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Abstract—This paper presents a novel peer-to-peer or mobile-
to-mobile localization scheme for general indoor and outdoor
environments. In this scheme, two mobile nodes at arbitrary locations
are able to locate each other without the need of Line-of-Sight (LOS)
path between the two mobile device, and without the need for any
reference devices such as GPS or land base beacons. Existing peer-
to-peer localization techniques make use of Time of Arrival (TOA)
and Angle of Arrival (AOA) of LOS and single bounce scattering
paths to derive line of possible mobile device positions (LPMDs).
The intersections of LPMDs are then used to estimate the unknown
mobile device position — referred to as the Line Segment Intersection.
However, in a heavy multipath environment with many multiple-
bounce scattering paths, existing techniques require weighting factors
and threshold values which are specifically chosen for that particular
environment in order to select the LPMDs that correspond to LOS
and single-bounce scattering paths for localization. Large localization
error will occur if multiple-bounce scattering paths’ LPMDs are
mistakenly used for intersections. In addition, existing techniques
also do not work well in a multipath environment with high level of
TOA and AOA noises especially when the angles between LPMDs
are small. The accuracy of the Line Segment Intersection also
deteriorates as the distance traveled by multipath signals become
comparable to each other. This renders the weighting and threshold
values ineffective. This paper presents a novel Gaussian weighting
process to remove the abovementioned limitations. The Gaussian
weighting process also dramatically improves the accuracy of the
localization. Experimental coupled with simulation results show that
our proposed localization scheme outperforms existing Peer-to-peer
localization technique by a significant margin of up to 83% and 54%
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in indoor and urban environments respectively especially under severe
multipath propagation conditions and high level of TOA and AOA
noises.

1. INTRODUCTION

There is a great need for accurate and robust techniques for
peer-to-peer or mobile-to-mobile localization in wireless and sensor
networks [1–4]. The most important applications include localization
services for mobile ad hoc networks (MANET), vehicular ad hoc
network (VANET), and emergency 911 (E-911) caller to Public
Safety Answering Points (PSAPs) [2]. However, there are many
challenges, including channel fading, low signal to noise ratio, multiuser
interference and multipath. In addition, there is a need for ubiquitous
localization even in indoor environments where multipath tends to be
more dominant [5]. Many indoor wireless localization methods using
the UWB radio channel, WLAN-based and channel impulse response
based techniques have been proposed [6–10].

Under conventional localization scheme, at least 3 reference
devices (RDs) in Line of Sight (LOS) are needed to locate the mobile
device (MD) in 2-D environment. The Euclidian distance between RD
and MD is measured from the received signal. The geometrical relation
between them is then used to obtain the estimated MD position [11].

The data that are used for localization can be the measured Time
Difference of Arrival (TDOA) [12, 13], Time of Arrival (TOA) [14, 15],
the angle of arrival (AOA) [16] or the Received Signal Strength
(RSS) [17]. There is also a hybrid scheme that uses a combination
of TOA, AOA and RSS [18–20].

Conventional LOS schemes suffer when there are not enough
RDs in LOS with the MD or when multipath is very dominant [21].
Many multipath mitigation techniques [22–29] have been proposed
to mitigate the problem of Non-Line-of-Sight (NLOS) propagation.
These techniques are still unable to overcome the problem of
insufficient number of RDs, which are in LOS with the MD. It has
been proven that with the knowledge of NLOS information [29–
31], localization performance will be greatly enhanced. Furthermore,
NLOS localization schemes [32–34] not only do not leverage any RD
that is in LOS with MD for localization but also enable accurate
Peer-to-peer localization capability. Peer-to-peer localization has
been a prevalent research topic especially in wireless cooperative
network [35, 36]. In the context of Peer-to-peer Localization, only the
neighbouring peer (only one RD) is needed to be in LOS with the
MD. In simplistic context, it is a mobile-to-mobile or one RD to MD
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localization. However, in multipath environment, the neighbouring
peer may be in NLOS too. In [32, 33], NLOS information, like those
of one bounce scattering, is not discarded but used to complement
LOS information (if any) in determining MD position. Briefly, TOA
and AOA measured with each one bounce scattering paths can be
manipulated to form a line on which the unknown mobile device is
most likely contained — referred to as Line of Possible Mobile Device
location (LPMD). In [32], each LPMD is assigned appropriately with a
weighting factor based on propagation distance between RD and MD,
and a selection process is proposed to choose LPMDs with weighting
factors above certain thresholds. The main drawback of this approach
is that the weighting factor for each LPMD and the threshold value
are adjusted accordingly for different environments. Furthermore,
the scheme used in [32] do not work well in environments when
multipath becomes too dominant or the distances travelled by multiple-
bounce signal paths become comparable with those of one-bounce
signal, causing weighting factors of multiple-bounce path LPMDs to
be comparable with those from one-bounce.

