwise
. (13)

When dm,n < dmin, the transmit power is set as (dm,n

dmin
)β. When

dm,n ≥ dmin, PL(m,n) = 1 means no power control. After reducing
the transmission power, the nodes whose distance is smaller than dmin

are conceptually located at the circle of dmin, as illustrated in Figure 5.
The power control matrix PL can compensate the localization

property of sensing matrix G. This leads to reduced coherence of
system A = GPLD as shown in Table 1. Thus the data recovery error
has been greatly reduced, as shown in Figure 4(c) for dmin = 10 m.
Conceptually, we can view that these controlled sensors are located at
the circle of dmin although they are physically located inside the circle.

3.3. Low-coherent Local CIR Model

The global superposition scheme uses G as sampling matrix, and the
channel estimation cost scales up with the number of sensors [19].
Ensuring coherent reception of the whole network is also challenging
in practice due to tight synchronization requirements.

Figure 5. Transmission power control. The nodes inside the radius
dmin needs power control. After power control, the equivalent distances
of these nodes become dmin.
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Figure 6. Low-coherent Local CIR (LCL-CIR) model. Each circle
represents one cluster where “·” denotes the sensor node and “∗”
denotes the projection node which is responsible to transmit the
measurements of its cluster to fusion center. Note: The locations
of nodes are generated as random values drawn from the standard
uniform distribution on the open interval (0, 100).

To release these burdens, we propose local superposition for the
sensors within local clusters. Both phase coherent reception and
channel estimation are limited in local clusters, making it much easier
to realize. We define the sensors in the cluster as Ω(m). Any nodes
∀n ∈ Ω(m) simultaneously transmit their samples to mth projection
node. The radius of Ω(m) is dmax. Other nodes outside Ω(m) do not
transmit their samples to mth projection node. Suppose that GL is
the local CIR matrix, whose component can be written as,

GL(m, n) =
{
|hm,n| (dm,n)−β , dm,n ≤ dmax

0, otherwise
(14)

The neighboring clusters are overlapped with each other as shown in
Figure 6.

In the LCL-CIR model, each projection node obtains one
measurement, i.e., a weighted sum of sample values from local sensors.
This is illustrated in Figure 7. In order to avoid interference between
clusters, local superposition happens sequentially among clusters. The
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Figure 7. Local superposition in clusters. The radius of Ω(m) is dmax.
Sensor nodes ∀n ∈ Ω(m) transmit their samples to mth projection
node. Then, Sensor nodes ∀n ∈ Ω(m + 1) transmit their samples to
(m + 1)th projection node.

received signal vector can be written as,
y = GLPLx = GLPLDα (15)

Multiplying GL and PL we have

(GLPL)m,n =




|hm,n| (dmin)

−β , dm,n ≤ dmin

|hm,n| (dm,n)−β , dmin ≤ dm,n ≤ dmax

0, otherwise
(16)

Figure 4(d) demonstrates that the recovery error of LCL-CIR
model is also very low since the coherence is low.

To sum up, we design to control the transmission power of some
nearest nodes to reduce the mutual coherence of the sensing matrix.
Also, local CIR can reduce the channel estimation cost and keep the
recovery error under a low level. The whole process is summarized in
algorithm I.

3.4. Optimization of dmin and dmax

3.4.1. Energy Model

For the LCL-CIR model, there are two key parameters: dmin and dmax.
How can we optimize the values for dmin and dmax to balance the
recovery quality, channel estimation cost, and power control cost? In
this paper, TAMC is adopted as a criterion to optimize dmin and dmax

aiming at low coherence which can result in low recovery error.
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Algorithm I. Optimized local superposition in sensor networks

Initialization:
1) N sensors transmit their locations to fusion center;
2) Fusion center computes DWT basis D;
3) Set dmax: optimize dmax by balancing TAMC and the channel estimation
cost which satisfies Ece ∝ d4

max;
4) Set dmin: optimize dmin by balancing TAMC and the power control
cost which satisfies Epc ∝ d2

min;
5) Fusion center chooses M projection nodes from N sensors.
Main:

For m = 1, . . . , M ,
6) mth projection node sequentially broadcast its location.
7) Other nodes compute the distance dm,n.
8) Power control according to Equation (13).
9) Local superposition according to Equation (14).
10) mth projection node sent its measurement to fusion center.

