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Abstract—It is well-known that the choice of the auxiliary surface and
the arrangement of radiation centers play a decisive role for ensuring
accuracy and stability of the method of auxiliary sources (MAS). Using
level set technique, a numerical scheme is proposed to determine the
optimal location and amplitudes of the auxiliary sources for three-
dimensional scattering problems.

1. INTRODUCTION

The method of auxiliary sources was introduced by a Georgian research
group [1] for resolving two-dimensional electrodynamics problems.
Later, it has been widely used to solve the boundary value problems
arising in scattering analysis, see [2, 3]. The key idea behind
this method is interchanging the differential equation and boundary
conditions [4]. This allows to remove the singularities of the singular
integral equation by shifting the auxiliary sources contour relative to
integration one [5]. Proceeding from this, the electromagnetic fields
are expanded over the basis generated by the particular solutions of
Helmoltz-equation [6]. Then, the boundary value problem is solved by
imposing the boundary condition at the physical scatterer surface in
the same way as the standard SIE method (surface integral equation).
Previous investigations [7, 8] have shown that the correct choice of the
auxiliary surface and the placement of the radiation centers(auxiliary
sources) are important factors to achieve efficiency of the MAS.
The optimal choice of MAS parameters (auxiliary surface, radiation
centers) is an open issue that was discussed in the works of many
authors [9, 10]. In this paper, we propose a novel iterative scheme
based on the level set technique to find the optimal MAS parameters.
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The level-set method is one computational technique for tracking a
propagating interface over time. The central idea of level set method is
to implicitly represent the interface of interest as the zero level set of a
smooth enough function ϕ, known as level set function. So, to identify
the desired interface, we just need to identify the appropriate level set
function. Using the level-set representation of the auxiliary surface,
we then create a numerical scheme to search the optimal auxiliary
parameters for three-dimensional scattering problems.

2. THREE-DIMENSIONAL MAS FORMULATION

Let consider Ω an open subset of R3, occupied by a homogeneous
conducting medium, and let Γ the boundary of Ω. ε and σ denote
respectively the relative electric permittivity and the conductivity of
the medium. The conductor is illuminated by a plan linearly polarized
electromagnetic wave ( ~Ei, ~Hi):

~Ei = exp(jKk̂ · ~r)â (1)

~H i =
1
Z0

exp(jKk̂ · ~r)b̂ (2)

where k̂, â and b̂ are unit vectors specifying the directions of incidence,
the electric field and the magnetic field, respectively.

The propagation constant, permittivity and intrinsic impedance
of the surrounding medium are K, ε0 and Z0 respectively, and a time
factor exp(−jωt) has been assumed and suppressed.

The total electric and magnetic fields are written as the sum of
the incident and scattered fields.

~E = ~Ei + ~Es (3)
~H = ~H i + ~Hs (4)

The tangential components of the surface field are interpreted as
electric and magnetic currents:

~J = n̂× ~H = n̂× ~H i + n̂× ~Hs = ~J i + ~Js (5)
~M = −n̂× ~E = −n̂× ~Ei − n̂× ~Es = ~M i + ~M s (6)

For a perfect conductor object, the surface impedance boundary
conditions can be written in the form:

~n× ~Es = ~M i (7)

According to the MAS method, let S denotes the auxiliary surface,
M1≤k≤n the radiation sources positioned at points ~r1≤k≤n as shown



Progress In Electromagnetics Research B, Vol. 33, 2011 205

M1 k n

S

≤ ≤

Γ

Figure 1. MAS geometry.

in Figure 1 and ~U(|~rk − ~r|)1≤k≤∞ the Helmholtz equation solution
associated with elementary sources.

~U(|~rk − ~r|) =
ejK|~rk−~r|

4π |~rk − ~r|2 (~rk − ~r) (8)

Kupradze [4] proved that the set of functions ~U(|~rk − ~r|)1≤k≤∞ is
complete and linearly independent on the surface Γ in L2 space. So,
there are coefficients a1≤k≤n such that, using the n first functions
of the aforementioned system, the scattered electric field can be
approximated as follows.