In this paper, we formulate a novel Peer-to-peer (mobile-
to-mobile/one RD to mobile) localization scheme to improve the
robustness of the method used in [32]. More importantly, our
proposed scheme does not require specifically adjusted weighting
factors/threshold value to select the LPMDs for localization. The
robustness and accuracy of the technique are also greatly enhanced
by our proposed Gaussian weighting process that does not require any
threshold value to select the LPMD for localization. The rationale of
this Gaussian weighting process is that since each measurement metric
contains noise, the intersection point between a pair of LPMDs will
also contain noise. The amount of noise variance of each intersection
point can be determined analytically and it depends on many factors
such as distance travelled and relative alignments of LPMD pairs
that form the intersection point. The proposed scheme will then
construct a Gaussian weighting function of each intersection point
using the calculated variance, and assign weights to intersection points
based on how close these points are to the intersection point of
interest by using Gaussian weighting function. Intersection points
that have smaller variances will assign less weight to their neighbors
and more weight to themselves and vice versa. This process removes
the need for specifically chosen weighting factors and threshold values.
Our proposed localization technique has also shown to be robust
and outperformed existing Peer-to-peer localization technique by a
significant margin for various indoor and outdoor environments.
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2. THEORY AND FORMULATION

2.1. Concept of Line of Possible Mobile Device Location
(LPMD) and Line Segment Intersection

The concept of Line of Possible Mobile Device (LPMD) in a 2-D
environment has been introduced in Seow and Tan [32]. It uses LOS
and one-bounce signal paths to find possibilities of MD’s position. In
Seow and Tan methodology, each propagation path associated between
each RD and MD has the measured TOAs and azimuth AOAs at
both RD and MD (a pair of TOA and AOA at each side for every
path). These four TOA and azimuth AOA parameters for each path
at the RD and MD pair can be extracted and measured using the super
resolution techniques such as Parametric Subspace-Based Estimation
(PSBE) and the Deterministic Parameter Estimation (DPE) in the
light of MUltiple SIgnal Classification (MUSIC), Space Alternating
Generalized EM (SAGE) respectively [37, 38]. In Seow and Tan
experiment, SAGE algorithm is adopted. The measured TOAs and
AOAs for each associated path between a RD and MD pair is then
used to construct the LPMD that depicts the likely MD locations.
These LPMDs are constructed on the context that their associated
paths undergo LOS or one bounce reflection or diffraction. As shown
in Fig. 1 [32] for Seow and Tan methodology, there are 3 RDs and
1 MD in the actual multipath environment in Nanyang Technological
University. Two dominant paths are extracted using SAGE algorithm
for each RD and MD pair, which translate to 6 LPMD lines.
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Figure 1. LPMDs cluster map in Nanyang Technological University at
school of EEE faulty block with MD location at coordinate (16, 8) [32].
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Upon construction of LPMDs, Seow and Tan methodology in [32]
proposes the calculation of the centroid C for these LPMDs. As shown
in Fig. 1, which is the typical multipath environment, LOS and the one-
bounce signal paths’ LPMDs will cluster together and multiple bounce
signal paths’ LPMDs will be the outliers. Therefore, through the
calculation of the centroid of all LPMDs, we will be able to isolate the
multiple bounce signal paths’ LPMDs. To enhance the identification of
the LOS and one bounce signal paths’ LPMDs through the calculation
of centroid C, a weighting factor for each LPMD has been included in
the centroid C computation. The weightage factor for LOS and the
one-bounce signal paths will be much higher as compared to multiple
bounce signal paths. This is because the propagation distance between
a RD and MD is always the shortest for LOS path as compared to
NLOS multi bounce paths.

