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Abstract—A fast and simple parameter estimation algorithm, joint
azimuth angles, elevation angles and polarization parameters of
incident sources for an arbitrary conformal array is proposed. Based
on 2-D Discrete Fourier Transform (2-D DFT), the computational
complexity can be reduced significantly compared with traditional 2-
D space-search MUSIC or polynomial rooting (search-free) methods.
The antenna elements can be mounted on arbitrary curved surfaces
or platforms. Conformal array characteristics, such as directional
radiation patterns of the elements and polarization are taken into
consideration. Numerical simulations based on real-world conformal
arrays are provided to demonstrate the performance of the proposed
method.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation techniques have been frequently
used in many applications such as radar, sonar, astronomy and
wireless communications [1–4]. Among these applications, most arrays
are linear or planar structures with uniformly polarized antenna
elements. Antenna arrays with diverse polarization have some inherent
advantages over uniformly polarized arrays since they are capable of
discriminating signals based on their polarization characteristics. For
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example, they have been used in radar systems to improve clutter
rejection, to discriminate between different types of targets and to
reject main lobe interferences. Furthermore, polarization diversity can
improve the robustness to channel fading in wireless communications.

In early work, DOA estimation using diversely polarized array
was based on a multi-dimensional search procedure, such as MUSIC
algorithm [5] and maximum likelihood (ML) algorithm [6, 7]. These
methods suffer a high computational complexity. Hence, it is
hard to use them in real time applications. In [8], a polynomial
rooting based method for direction and polarization estimation using
diversely polarized antennas was proposed. Compared with search
based methods, the computational complexity of the polynomial
rooting method (or search-free method) is reduced significantly. The
limitations of [8] are that it can just estimate one dimensional angle
(i.e., the antennas and sources are coplanar, in which case the elevation
angle θ = 90◦), and all antenna elements are supposed to be omni-
directional. Recently, the work in [9] generalized [8] to arbitrary
elevation angles, to directional antennas and to arbitrary antenna
orientations. However, the procedure in [9] seems still complicated
since estimated azimuth angles and elevation angles need to be paired.
Goossens and Rogier [10] used phase-mode expansion for the induced
voltages over the antenna elements in combination with the symmetry
of the array to develop a computationally efficient method for DOA
and polarization estimation. In his work, all electromagnetic effects
including mutual coupling were taken into consider. But this method
can just deal with DOAs with a fixed elevation angle. In [11], a
novel blind DOA and polarization estimation method for polarization-
sensitive uniform circular array was investigated. Based on generalized
ESPRIT algorithm, better performance was achieved. But this method
seems to be useful only for uniform circular array. Very recently,
stemming from RARE (Rank Reduction Estimation) algorithm [12]
and EADF (Effective Aperture Distribution Function) [13, 14] concept,
Richter et al. proposed an very different method to estimate DOAs
and polarization coefficients using arbitrary array configurations [15].
Later, this method had been extended in [16] and [17]. By
constructing a nonlinear system of two bivariate polynomials and using
the technique of Polynomial Root Intersection for Multidimensional
Estimation (PRIME) [18], the problem can be solved by rooting
procedure. The merit of [16] and [17] is that it can be used for
arbitrary array configurations even for conformal arrays. Moreover, the
estimated elevation and azimuth angles can be paired automatically,
avoiding the complex pair procedure in [9]. However, solving the
problem of two bivariate polynomials is not a easy thing, especially
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when the orders of the polynomials become high.
We present a simple but fast method for 2-D DOA and polarization

parameters estimation using conformal antenna arrays. Instead of
constructing a Vandermonde structure for the cost function, in this
paper, the 2-D DOAs can be obtained more efficiently by applying
2-D TDFT to the zeros padded coefficients, thus avoiding polynomial
rooting. This paper is organized as follows. First, in Section 2, the
signal model of arbitrary conformal array configurations with polarized
antenna elements is introduced. In Section 3, we define a multivariate
function then using 2-D DFT to solve this problem. In Section 4, the
proposed method is verified by some numerical simulations based on
real world conformal arrays. Finally, Section 5 concludes the paper.