~Es =
n∑

k=1

ak
~U(|~rk − ~r|) (9)

Let
~G(|~rk − ~r|) = ~n(~r)× ~U(|~rk − ~r|) (10)

The boundary conditions can be written as:
n∑

k=1

ak
~G(|~rk − ~r|) = ~M i(~r) (11)

By matching the boundary condition at m collocation points ~xp 1 ≤
p ≤ m, the problem can be formulated as follows:

Find (a1≤k≤n) such that
n∑

k=1

ak
~G(|~rk − ~rp|) = ~M i(~xp) 1 ≤ p ≤ m (12)

The expansion coefficients (a1≤k≤n) can be interpreted as the
amplitudes of auxiliary sources. Once the coefficients are calculated,
the approximate solution of the boundary problem outside Ω is

~Es(~r) ≈
n∑

k=1

ak
~U(|~rk − ~r|) (13)
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which will approach exact solution as n →∞.
It should be noted, that the stability of the obtained algebraic

system (12) depends on the proper choice of auxiliary parameters
which are the shape of auxiliary surface S and distribution of the
radiation centers ~r1≤k≤n. Ignoring this point leads to a weakening
of convergence and even to a diverging of solution with increasing n.
Therefore, locate the main singularities of scattered field is an essential
part of the scheme to construct the optimal solution by means of the
MAS [10]. To make the method more effective we must locate the
auxiliary sources in the singularity region as shown in Figure 2.

 Phase centers

Possible auxiliary 

surface (acceptable 

but not optimal)

 Optimal auxiliary surface

The scattered field from

an elliptical metallic 

cylinder has phase 

centers located in the 

ellipse foci's region [18].

Γ

Figure 2. MAS geometry of an elliptical cylinder.

The matter is that the necessary number of terms of the series (12)
strongly depends on the relative distance between the real surface
Γ and the auxiliary surface S on which the auxiliary sources are
placed. When the auxiliary surface moves away from the real one
the number of the terms in (12) decreases strongly and consequently,
the computational cost decrease also [10].

3. THE LEVEL SET METHOD

3.1. An Overview of Level Set Method

The level set method was introduced by Osher and Sethian [11] in
the fields of fluid dynamics, for tracing interfaces between different
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phases of fluid flows. Later, it has been used for many different
kind of physical problems, see [12–14, 16]. The main idea behind
this method is to represent the interface at each time t as the zero
level set of a function ϕ. Thus, given a surface S in R3 bounding
an open region D ⊂ Ω, we wish to compute and study its motion
under a velocity field F . The level set idea consists in defining a
smooth function ϕ(~r, t) : R3 × R+ → R to implicitly represent the
interface S as the set of points ~r ∈ R3 where ϕ(~r, t) vanishes. That
is S =

{
~r ∈ R3/ϕ(~r, t) = 0

}
. The function ϕ is called the level set

function, and it has the following properties

ϕ < 0 for ~r ∈ D

ϕ > 0 for ~r /∈ D

ϕ = 0 for ~r ∈ S

(14)

This concept illustrated by the Figure 3.

Figure 3. Level set function.

The evolution of the implicit function ϕ can be described by
the following partial differential equation, known as Hamilton-Jacobi
equation [17]

∂ϕ

∂t
+ ‖Oϕ‖F = 0, ϕ(~r, 0) = ϕ0 (15)

where, ∂
∂t denotes a partial derivative to the temporal variable t and

O denotes the gradient operator. The function ϕ0 embeds the initial
position of the moving surface S.

3.2. The Level Set Dictionary

Once the level set function ϕ is defined, most of the geometrical
quantities of the surface S can be represented in terms of the function
ϕ [16]. The normal vector is given by:

~n =
Oϕ

‖Oϕ‖ (16)
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The mean curvature:

κ = −O · ~n = −O · Oϕ

‖Oϕ‖ (17)

The Area of S

L(ϕ) =
∫

Ω
δ(ϕ) ‖Oϕ‖ dS (18)

where δ(ϕ) denotes the Dirac function

δ(ϕ) =
{

1 if ϕ = 0
0 if ϕ 6= 0 (19)

Moreover, we have that, the surface integral of a function f along S
can be writing in function of ϕ∫

S
f(~r)dS =

∫

Ω
f(~r)δ(ϕ) ‖Oϕ‖ dr (20)

4. METHODOLOGY

The algebraic system (12) can be writing in the following form∫

S
A(~r′)~G

(∣∣∣~r′ − ~xp

∣∣∣
)

dS = ~M i(~xp) 1 ≤ p ≤ m (21)

where

A(~r′) =
n∑

k=1

akδ(~rk − ~r′) (22)

δ(~rk − ~r′) =
{

1 if ~r′ = ~rk

0 if ~r′ 6= ~rk
(23)

Let consider D an open subset of Ω enclosed by the auxiliary
surface S as shown in Figure 4.

We define ϕ as a level set function of S by

ϕ(~r, t) =
{−distance(~r, S) if ~r ∈ D

distance(~r, S) if ~r /∈ D
(24)

S divides the domain D into two parts, and then the level set function
ϕ is negative inside and positive outside.