Once the centroid has been computed, the selection of LPMDs
is done through the nearest distance to the centroid. As such, the
multiple bounce paths’ LPMDs can be accurately isolated. The final
step will be the line segment intersection of the LOS and one-bounce
signal paths’ LPMDs in order to give rise to the correct MD location.
The above formed the basis of Seow and Tan localization scheme.

2.2. Proposed Concept of Proximate Points

In a dense multipath environment such as an indoor scenario,
localization is difficult due to abundance of low height scatterers [39].
Seow and Tan algorithm in [32] may not work well if the multiple
bounce signal paths are abundant, as the centroid will be pivoted
towards the multiple bounce signal paths’ LPMDs rather than LOS
and one bounce signal paths’ LPMDs. However the ceiling one-bounce
reflected paths, which are usually dominant in such environment, could
be used to enhance the robustness of LPMD identification and hence
the localization accuracy. However, if the problem is to be extended
to 3-D, the LPMDs, in general, will not intersect with each other.
This is where the concept of proximate point comes into picture.
Proximate points are points on each LPMD in a LPMD pair in which
the distance between those 2 points is minimized. This section will
describe the formulation of LPMD in full 3-D, so that multipath
propagation including ceiling and general reflections can be used for
localization. Fig. 2 depicts proximate points Pa,1 and Pa,2 of a LPMD-
pair. In subsequent sections, those two paired proximate points are
combined together by taking their average to form Pa. Hence there is
only one proximate point per LPMD pair. As the Pa,1 and Pa,2 are
the shortest distance projection of the difference vector of the LPMP
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Figure 2. (a) A pair of LPMD and its corresponding proximate points
and (b) its projection onto UV -plane.

pair (~Pa,2 − ~Pa,1) on each respective LPMD, a new coordinate that is
u, v and w axes will be introduced to replace the conventional x, y, z
coordinates to simplify the formulation. In this new coordinate system,
w-axis is parallel to the vector between Pa,1 and Pa,2 in Fig. 2. U -axis
is defined as the axis that is in the direction of one of the LPMDs in
the pair, and v-axis as the orthogonal axis. The following notations
are defined with known RDs’ locations.

¦ dr′i,` : Distance measured by RDi for lth path from MD to RDi.

¦ dm′
i,` : Distance measured by MD for lth path from RDi to MD.

¦ φr′i,` : Azimuth AoA of lth path from MD as measured by RDi.

¦ φm′
i,` : Azimuth AoA of lth path from RDi as measured by MD.

¦ θr′i,` : Zenith AoA of lth path from MD as measured by RDi.

¦ θm′
i,` : Zenith AoA of lth path from RDi as measured by MD.

¦ M̂D = (X̂m, Ŷm, Ẑm) : Estimated MD’s position.

where i, j = 1, 2 . . . N where N is the total number of RD in the
environment. l, n = 1, 2 . . . L where L is the total number of paths
that can be traced from a particular RD.

The prime in the above variables denotes measurement metrics
with noise component inside them. For example: φr′i,l = φri,l+n(0, σφ)
where φri,l is the true azimuth AOA at RDi and the noise is assumed
to be Gaussian with zero mean and standard deviation of σφ. Similarly,
dm′

i,l = dmi,l + n(0, σd). Zenith angle is angle formed between vertical
axis (+z axis) and the signal vector whereby azimuth angle is the angle
formed in the horizontal plane (XY -plane) between +x-axis and the
signal vector as projected to XY -plane. The equations for 2-D LPMD



Progress In Electromagnetics Research B, Vol. 33, 2011 345

have been derived previously in [32]. Extending it to 3-D, we can
obtain the following equations:

Xoi,`,k = Xi + d′i,` × cos(α)× sin(β)

Y oi,`,k = Y i + d′i,` × sin(α)× sin(β)

Zoi,`,k = Zi + d′i,` × cos(β)

(1)

where coordinates of Oi,`,k are (Xoi,`,k, Y oi,`,k, Zoi,`,k), and k is 1 or 2
for α = φr′i,l, β = θr′i,l, d′i,l = dr′i,l or α = φm′

i,l, β = θm′
i,l, d′i,l = dm′

i,l

respectively. Coordinate (Xi, Yi, Zi) are the RDi position.
Consider the two LPMDs as shown in Fig. 2, and based on the

relationship where (~Pa,2 − ~Pa,1) · ea,1 = 0 and (~Pa,2 − ~Pa,1) · ea,2 = 0,
the proximate points of the LPMD pair can be calculated:

~Pa,1 = ~ra,1 + λ0~ea,1, ~Pa,1 = ~ra,2 + µ0~ea,2 (2)

where ~ea,1, ~ea,2 are unit vectors in the direction of each LPMD,
_
ra,1,

_
ra,2 are points on each LPMD and ~ra,12 = _

ra,2−_
ra,1 with µ0 =

− (~ra,12·~ea,1)−(~ra,12·~ea,2)(~ea,1·←e a,2)
1−(~ea,1·~ea,2) , λ0 = (~ra,12·~ea,1)−(~ra,12·~ea,2)(~ea,1·←e a,2)

1−(~ea,1·~ea,2)2
.

Coordinate Pa is derived as the average of the
_

Pa,1 and
_

Pa,2.

2.3. Localization Scheme

2.3.1. Gaussian Weighting Process

To enhance accuracy, a weighting factor is assigned to each LPMD
and its corresponding proximate points. The weighting factor of each
LPMD is chosen to be inversely proportional to the square of the
distance traveled of that particular LPMD. Each weighting factor
is also normalized with respect to other weighting factors. It is
formulated as follows:

Wi,l =
1

(d′i,l)
2

N∑
i=1

L∑
l=1

(
1

(d′i,l)
2

) (3)

After assigning weight to each LPMD, the next step is to find
proximate points of all possible combinations of LPMD pairs (as
discussed in Section 2.2) and calculate corresponding weighting factors.
The weighting factor of each proximate point depends on the weighting
factor of each LPMD in the LPMD pair and the angle between two
LPMDs. In general, the smaller the angle between two LPMD pair, the
greater the likelihood that the solution to proximate point’s position
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is ill conditioned. Hence we should assign less weight to LPMD pairs
that have smaller angles between them.

Wpa =
(

Wj,n ×Wi,`

Wj,n + Wi,`

)
× sinΨ, (i 6= j) ∪ (` 6= n) (4)

where i, j = 1, 2 . . . N where N is the total number of RD in the
environment. l, n = 1, 2 . . . L where L is the total number of paths
that can be traced from a particular RD. a = 1, 2 . . . A where A is the
number of proximate points existing in the environment. Ψ : Angle
between the LPMD pair in uv-plane (Fig. 2).

The next step is to calculate the Gaussian weighting. It
is calculated by taking into account proximate point’s individual
weighting factor and weighting factors of its surrounding proximate
points. The weighting factor of neighborhood proximate points is
inversely proportional to their distances to the proximate point of
interest. It is formulated as follows:

Wna =
K∑

b=1

Wpb

σpa

√
2π
× exp

(
−∥∥_

pb − _
pa

∥∥
2σ2

pa

)
(5)

where σpa is the error standard deviation of the position of proximate
point a. _

pb, Wpb = Coordinate and weighting factor of proximate
point b respectively.