2. SIGNAL MODEL

We begin by considering an arbitrary configuration polarimetric array
with M antenna elements (Note that for 2-D DOA estimation, we
need an array with 2-D configuration. 1-D linear array is not included
in the “arbitrary configuration”). Each element is a dual polarized
antenna composed by two orthogonal ports which can receive the
horizontal and vertical components of the incident electromagnetic field
independently. Assume P narrow band signals come from directions
of (θp, φp), p = 1, 2, . . . , P . Where θ is the elevation angle and φ is the
azimuth angle. The M × 1 output vector of the array at tth sample is
given by

X(θ, φ, γ, η, t) = F(θ, φ) ·A(θ, φ, γ, η)S(t) + N(t) (1)

where F(θ, φ) ∈ CM×P is the active element pattern matrix. Its
(m, p)th element represents the response of mth (m = 1, 2, . . . , M)
antenna element to pth signal comes from (θp, φp). Note the active
element pattern can be obtained by exciting an antenna with a unit
voltage, while other antennas are terminated by matching impedance
Z0 (Z0 = 50 Ω). Usually, the active element pattern of each antenna
is different because of the mutual coupling [19].

The matrix A(θ, φ, γ, η) ∈ CM×P is the steering matrix. Its pth
column Ap(θ, φ, γ, η) ∈ CM×1 can be represented by

Ap(θ, φ, γ, η) = Vp(θ, φ)Γp(γ, η) · ap(θ, φ) (2)

where the matrix Vp(θ, φ) =
[
Vp

h Vp
v

] ∈ CM×2 and

Vp
h = −Vx sinφp + Vy cosφp

Vp
v = Vx cos θp cosφp + Vy cos θp sinφp −Vz sin θp

(3)
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where Vx ∈ CM×1 are the voltages induced at the antennas output
terminals by an incoming signal with a unit electric field polarized
entirely along x direction. Similarly, Vy and Vz are the output
voltages induced by signals with unit electric fields polarized along
y and z directions, respectively. The polarization coefficient matrix
Γp(γ, η) ∈ C2×1 is defined as

Γp =
[
cos γp sin γpe

jηp
]T (4)

where γ and η define the signal’s polarization angle and phase
difference, respectively. (·)T denotes transpose.

ap(θ, φ) ∈ CM×1 represents the pth signal’s steering vector. Its
mth element is

am(θp, φp)=exp [jk(xm sin θp cosφp+ym sin θp sinφp + zm cos θp)] (5)

where xm, ym and zm are the coordinates of the mth antenna and
k = 2π/λ is the wave number.

Finally, S(t) ∈ CP×1 is the signal vector and N(t) ∈ CM×1 is the
vector represents additive white noise. The problem here is how to use
the finite receiving data X in (1) to estimate the DOAs (θp, φp) and
polarizations (γp, ηp).

3. DOA AND POLARIZATION ESTIMATION BY 2-D
DFT

In this section, 2-D DFT is applied for joint azimuth angle, elevation
angle and polarization parameters estimation. We start by defining a
new matrix that includes the information of signal DOAs and antenna
polarizations as follows

B(θ, φ, γ, η) = W(θ, φ)Γ(γ, η) (6)

where
W(θ, φ) = diag{a(θ, φ)}V(θ, φ) (7)

According to classical MUSIC algorithm [1], we can construct a
cost function as

D(θ, φ, γ, η) = BHGGHB = ΓHWHGGHWΓ (8)

where G ∈ CM×(M−P ) is the noise subspace whose columns are the
eigenvectors corresponding to the M − P smallest eigenvalues of the
sample covariance matrix. From (8), it can be proved [8] that if W
is known, the minimum of D is obtained when Γ is equal to the
eigenvector corresponding to the smallest eigenvalue of the 2×2 matrix

C(θ, φ) = W(θ, φ)HGGHW(θ, φ) (9)
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Note that in Equation (9), the matrix W(θ, φ) is dependent on
the angles only. Hence, the DOA can be estimated first before the
polarization parameters. In Reference [8], a root-MUSIC based method
was proposed to solve Equation (9). However, it can only solve 1-D
problem (the elevation angle is supposed to be fixed at 90◦). Moreover,
it needs to root a polynomial with M order, the procedure of finding
the roots becomes time-consuming if M is a very large number. To
extend [8] to 2-D DOA estimation, and solve (9) efficiently, a 2-D DFT
based technique [20], [21] is applied. The procedure is as follow:

First, we define the cost function as

f(θ, φ) = det{C} = det{WHGGHW} (10)

where det{·} denotes determinant. From (10) we found if (θ, φ) is
the true DOA, f(θ, φ) will equal to zero. Since the function f(θ, φ)
is a periodic function in θ and φ, it can be expanded using finite 2-D
Fourier series

f(θ, φ) ≈
L∑

m=−L

K∑

n=−K

Fmnejmθejnφ (11)

where the Fourier coefficient is

Fmn ≈ 1
4π2

L∑

l=−L

K∑

k=−K

f(l∆θ, k∆φ)e−jml∆θe−jnk∆φ (12)

where ∆θ = 2π/(2L + 1) and ∆φ = 2π/(2K + 1). 2L + 1 and 2K + 1
are number of samples in θ and φ direction, respectively. The Fourier
coefficient matrix Fco ∈ C(2L+1)×(2K+1) can be obtained quickly by
using 2-D FFT. After the Fourier coefficients are obtained, to improve
the resolution, we can use zeros padding, i.e.,