S =
{
~r ∈ R3, ϕ(~r, t) = 0

}
(25)

By using the property (20) of the level set method, the Equation (21)
can be writing as∫

Ω
A(~r′)~G

(∣∣∣~r′ − ~xp

∣∣∣
)

δ(ϕ) ‖Oϕ‖ dr′ = ~M i(~xp) 1 ≤ p ≤ m (26)
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Figure 4. Level-set representation of the auxiliary surface.

The problem can be formulated as an optimization one

(a∗1≤k≤n, ϕ∗) = argmin
ak,ϕ

J(A,ϕ) (27)

Find the amplitudes a∗1≤k≤n and the level set function ϕ∗ which
minimize the cost functional J .

J(A,ϕ)=
1
m

m∑

p=1

∥∥∥∥
∫

Ω
A(~r′)~G

(∣∣∣~r′−~xp

∣∣∣
)

δ(ϕ) ‖Oϕ‖ dr′− ~M i(~xp)
∥∥∥∥

2

(28)

The optimal distribution of the radiation centers ~r1≤k≤n strongly
depends on the area of the auxiliary surface. By shifting the sources
into the conducting body the scattered field function becomes more
smooth on the surface of the body and the fulfillment of the boundary
conditions in the region between collocation points is improved [7, 8].
However, the shift of the auxiliary surface is restricted by the location
of the scattered field singularities [10], ignoring this point leads to the
divergence of the solution. So, the area of the auxiliary surface should
be added to the cost functional J as regularisation term. Therefore,
we force the algorithm to search the best-suited auxiliary surface that
encloses the singularities.

J(A,ϕ) =
1
m

m∑

p=1

∥∥∥∥
∫

Ω
A(~r′)~G

(∣∣∣~r′ − ~xp

∣∣∣
)

δ(ϕ) ‖Oϕ‖ dr′ − ~M i(~xp)
∥∥∥∥

2

+βL(ϕ) (29)

where β is a real-valued regularization coefficient.
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4.1. Calculation of the Auxiliary Surface

The evolution of ϕ is described by the following Hamilton-Jacobi
equation.

∂ϕ

∂t
+ ‖Oϕ‖F = 0, ϕ(~r, 0) = ϕ0 (30)

We want to choose an evolution law F such that ∂J
∂t < 0, J will decrease

in the artificial time evolution during sufficiently small time interval
[0, τ ]. By applying the chain rule, we get

∂J

∂t
=

∂J

∂ϕ
· ∂ϕ

∂t
(31)

from Equation (30) we have
∂ϕ

∂t
= −‖Oϕ‖F (32)

So,
∂J

∂t
= −‖Oϕ‖F · ∂J

∂ϕ
(33)

An obvious selection for F is

F = ρ
∂J

∂ϕ
with ρ > 0 (34)

Refer to Appendix A. for the calculation of ∂J
∂ϕ .

By dynamically updating the level set function, the zero level set of
the function is also changed. Thus, to find the optimal auxiliary surface
S∗ we just need to find the corresponding function ϕ∗, by resolving (30)
with F = ρ∂J

∂ϕ .

4.2. Calculation of the Radiation Center Positions

Suppose ϕ is perturbed by a small variation δϕ as shown in Figure 5.
Let δr be the resulting variation of the point ~r. By taking the variations
of the Equation (30) between t = 0 and t = τ , we get

δϕ + Fτ ‖Oϕ‖ = 0 (35)
We have

Fτ = δr (36)
We find the relation between δr and δϕ.

δr = − δϕ

‖Oϕ‖ (37)

So, the radiations center positions ~r1≤k≤n are updated as follows.

~rk(t + τ) = ~rk(t)− δϕ

‖Oϕ‖ (38)
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Figure 5. Deformation of shapes by the level set formulation.

4.3. Calculation of the Auxiliary Sources’ Amplitudes

To find the optimal auxiliary sources’ amplitudes, we should update
a1≤k≤n by following the descent direction of the cost function J .
According to the gradient type method the descent direction is given
by the negative derivative of J with respect to a1≤k≤n. So, we just
need to compute ∂J

∂ak
for 1 ≤ k ≤ n and updating ai

k as follows.
Choose the step size α

ak(t + τ) = ak(t)− α
∂J

∂ak
(39)

Refer to Appendix B. for the calculation of ∂J
∂ak

.

4.4. Numerical Scheme

The following numerical scheme is implemented to determine the
optimal MAS parameters.