The Gaussian weighting function takes the form of a Gaussian
distribution function. Given the variance of a proximate point, the
likelihood of that proximate point lying within a certain distance from
the mean can be modeled and calculated by a Gaussian distribution
function, with

_

P a being assumed to be the mean of the Gaussian
distribution. The MD position can be finally calculated as follows:

M̂D =
1
K

K∑

a=1

(
_

P a ×Wna) (6)

where
_

P a = (Xa, Ya, Za): Coordinate of a-th proximate point. M̂D =(
X̂m, Ŷm, Ẑm

)
: Estimated coordinate of the mobile device. K: No. of

proximate points in the environment.
The error standard deviation and variance of each proximate point

will be formulated in next section.

2.3.2. Error Variance of Proximate Point

The error variance is useful for determining the reliability of each
proximate point, and it will be used in (5) to determine the Gaussian
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weighting. In order to simplify the calculation, throughout the variance
calculation, it is assumed that the angle and distance measurement
errors are normally distributed with zero mean and known standard
deviation. The error standard deviation is assumed to be equal across
all the RDs and MD. Before going into the detailed analysis we will
first define:

duv
i,` : Distance traveled by lth path between MD and RDi as

projected on to UV -plane.
χmj,n , χrj,n : Elevation angle formed between AOA at MD and UV -

plane and angle between AOA at RDj and the UV -plane respectively.
ξmi,l

, ξri,l
: Elevation angle formed between RDi and one end of

the LPMDi,l and between RDi and the other end of the LPMDi,l

respectively in the UV -plane.
τi,`: Angle between the proximate point, one end of the LPMDi,l

and RDi in the UV -plane.

∆ρ = ‖_

P a −
_

P
′
a‖ =

√
∆ρ2

u + ∆ρ2
v + ∆ρ2

w: Localization error of

proximate point due to noise perturbation and
_

P
′
a is the proximate

point perturbed by noise.
Perturbing one measurement variable at a time, and summing

contributions from all measurement metrics obtain localization error
variance of each proximate point. Total squared localization error can
be obtained from squared summation of ∆ρu, ∆ρv, ∆ρw (localization
error in U , V and W direction respectively) where

∆ρu = εξruv
i,`

∆ξri,`
cosΨ + εξmuv

i,`
∆ξmi,`

cos Ψ + εduv
i,`

∆di,` cos (τi,`) cot Ψ

+εχruv
i,`

∆χri,`
cos (τi,`) cot Ψ + εχmuv

i,`
∆χmi,`

cos (τi,`) cot Ψ

+εξruv
j,n

∆ξrj,n +εξmuv
j,n

∆ξmj,n+εχruv
j,n

∆χrj,n×(cos(τj,n)cotΨ cos Ψ

+cos(τj,n)sinΨ)+εχmuv
j,n

∆χmj,n(cos(τj,n)cotΨcosΨ+cos(τj,n)sinΨ)

+εduv
j,n

∆dj,n (cos (τj,n) cot Ψ cos Ψ + cos (τj,n) sinΨ) (7)

∆ρv = εξruv
i,`

∆ξri,`
sinΨ + εξmuv

i,`
∆ξmi,`

sinΨ + εduv
i,`

∆di,l cos (τi,`)

+εχruv
i,`

∆χri,`
cos (τi,`) + εχmuv

i,`
∆χmi,`

cos (τi,`)

+εχruv
j,n

∆ξrj,n (cos (τj,n) cot Ψ sin Ψ + cos (τj,n) cosΨ)

+εχmuv
j,n

∆ξmj,n (cos (τj,n) cotΨ sin Ψ + cos (τj,n) cos Ψ)

+εduv
j,n

∆dj,n (cos (τj,n) cot Ψ sinΨ + cos (τj,n) cos Ψ) (8)

∆ρw = εχrw
i,`

∆χri,`
+ εχmw

i,`
∆χmi,`

+ εdw
i,`

∆di,` + εχrw
j,n

∆χrj,n

+εχmw
j,n

∆χmj,n + εdw
j,n

∆dj,n (9)

∆ρu, ∆ρv, ∆ρw are derived by perturbing one variable at a time and
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deducing the geometrical relations between the error of the variable
and the distance between the initial and perturbed proximate point’s
position. It is assumed throughout the derivation that ∆χr, ∆χm, ∆ξr

and ∆ξm are sufficiently small such that sin(∆χr) ≈ ∆χr. ∆ is defined
as the small change in the parameter. Since all angle and distance
measurement errors are statistically independent of each other, we have