F̂mn =
{

Fmn, for |m| < 2L+1, and |n|<2K+1
0, for 2L+1 < |m| < L0, and 2K+1< |n|<K0

(13)

Usually, we select L0 À 2L + 1 and K0 À 2K + 1. The new cost
function f̂(θ, φ) of every grid can be calculated efficiently by applying
2-D IFFT to the zeros padded Fourier coefficient matrix F̂co ∈ CL0×K0 .
Recalling that the true DOAs will make f(θ, φ) close to zero. Hence,
the estimated P pair of angles (θ̂, φ̂) can be easily obtained from the
P maximum peaks of the null-spectrum 1/f̂(θ, φ).

Note that the computational complexity of the traditional 2-D
space-search MUSIC algorithm and the 2-D DFT based method are
totally different. For traditional 2-D space-search MUSIC algorithm,
to get acceptable accuracy, we need divide the interested area into
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very dense grids. For example, if the interested area is θ ∈ [0◦, 90◦], φ ∈
[−45◦, 45◦]and the unit grid is 0.1◦×0.1◦, we need calculate 901×901 =
811801 times the matrix-vector product WHG in (10). However,
in the 2-D DFT method, only (2L + 1) × (2K + 1) matrix-vector
products in (10) need to be calculated (In our simulation, L = K = 34,
(2L + 1)× (2K + 1) = 69× 69 = 4761). For other grids, we use zero-
padding directly. Hence, the decrease of computational complexity is
considerable. Also, this method has a lower complexity than the 2-D
polynomial rooting method. For example, in references [16] and [17],
to estimate the 2-D DOAs, more time is needed to solve the high order
bivariate nonlinear polynomials. Since rooting a bivariate nonlinear
polynomial is computationally very intensive and 2-D FFT/IFFT
technique for real time implementation is readily available, the 2-D
DFT based approach appears to be competitive.

Once the estimated angles (θ̂p, φ̂p) of the P signals are obtained,
we can calculate the eigenvectors and eigenvalues of matrix Ĉ in (9).
Let up ∈ C2×1 be the eigenvector corresponding to the smallest
eigenvalue of Ĉ, the estimated polarization coefficients can be obtained
by [16] 




v̂p = upu∗p(1)/|up(1)|
γ̂p = arccos(v̂p(1))
η̂p = ∠v̂p(2)

(14)

To summarize, the proposed fast 2-D DFT based algorithm for
arbitrary conformal arrays can be accomplished via the following steps:

1. Form the received data covariance matrix and perform
eigenvalue decomposition to obtain the noise subspace matrix G.

2. Calculate the cost function f(θ, φ) in (10) using the finite
(2L + 1)× (2K + 1)samples.

3. Apply 2-D FFT to calculate the Fourier coefficient matrix
Fco ∈ C(2L+1)×(2K+1).

4. Use zeros padding to form a large matrix F̂co ∈ CL0×K0 .
Note that L0 À 2L + 1 and K0 À 2K + 1.

5. Apply 2-D IFFT to get a new cost function f̂(θ, φ).
The estimated DOAs can be found from the null-spectrum
1/f̂(θ, φ).

6. Perform eigenvalue decomposition to matrix Ĉ and use
Equation (14) to estimate the polarization coefficients.
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4. NUMERICAL SIMULATIONS

In this section, two numerical examples are provided to evaluate the
performance of the proposed method. The first example is a uniform
5 by 5 cylindrical conformal array shown in Figure 1. The antennas
are mounted on a metallic cylinder with the height of 4λ and radius of
1.28λ. Here λ is the antenna operating frequency in free space. The
distance of adjacent element is equally spaced at approximately 0.5λ
in θ and φ. The antennas are dual polarized microstrip antennas and

Figure 1. Cylindrical conformal array with 5 by 5 dual polarized
microstrip antenna elements.
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Figure 2. Radiation patterns (E-plane) of the antenna in the middle
of the array. (a) Vertical polarized (xoz plane). (b) Horizontal
polarized (xoy plane).
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each antenna has two ports to receive two orthogonal components. The
active radiation patterns were obtained by using full wave numerical
code based on Method of Moment (MOM). For each antenna, both the
3-D active radiation patterns of two orthogonal ports were calculated.
The E-pattern of the horizontal (θ = 90◦) and vertical (φ = 0◦) slices
of the antenna in the middle of the array were plotted in Figure 2(a)
and Figure 2(b), respectively. It needs to be noted that each antenna
has a unique radiation pattern because their different locations in the
array and the effects of mutual coupling.