End
11) Fusion center decodes α from measurements y according to Equation (10).
Output: x̂ = Dα̂.

Assume that N nodes are distributed uniformly in a R×R region
with M projection nodes as the cluster-head. The node density is ρ0.
The total energy of the local CIR model can be estimated by,

Etotal = Epc + Etr + Ece (17)

where Epc, Etr and Ece are the energy consumptions on power control,
transmission and channel estimation for all nodes.

In order to estimate Epc, let the power control area be a circle
with radius dmin and centered at a projection node. The number of
nodes which need power control in one cluster is ρ0πd2

min. Assuming
that power control of each node is equal, Epc is

Epc = M × c1ρ0πd2
min (18)

where M is the number of clusters, and c is a constant. As a result,
the energy consumption for power control satisfies Epc ∝ d2

min.
In order to estimate Etr, let dmax be the radius of each cluster,

and the number of sensors in one cluster is ρ0πd2
max. According to

the first order radio model described in [1], Etr is proportional to the
square sum of the distances between all node pairs,

Etr = M × c2

∑I

i=1
d2

i,j = M × c2 × ρ0πd2
max × E

{
d2

toCH

}
. (19)

where E{d2
toCH} is the expected squared distance from the nodes to the

cluster-head (assume to be at the center of the mass of the cluster) [1].
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For the node distribution ρ(x, y) in an arbitrary area, E{d2
toCH} is

E
{
d2

toCH

}
=

∫∫ (
x2 + y2

)
ρ(x, y)dxdy =

∫∫
r2ρ(r, θ)rdrdθ. (20)

If we assume that this area is a circle with radius R = dmax and
that ρ(r, θ) is constant for r and θ, this equation is simplified to

E
{
d2

toCH

}
= ρ

∫ 2π

θ=0
dθ

∫ dmax

r=0
r3dr =

πρd4
max

2
(21)

If the density of the nodes is uniform throughout the cluster area,
then

ρ =
1

πd2
max

(22)

and

E
{
d2

toCH

}
=

d2
max

2
. (23)

Therefore, the transmission energy for all nodes is

Etr = M × c2ρ0
πd4

max

2
. (24)

As a result, the energy consumption for transmission satisfies Etr ∝
d4

max.
The energy consumption for channel estimation is denoted as Ece.

Every node needs to transmit a pilot signal to the cluster-head, and the
cluster-head measures the received signal of each link [19]. According
to the radio energy model in Equation (19), Ece is also proportional to
the square sum of the distances between all node pairs,

Ece = M × c3

∑I

i=1
d2

i,j = M × c3ρ0
πd4

max

2
(25)

The energy consumption for channel estimation satisfies Ece ∝ d4
max.

Thus, the total energy is

Etotal = M × c1ρ0πd2
min + M × c2ρ0

πd4
max

2
+ M × c3ρ0

πd4
max

2
= M

[
c1ρ0πd2

min + (c2 + c3)ρ0πd2
maxE

{
d2

toCH

}]

= Mρ0π

(
c1d

2
min +

c2 + c3

2
d4

max

)
, (26)

where parameters c1, c2 and c3 denote the weights on the energy
consumptions in each cluster on channel estimation, power control and
transmission, respectively. The values of these parameters depend on
realistic scenarios.
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3.4.2. Optimization Process

For simplicity, we first optimize dmax and then optimize dmin in two
steps:
1) Suppose dmin = dmax. This is the ideal case for the sampling

matrix, so it is a good start point to optimize dmax by balancing
TAMC and the channel estimation cost which satisfies Ece ∝ d4

max.
2) Given a fixed dmax, dmin is optimized by balancing TAMC and the

power control cost which satisfies Epc ∝ d2
min.

As shown in Figure 8, when dmax grows, channel estimation cost
increases, and TAMC decreases. The crossing point of two curves is

Figure 8. Average mutual coherence (t = 0.2) and normalized channel
estimation cost in one local superposition for different dmax.