1- Choose the initial level set function ϕ0, represents the initial
auxiliary surface S0

2- Choose the initial positions and amplitudes of the radiation
centers (~r0

1≤k≤n, a0
1≤k≤n)

3- For i ≥ 1
- Choose the step size ρi, the regularization coefficient β and

calculate F

F = ρi ∂J

∂ϕ
(40)
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- Determine the level set function ϕi by resolving the Hmilton-
Jaccobi equation in the time interval [0, τ ] with the initial
condition ϕ = ϕi−1

∂ϕ

∂t
+ ‖Oϕ‖F = 0 (41)

- update ~ri
k

~ri
k = ~ri−1

k − δϕ

‖Oϕ‖ (42)

- Choose the step size αi and update ai
k

ai
k = ai−1

k − αi ∂J

∂ak
(43)

- Go to the next iteration if not converged.
The error on the boundary condition is used for convergence criterion

ep,1≤p≤m =

∥∥∥
∫
Ω A(~r′)~G

(∣∣∣~r′ − ~xp

∣∣∣
)

δ(ϕ) ‖Oϕ‖ dr′ − ~M i(~xp)
∥∥∥

∥∥∥ ~M i(~xp)
∥∥∥

(44)

This iterative process will continue until a stop criterion is satisfied,
typically when the errors ep,1≤p≤m exhibit, between two iterations,
becomes smaller than a predefined threshold.

The proposed numerical scheme provides three degrees of freedom
(auxiliary surface, positions and amplitudes of the radiation centers)
to achieve any predesigned boundary condition error, which is a
great advantage over classical MAS implementations. Indeed, in
the classical MAS implementations, the auxiliary surface and the
radiation center positions are fixed beforehand. So, the accuracy is not
automatically adjustable, the only degree of freedom is the auxiliary
sources’ amplitudes. Generally, these techniques are limited to the case
when the distance d between the physical surface Γ and the auxiliary
surface S satisfies the condition d < Rmin, where Rmin is the minimal
radius of positive curvature of the surface Γ, see [10]. Several numerical
methods have been proposed to overcome these constraints for the
case of two-dimensional scattering problems, such as [18, 19]. By using
level set technique. The proposed method shows a great potential
to determine the optimal MAS parameters that satisfy a predesigned
accuracy for three-dimensional scattering problems.

5. NUMERICAL EXAMPLE

In order to show the feasibility of this method, we present two
numerical examples of construction of optimal MAS parameters. The
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aim of the first example is to show the ability of the proposed scheme
to locate scattered field singularities. The second example compares
the accuracy and the computational cost obtained by the proposed
scheme and those obtained by the standard MAS implementation.

5.1. Perfect Electric Conductor Ellipsoid

We consider a PEC ellipsoid illuminated by an incident plane wave at
100MHz. The considered ellipsoid is defined by the following equation

x2

4
+

y2

2
+ z2 = 0.1 (45)

The Figure 6 shows contour plots at 0, 23, 50 and 70 iterations on a
slice through the middle of the auxiliary surface. It is well-known that
the scattered field from a metallic ellipsoid has phase centers located in
the ellipsoid foci’s region [10]. Figure 6 shows the construction of the
auxiliary surface where the boundary condition error does not exceed
1%. We deduce that the obtained surface encloses the ellipsoid foci’s
region, which is consistent with the analytic result.

-0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

iteration 23

iteration 50
iteration 70

iteration 0

Figure 6. Singularities location of a PEC ellipsoid.

5.2. Perfect Electric Conductor Dumbbell

We consider a PEC smooth dumbbell, consists of two uniform spheres
of radius R = 0.3m joined by a cylinder of length l = 0.5m and radius
r = 0.1m, as shown in Figure 7. The dumbbell was illuminated by an
incident plane wave at f = 100MHz.

As we have noticed in previous sections, to start the numerical
scheme one needs to have an initial guess for both, the auxiliary surface
and the distribution of the radiation sources. Since we have no prior
knowledge on either unknown, we proceed as follows:
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Figure 7. PEC smooth dumbbell.

Figure 8. Auxiliary surface evolution at 0, 9, 18 and 27 iterations.

- We define the initial auxiliary surface S0 as two spheres placed
within the conductor.

- We take n = 150 sources uniformly distributed on S0.
- We take m = 150 collocation points uniformly distributed on the
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conductor surface.

In the numerical implementation and in order to have a good accuracy,
we have replaced the delta function δ by the following smooth function

δh(ϕ) =
h

π(ϕ2 + h2)
(46)

h is chosen sufficiently small.
The proposed method has been developed and implemented within

MATLAB environment, and the level set Toolbox of Ian Mitchell [15].
The Figure 8 shows the auxiliary surface evolution at 0, 9, 18 and 27
iterations.