Assume two uncorrelated narrow band signals come from (θ1 =
60◦, φ1 = 0◦) and (θ2 = 85◦, φ2 = 20◦). One signal is elliptical
polarized and another one is linearly polarized. The polarization
coefficients are (γ1 = 30◦, η1 = 10◦) and (γ2 = 45◦, η2 = 0◦),
respectively. The snapshots is fixed to 128. In this simulation, the
sample points in θ and φ direction are 2L + 1 = 2K + 1 = 69.
The dimension of the zeros padded Fourier coefficient matrix F̂co is
L0×K0 = 2048×2048. The noise is additive Gaussian white noise. 100
Monte-Carlo experiments are carried out. The 2-D manifold separation
technique (2-D MST) proposed in [16] is used for comparison.

Figure 3 shows the 2-D spectrum of the null-spectrum function
1/f̂(θ, φ). The SNR of two signals are 20 dB. Similar to traditional
2-D space-search MUSIC algorithm, two sharp peaks are observed.
However, just as aforementioned, the ways to obtain this spectrum
are totally different. Figure 4 is the RMS of the estimated DOAs
with different SNR of the two methods. It can be seen that the 2-
D DFT based method has a higher performance than the 2-D MST
based method at low SNR level. When SNR>0 dB, the RMS of two

Figure 3. 2-D spectrum of the null-spectrum function 1/f̂(θ, φ) of
cylindrical conformal array (SNR=20 dB).
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Figure 4. RMS of two estimated DOAs with different SNR on
cylindrical conformal array. (θ1 = 60◦, φ1 = 0◦) and (θ2 = 85◦,
φ2 = 20◦).
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signals are both below one degree by using the 2-D DFT method. The
estimated performances of elevation angles are better than azimuth
angles because the array-aperture in the elevation angle is bigger than
the array-aperture in the azimuth angle. With the SNR increases
(SNR>5 dB), the 2-D MST has a similar performance compared to 2-

Figure 6. Conical conformal array with 5 by 4 dual polarized
microstrip antenna elements.
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Figure 8. RMS of two estimated polarization parameters with
different SNR on conical conformal array. (γ1 = 30◦, η1 = 10◦) and
(γ2 = 45◦, η2 = 0◦).

D DFT method. The RMS of two estimated polarization parameters
with different SNR are plotted in Figure 5. Similarly, compared to 2-D
MST, we find that the 2-D DFT method has a better performance at
low SNR level but a same performance at high SNR level.

To verify that this method can be applied for arbitrary arrays,
in the second example, a 5 by 4 conical conformal array is used for
test. The cone shown in Figure 6 has a base with a radius about
3.7λ and semi-cone angle of 30◦. The parameters of the signals are
the same as the first example. The estimated performances of DOAs
and polarization coefficients are shown in Figure 7 and Figure 8,
respectively. Again, good results are obtained by using 2-D DFT
method.

Table 1 gives the time consumed by the two methods (100
simulations time). In 2-D MST method, there is an off-line
pretreatment procedure to construct the calibration matrix [16]. The
2-D MST costs about 5 hours to do 100 simulations. The 2-D DFT
method, however, costs only 80 seconds. The enhancement of the speed
is considerable.
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Table 1. Time consuming of the two methods (100 simulations time,
AMD 3.0 GHz, Windows XP 32 bit, 3 GB memory, Matlab 7.10).

Pretreatment
time

Calculation
time

Total
time

2D DFT
(cylindrical array)

80.3 s 80.3 s

2D MST
(cylindrical array)

7.8 s 20713 s 20720.8 s

2D DFT
(conical array)

73.5 s 73.5 s

2D MST
(conical array)

6.3 s 19871 s 19877.3 s

5. CONCLUSIONS

In this paper, we present a fast method for 2-D DOA and polarization
estimation for arbitrary conformal arrays. The algorithm uses 2-D
DFT to calculate the null-spectrum function, and it does not require
an explicit space-search or polynomial roots finding procedure. The
performance of this method is evaluated by numerical simulations on
different conformal arrays. Theoretical analysis and simulation results
verify that this method combines accuracy with low computational
requirements.
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