Figure 9. Average mutual coherence (t = 0.2) and normalized power
control cost in one local superposition whose radius dmax = 15 m.
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at dmax = 14 m. Since the TAMC cannot fully guarantee the RIP
condition, in order to assure the recovery quality, dmax ≥ 14m is
preferable.

To illustrate the behavior of dmin, we provide a demonstration of
its results in Figure 9. We set dmax = 15 m and use values of dmin from
0 to 15 m. TAMC is decreasing when dmin is growing, and it converges
when dmin approaches to dmax. The crossing point of two curves is at
dmin = 8 m. This provides a reference value of dmin. Since the TAMC
cannot fully guarantee the RIP condition, dmin ≥ 8m is preferred to
improve the recovery quality. The effect of power control and impact
of dmin will be demonstrated in the simulation.

4. SIMULATION RESULTS

In this part, we will verify how the proposed scheme can achieve
a certain recovery quality after optimizing dmax and dmin. In the
following simulations, the parameter settings are summarized in
Table 2.

Table 2. Parameters setting.

Parameters R N s M β

Value 100m 1000 10 200 2

To solve the `1 norm minimization in Equation (3), the basis
pursuit solver in Sparselab toolbox [23] was used. To evaluate recovery
quality, we use signal-to-noise ratio (SNR), which is defined as

SNR = 10 log10

‖x‖2
2

‖x− x̂‖2
2

(27)

where x̂ is the recovered data and x the original data. Higher SNR
means lower recovery error.

Based on the observation that 40 dB produces very low recovery
error of network data, we set 40 dB as an acceptable threshold of SNR.
Figure 10(b) shows the recovered data of original data in Figure 10(a)
when SNR is 40 dB. No obvious error is presented in the recovered data
as shown in Figure 10(c). When SNR is 30 dB, the error is obvious as
shown in Figure 10(e). In the following, the acceptable recovery quality
means that the SNR is larger than 40 dB.

4.1. Necessity of Power Control

The necessity of power control is verified in this subsection. Figure 4
shows recovered errors using different models. For the basic CIR model,
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(a) (b) (c)

(d) (e)

Figure 10. The recovery quality when SNR is 40 dB. (a) Original
data. (b) Recovered data with SNR 40 dB. (c) Difference between (a)
and (b). (d) Recovered data with SNR 30 dB. (e) Difference between
(a) and (d).

no power control is performed, and the errors are large, at the level of
10−1. On the contrary, for the three low-coherent models, the errors
are significantly reduced. When power control is performed throughout
the whole network, the recovery errors are very small, at the order of
10−5; when power control is restricted to a circle with dmin = 10 m,
the error is at the order of 10−4. Further, when dmax = 15 m, the error
is at the order of 10−3.

The results in Figure 4 demonstrate that the construction of
matrix P is necessary to guarantee good quality of recovered data.
This necessity does not depend on whether CIR superposition is local
or global.

4.2. Effect of dmin

The average SNR of the LCL-CIR scheme becomes higher when
dmin grows, as shown in Figure 11. To obtain the acceptable SNR,
the minimal dmin is 9m, which is very close to the reference value
dmin = 8 m in Figure 9. This implies that TAMC is a reasonable
criterion to evaluate the true behavior of sparse representations and
the performance of the pursuit algorithm in Equation (10).
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Figure 11. Recovered SNR with different value of dmin. Note: The
error bar shows the variation of SNR with the random locations of M
projection nodes, and dmax = 15m.

(a) (b)

Figure 12. M and TMAC under different value of dmax. (a) Required
M to achieve acceptable SNR. (b) TMAC when M = 210, dmin = 10 m.
Note: (a) is obtained by increasing M so that the lowest SNR is larger
than the acceptable SNR 40 dB in 50 repeated simulations.

4.3. Local CIR Versus Global CIR

As stated before, reducing coherence is necessary to reduce the recovery
error. Therefore, the discussion of local or global CIR is conducted
within LC-CIR model. The global CIR model is a special case of LC-
CIR model when dmax is the maximum distance of two nodes in the
field.