E(∆ρ2
u) =

[
εξruv

i,`
cosΨ

]2
+σξ2

ri,`

[
εξmuv

i,`
cos Ψ

]2
+σd2

i,`

[
εduv

i,`
cos(τi,`) cot Ψ

]2

+σχ2
ri,`

[
εχruv

i,`
cos (τi,`) cot Ψ

]2
+ σχ2

mi,`

[
εχruv

i,`
cos (τi,`) cot Ψ

]2

+σξ2
mj,n

[
εξmuv

j,n

]2
+σξ2

rj,n

[
εξruv

j,n

]2

+σd2
j,n

[
εduv

j,n

(
cos(τj,n)

cos2 Ψ
sinΨ

+cos(τj,n) sinΨ
)]2

+σχ2
rj,n

[
εχruv

j,n

(
cos(τj,n)

cos2 Ψ
sinΨ

+cos(τj,n) sinΨ
)]2

+σχ2
mj,n

[
εχmuv

j,n

(
cos(τj,n)

cos2Ψ
sinΨ

+cos(τj,n) sinΨ
)]2

(10)

E(∆ρ2
v) = σξ2

ri,`

[
εξruv

i,`
sinψ

]2
+σξ2

mi,`

[
εξmuv

i,`
sinψ

]2
+σd2i,`

[
εduv

i,`
cos (τi,`)

]2

+σχ2
ri,`

[
εχruv

i,`
cos (τi,`)

]2
+ σχ2

mi,`

[
εχmuv

i,`
cos (τi,`)

]2

+σd2
j,n

[
εduv

j,n
(2 cos(τj,n) cosΨ)

]2
+σχ2

rj,n

[
εχruv

j,n
(2 cos(τj,n)cosΨ)

]2

+σχ2
mj,n

[
εχmuv

j,n
(2 cos (τj,n) cosΨ)

]2
(11)

E(∆ρ2
w) = σχ2

ri,`

[
εχrw

i,`

]2
+ σχ2

mi,`

[
εχmw

i,`

]2
+ σd2

i,`

[
εdw

i,`

]2

+σχ2
rj,n

[
εχrw

j,n

]2
+ σχ2

mj,n

[
εχmw

j,n

]2
+ σd2

j,n

[
εdw

j,n

]2
(12)

Finally we can find the total distance error variance of each
proximate point by:
∆p2 =∆p2

u+∆p2
v+∆p2

w, E(∆p2)=E(∆p2
u)+E(∆p2

v)+E(∆p2
w)=σ2

pa

(13)

3. RESULTS AND DISCUSSION

To test the applicability and accuracy of our proposed peer-to-peer
localization scheme, we compare our results with those presented in [32]
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with two different indoor and outdoor environments [39, 43] as shown
in Figs. 3 and 4. In these figures, RD denotes the reference mobile
node, while the node to be localized with respect to RD is denoted
as MD. For the indoor environment as shown in Fig. 3, the height
between ceiling and floor is 2.6 m and the heights of all scatterers are
2m. For the outdoor environment as shown in Fig. 4, all buildings are
assumed to be much higher than RD and MD which are assumed to be
at the height of 1m above ground. The authors in [32] presented the
results of their proposed technique by selecting two best two LPMDs
or one-bound scattering paths based on the following procedures: (1)
each LPMD is assigned a weighting factor based on the propagation
path length, (2) only LPMDs or paths that have weighting factors
above certain threshold value are included in the calculation. The
optimum threshold value in [32] is found to be 0.1. In our proposed
scheme, two LPMDs are required to obtained one proximate point. In
order to give a fair comparison, we will use one proximate point with
the highest Gaussian weighting factor as formulated in (5) to estimate
the MD position. Channel measurement on real environments [39, 43]
were taken and the measured data metrics were verified according to
the traditional ray tracing methodology [40–42] to obtain the data
metrics of TOA and AOA for the two environments. The delay profile
measurements were taken using a network analyzer. Fig. 3 traces the
actual rays that run between the RD and MD. This is based on the
correlation between the measured data metrics and the ray tracing
methodology. For a rigorous comparison with [32], the noise free TOA
and AOA of each signal path between RD and MD are subject to
random TOA and AOA Gaussian noise with zero mean and a given
variance. The root mean square (RMS) error σrms that is related to the
true MD location is calculated as ‖MD − M̂D‖ where M̂D denote the
estimated MD position. Each set of σrms is computed based on 10,000
independent simulation runs using MatLab.