Once the proposed scheme converges, we calculate the bistatic
RCS of the dumbbell. Figure 9 shows a comparison between the
bistatic RCS values obtained from the proposed scheme and those
obtained by the standard MAS implementation as described in [10].
The result from FEKO electromagnetic simulation software is taken as
reference. With FEKO environment, the dumbbell surface is modelled
by PEC impedance and the RCS is calculated by the Method of
Moments.

The standard MAS is implemented according to the recommen-
dations [10] with the following configuration
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²

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2

R
C

S
 m

²

FEKO

Proposed method

Standard MAS
implementation

FEKO

Proposed method

Standard MAS
implementation

θ ϕIncident angle (  =0,   =0)
θ ϕIncident angle (  =   ,   =0)

π

Figure 9. Comparison between the bistatic RCS values obtained
from the proposed scheme and those obtained by the standard MAS
implementation.
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- We take the distance d between the auxiliary surface and the
boundary as d = Rmin

2 , where Rmin is the minimal radius of positive
curvature of the dumbbell’s surface.

- We take n = 300 sources uniformly distributed on the auxiliary
surface.

- We take m = 300 collocation points uniformly distributed on the
dumbbell’s surface.

The above implementation leads to a boundary condition error e = 5%.
However, the proposed method leads to a boundary condition error
e = 0.1% with 150 auxiliary sources and 150 collocation points. Which
proves that the proposed method is able to achieve high accuracy with
less implementation cost than the standard MAS implementation.

6. CONCLUSIONS

We have reported a numerical scheme to determine the optimal MAS
parameters for three-dimensional scattering problems, by using the
level set technique. Comparison between the RCS values obtained
from the proposed scheme and those obtained from the standard
MAS implementation, showing that the proposed method can achieve
high accuracy with less implementation cost. We have limited our
theoretical study to perfect electric conductors, but the proposed
method can be easily extended to study dielectric objects.

APPENDIX A.

Let V a space of functions defined over Ω. The Gateaux differential is
defined in the sense of distributions as:

For a given F : V 7→ R which maps elements from a space V to
real numbers, we say that G(ϕ) is the Gateaux differential of F (ϕ) if

G(ϕ) = lim
µ→0

d

dµ
F (ϕ + µh) (A1)

Normally, we write ∂F
∂ϕ = G(ϕ).

The cost functional J is witting as

J(A,ϕ) = g(A, δ(ϕ) ‖Oϕ‖) + βL(ϕ) (A2)

where

g(A,X) =
1
m

m∑

p=1

∥∥∥∥
∫

Ω
A(~r′)~G

(∣∣∣~r′ − ~xp

∣∣∣
)

Xdr′ − ~M i(~xp)
∥∥∥∥

2

(A3)
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and
L(ϕ) =

∫

Ω
δ(ϕ) ‖Oϕ‖ dS (A4)

So,
∂J

∂ϕ
=

∂(δ(ϕ) ‖Oϕ‖)
∂ϕ

∂g

∂X
|X=δ(ϕ)‖Oϕ‖ +β

∂L(ϕ)
∂ϕ

(A5)

we have from [16]

∂L

∂ϕ
= −δ(ϕ)O · Oϕ

‖Oϕ‖ = δ(ϕ)κ(ϕ) (A6)

and
∂(δ(ϕ) ‖Oϕ‖)

∂ϕ
= δ′(ϕ) ‖Oϕ‖ − δ(ϕ)O · Oϕ

‖Oϕ‖
= δ′(ϕ) ‖Oϕ‖+ δ(ϕ)κ(ϕ) (A7)

By applying the definition of the Gateaux differential we get,

∂g

∂X
=

2
m

m∑

p=1

A(~r)~G(|~r−~xp|)·
∫

Ω

[
A(r′)~G

(∣∣∣~r′−~xp

∣∣∣
)
X− ~M i(~xp)

]
dr′(A8)

APPENDIX B.

By applying the chain’s rule, we get

∂J

∂ak
=

∂J

∂A

∂A

∂ak
(B1)

We have

A(r) =
n∑

k=1

akδ(~rk − ~r) (B2)

So, it is easy to see that

∂A

∂ak
= δ(~rk − ~r) (B3)

By applying the definition of the Gateaux differential we get,

∂J

∂A
=

2
m

m∑

p=1

δ(ϕ) ‖Oϕ‖ ~G(|~r − ~xp|)

·
∫

Ω

[
A(~r′)~G

∣∣∣~r′ − ~xp

∣∣∣)δ(ϕ) ‖Oϕ‖ − ~M i(~xp)
]
dr′ (B4)
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