From the energy analysis in Subsection 3.4.1, the channel
estimation cost will be greatly reduced when dmax becomes smaller.
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Figure 13. Recovered SNR with different value of dmax when M =
210, dmin = 10 m. Note: The error bar shows the variation of SNR
with the random locations of M projection nodes.

However, decrease of dmax requires more clusters, i.e., a larger M to
guarantee acceptable recovery quality. As shown in Figure 12(a), for
a fixed dmin = 10 m, when dmax = 10, it requires M = 310 to obtain
acceptable recovery quality, and when dmax = 20, M = 190 can achieve
acceptable recovery quality. The number of measurements approaches
to M = 180 when dmax ≥ 30.

When M is fixed, the increase of dmax will decrease mutual
coherence between sensing matrix and sparsifying matrix, as shown
in Figure 12(b), and thus improve the recovery quality as shown
in Figure 13. This observation implies that TAMC is a reasonable
criterion to predict data recovery error. For a given realistic scenario,
the parameters c1, c2 and c3 may be tested and plugged into
Equation (26), then one may optimize dmax to minimize Etotal and
provide small coherence as well.

4.4. Impact of Positioning Error

The impact of positioning error on the low-coherent local CIR model
is analyzed from two aspects: 1) how large the position error is and 2)
how many nodes positions are corrupted.

The first aspect is simulated by corrupting the ground truth
position with random Gaussian noise N (0, σ2). We choose different σ
shown in Table 3 for the 100 m×100m grid where the average distance
between two neighboring nodes is 3.4 m.

The second aspect is simulated by randomly choosing partial
nodes to be corrupted in positioning. We make 1%, 5%, 10%, 15%
and 25% of the node positions corrupted with Gaussian noise.
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Table 3. SNR (dB) performance with positioning error.

Position error σ
Ratio of corrupted nodes

1% 5% 10% 15% 25%
1× 10−3 80.32 74.17 64.48 71.17 64.25
1× 10−2 60.19 49.06 41.44 42.23 36.46
1× 10−1 43.35 30.36 26.71 24.33 21.03
1× 100 27.89 15.97 13.25 11.21 8.63

Positioning errors will reduce the recovery quality using the
proposed method. As we discussed before, an acceptable recovery
should be with SNR larger than 40 dB. From Table 3, if the position
error is relatively small (σ ≤ 1×10−3), nearly 25% nodes are allowed to
be with positioning error; if the position error is large (σ ≤ 1× 10−1),
only 1% of the nodes are allowed to be with positioning error. As a
result, right positioning measure is important for the proposed method.
Some advanced positioning methods [24–26] may enhance positioning
accuracy and thus reduce the reconstruction error.

When the average distance between two neighboring nodes is
3.4m, the proposed method can overcome large positioning error, if
the ratio of corrupted nodes is small (1% of all the nodes).

5. CONCLUSION

We proposed a compressive sensing (CS) scheme based on uncoded
coherent transmission in local clusters. CS projection measurements
are obtained via the interface of projection nodes and their neighbors.
Distributed wavelet transform is used to sparsify irregularly distributed
sensor networked data. By controlling transmission power of some
nearest neighbors in clusters, the coherence of sampling matrix and
sparsifying matrix is reduced. This power control is necessary to
significantly reduce the data recovery error. The performance of the
data recovery can be enhanced by optimizing the radius of power
control region considering the tradeoffs between the t-average-mutual
coherence and the energy consumption. Restricting the radius of
cluster can save the energy and achieve acceptable data recovery
quality. Our method implies that t-average-mutual coherence is a good
criterion to show the average behavior of recovery quality.

Limitation of the proposed schemes is that it is sensitive to large
positioning error. It is worthwhile to discuss how the variation of
density of sensors is in realistic sensor network since in our simulation
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the sensors are uniformly distributed in the network. Although the
proposed scheme may not be used in real sensor networks right now,
the finding of low coherence of sampling and sparsifying matrixes leads
to designing more realistic CS schemes in sensor network. In addition,
the way reducing the coherence in this paper points out a useful way to
reduce the recovery error for a CS system where both sampling matrix
and sparsifying matrix are localized.
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