RD is positioned at (5, 2, 1) and two different MDs are at
positioned (13, 4, 1) and (16, 8, 1) as shown in Figs. 3(a) and 3(b)
respectively. In Fig. 3(a), RD is in LOS with MD and the signal paths
that will be used for localization include the LOS, ceiling and floor
reflected paths (solid lines) and three one-bounce wall reflection paths
(dash-lines). Higher order scattering paths that must be mitigated
include twelve two-bounce reflected paths (doted-line) and twenty-four
three-bounce reflected paths (shown as doted-line). In Fig. 3(b), there
is no direct LOS path between MD and RD. The shortest dominant
propagation path is the ceiling reflected path, as shown as solid line.
The ceiling reflected path and the two one-bounce wall reflected paths
could be exploited to perform localization. Higher order scattering
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Figure 3. Indoor Environment (a) RD is in LOS with the MD (b)
RD is in NLOS with the MD.

paths that may cause localization error include ten two-bounce and
twenty-five three-bounce reflection paths.

Figure 5 depicts the location accuracy of our proposed Peer-to-
peer localization scheme as compared with [32] via their cumulative
probability distribution (CDF). The AOA standard deviations for
both RD and MD (σθ and σφ) are chosen to be 4 degrees (and 8
degrees) while the distance standard deviations σd for both RD and
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Figure 4. Outdoor environment showing scatterplot of the path’s
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Table 1. Propagation Distance and weighting factor for one bounce
and multiple bounce scattering paths.

Number of reflection
Propagation

Distance
Weighting factor

of LPMD

One bounce scattering path
12.9m 0.046
14.8m 0.040
21.7m 0.027

Two bounce scattering path

14.9m 0.040
15.1m 0.039
23.1m 0.025
33.6m 0.018

Three bounce scattering path

15.7m 0.038
20m 0.029

22.7m 0.026
25.7m 0.023
55.1m 0.011
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MD are chosen to be 2 m (and 4 m) — referred to as Condition 1
and 2 respectively. In Fig. 5, ωth is the LPMD weighting threshold
value used in [32] to choose the two best LPMDs for localization.
In our simulation, we have simulated ωth from 0 to 0.1 and have
chosen the optimum threshold value for comparisons. It is observed
in Fig. 5 that our proposed scheme outperforms the existing Seow
and Tan’s technique by a significant margin. For example in LOS
scenario (Fig. 5(a)) under condition 1: σd = 2 m, σθ = σφ = 4◦, our
proposed Gaussian weighted schemes achieved an accuracy of 1.7 m for
90% of the time as compared to 2.4 m of Seow and Tan’s in [32]. This
represents an improvement of about 29%. The margin of improvement
increased to 42% as the TOA and AOA noise increases to Condition
2: σd = 4 m, σθ = σφ = 8◦. In Fig. 5(b), MD is in NLOS with RD
with very severe multipath propagation i.e., the distances traveled by
many multiple-bounce paths are comparable or shorter than the one-
bounce scattering paths making the weighting factors and threshold
value in [32] ineffective. Table 1 shows the true propagation distance
of single and multiple-bounce paths and their corresponding weighting
factors for MD shown in Fig. 3(b). In this case, many multi-bounce
paths have higher weighting compared with the single-bounce paths.
Too high a threshold value may result in less than 2 paths that are
required for localization. For example, only the ceiling reflected path
would be chosen if ωth is more than 0.04. On the other hand, too
low a threshold value will not be able to exclude the multiple-bounce
paths. These multiple-bounce paths, if mistakenly used, will result
in considerable errors. For example, under condition 1, our proposed
Gaussian weighted scheme has achieved an accuracy of 1.6m for 90%
of the time as compared to 6.9m (ωth = 0.03) and 9.2 m (ωth = 0.02)
of Seow and Tan’s in [32]. This represents a significant improvement
of about 77% and 83% respectively as shown in Fig. 5(b).

To test the applicability and accuracy of our proposed scheme
in a larger urban outdoor environment, Manhattan urban street-grid
environment [43] are used with RD positioned at 40 meters from the
cross junction and two different MD positions, MD1 and MD2 at 50
and 80 meters from the cross junction respectively. This is shown in
Fig. 4. This simulated the MD following a path from MD1 to MD2 of
30m distance difference. In this scenario, RD is in NLOS with MD1

and MD2 and there are only 4 corner diffracted paths that can be used
for localization (solid lines in Fig. 4). In this case, there are two three-
bounce building-reflected paths (dotted line) that should be excluded
to avoid localization errors. Fig. 4 also shows the LPMDs for all the
major propagation paths at MD1. Similar to the indoor environment in
Fig. 3, the AOA standard deviations at both RD and MD are chosen to
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Figure 5. (a) Comparison of CDF performance for MD located
at (13, 4, 1) — RD is in LOS with MD. (b) Comparison of CDF
performance for MD located at (16, 8, 1) — RD is in NLOS with MD.

be 4 degrees and 8 degrees while the corresponding distance standard
deviations σd for both RD and MD are chosen to be 2 m and 4m.

It is observed from the simulation results, as illustrated in
Fig. 6, our proposed scheme outperforms the existing Line Segment
Intersection technique by a significant margin especially when MD is
moved away from the cross junction. For example, for MD1 which is
positioned at 50 meters from the cross junction, and using σd = 2 m,
σθ = σφ = 4◦, Fig. 6 shows that our proposed scheme achieves an
accuracy of 22m for 90% of the time as compared 31.5m (ωth = 0.16)
of Seow and Tan’s Line Segment Intersection in [32]. An improvement
of about 30% is shown in Fig. 6. This margin increases to 53% for MD2,
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Figure 6. Comparison of CDF performance for MD located at
(5,−50, 1).

which is located further away of about 80 meters from the junction.
The accuracy of the Line Segment Intersection deteriorates due to the
fact that as the distance becomes larger, the angles between LPMDs, β,
will become smaller. The Line Segment Intersection will not work well
under this condition especially under high TOA and AOA noise. In our
proposed Gaussian weighting method, the weight of each proximate
point is assigned based on the proximity of other proximate points.
The smaller the distance between each neighborhood proximate point
and proximate point of interest, the larger the weight will be assigned.
As shown in Fig. 4, the proximate points due to the 4 corner-diffracted
paths are close to each other as compared with those involving three-
bounce building reflected paths. As the noise increases to σd = 4 m,
σθ = σφ = 8◦, our proposed scheme has an accuracy of about 39 m as
compared to 85 m of Seow and Tan’s Line Segment Intersection in [32]
for a mobile device located at MD1 The improvement is about 54%.

Overall, our proposed scheme has outperformed the Line Segment
Intersection technique in [32] in all cases. The margin of improvement
increases as the distance between RD and MD becomes larger (or the
angles between LPMDs become smaller) and our proposed scheme
is robust under high TOA and AOA noise and severe multipath
conditions.

4. CONCLUSION

A novel approach of peer-to-peer NLOS localization scheme using
proximate points and Gaussian weighting process has been proposed
with the main advantage of being able to work robustly in dense
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multiple environment. It has been demonstrated experimentally
and coupled with simulations in two typical indoor and outdoor
environments that our proposed 3D NLOS localization scheme
outperforms the existing NLOS localization scheme in all cases in
relation to various degree of TOA and AOA measurement noise.
Location error standard deviation σrms of less than 1.6m and 22 m
for 90% of time for the indoor and outdoor environment respectively
have been obtained.
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