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Abstract—A general rigorous analytic framework for computing the
transmembrane potential shift resulting from the nonlinear voltage-
current membrane relationship in response to wideband stochastic
electromagnetic radiation is outlined, based on Volterra functional
series. The special case of an insulated cylindrical cell with Hodgkin-
Huxley membrane in an infinite homogeneous medium is worked out in
detail, for the simplest case where the applied electric is normal to the
cell axis, and independent from the axial coordinate. Representative
computational results for a zero-average stationary band-limited white
Gaussian incident field are illustrated and briefly discussed.

1. INTRODUCTION

The possible role of cell membranes as sites of direct interaction
between electromagnetic (henceforth EM) fields and living systems,
with specific reference to possible (albeit elusive) athermal and/or non-
thermal effects†, was perhaps first emphasized by Schwan throughout
his seminal work on the subject [1, 2].

The possible relevance of nonlinearity in the cell-membrane
voltage-current relationship was also early recognized [3, 4], and in-
voked, e.g., to explain EM-exposure induced changes in cytoplasmatic
ion concentrations [5] and firing-potentials in excitable cells [6], as well
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as the different response observed to continuous-wave compared to low-
frequency modulated radiation, possibly due to membrane-related rec-
tification and demodulation [7].

In [8] a general framework for computing the change in the
transmembrane potential of a cell exposed to a time-harmonic
EM field was introduced, based on Volterra series (henceforth VS)
expansions [9]. The same tool was subsequently adopted in [10, 11],
and eventually applied in [12] and, independently, in [13], to solve
the Hodgkin-Huxley equation [14] describing the membrane voltage-
current relationship in excitable cells.

In [15], for the first time to the best of our knowledge, the Volterra
series formalism was used to derive the power spectral density of the
transmembrane potential response in a spherical cell with nonlinear
membrane exposed to a wideband stochastic EM field, by solving
a nonlinear boundary value problem. The non-trivial details of the
formal derivation were not included in [15] due to space limitations.
Here we present a full derivation for an insulated cylindrical cell with
Hodgkin-Huxley (henceforth H-H) membrane, for the simplest two-
dimensional case where the incident field is uniform along the cell axis.

This study is motivated by the possibility of modeling a variety of
complex EM-polluted environments in terms of stochastic fields. The
theoretical foundations for modeling EM fields in densely populated
environments where a multitude of different EM sources, from
narrowband to UWB, co-exist, were laid out by Middleton in a series of
seminal papers [16–18]. According to [16], under these circumstances
the field can be modeled as the superposition of a Gaussian stochastic
process, representing the cumulative effects of a large number of weak
sources (by the central limit theorem), and a Poisson (impulsive) one,
produced by random strong transients (these latter may also originate
a Gaussian process, if the product between their rate and their typical
duration is a large number [18]).

Cell membranes exhibit electrical noise of endogenous origin [19].
Applied EM fields changing the level and spectral distribution of the
transmembrane potential noise may thus affect cell homeostasis.

The effect of superimposed noise on the firing pattern of neurons
is, e.g., highly non-trivial [20–23]. It has been even suggested
that endogenous membrane noise may play an essential role in the
operation of the nervous system, through the nonlinear stochastic
resonance phenomenon [24, 25]. Numerical simulations supporting
this suggestion [26] indicate that under suitable conditions, exogenous
noise may induce firing activity in silent neurons and enhance the
“detectability” of exogenous signals [27].

Investigating the electric response of cells to stochastic (noisy)



Progress In Electromagnetics Research B, Vol. 33, 2011 47

electromagnetic fields is thus a meaningful question. This paper
is aimed at exploiting an electromagnetic modeling tool which may
hopefully help further investigation about this issue.

The paper is accordingly organized as follows. In Section 2 the
Volterra series representation of the membrane voltage-current density
relationship is introduced, and the (spectral) Volterra series solution
of the H-H equation, including the leading even and odd nonlinear
response terms, is derived. In Section 3, the electromagnetic response
of a (voltage clamped) cylindrical cell with non linear H-H membrane
exposed to a linearly polarized EM field in a homogeneous medium
is obtained. In Section 4 the average value and the power spectral
density (henceforth PSD) of the nonlinear transmembrane (excess)
potential for the simplest case of a (stationary, zero-average) white
(band-limited) Gaussian noise field is computed. Numerical results
are illustrated in Section 5 and discussed in Section 6. Conclusions
and recommendations follow under Section 7.

2. NONLINEAR MEMBRANE VOLTAGE-CURRENT
RELATIONSHIP

In the absence of an applied EM field, the transmembrane potential
difference in a living cell takes the so-called resting value V0 (∼
100mV in a typical cell). When the impressed field is switched
on, a transmembrane excess potential δφ, and a transmembrane
current density build up. These are related by a nonlinear functional
relationship [3, 4] which can be conveniently expanded into a Volterra
series [28]:

Jm(t) =
∞∑

k=1

J (k)
m (t), (1)

where‡

J (k)
m (t) =

(
1
2π

)k ∫ ∞

−∞
dω1

∫ ∞

−∞
dω2 . . .

∫ ∞

−∞
dωk Γ(k)(ω1, ω2, . . . , ωk)

·
k∏

i=1

δΦ(ωi) exp (ıωit) , (2)

δΦ(ω) being the transmembrane excess potential Fourier transform.
The Volterra series is adequate to model a general weakly nonlinear
smooth relationship between the (local) transmembrane current
density and voltage, including instantaneous (resistive) as well as non
‡ Note that [Γ(k)] = ampere volt−k meter−2.
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instantaneous (reactive) nonlinearities [29]. The Γ(k) are referred to as
the response kernels. The first order kernel is nothing but the usual
(linear) transfer function.

2.1. The Hodgkin-Huxley Model

The H-H model was introduced in [14] as a phenomenological
description of the nonlinear membrane voltage current relationship in
excitable cells (e.g., neurons) [30]. Alternative (also phenomenological)
models, including, among others, those of Fitzhugh-Nagumo [31]
and Izhikevich [32], have been proposed later. The formalism
expounded below may be adapted to these alternative models as well.
Notwithstanding its venerable age, the H-H model is still widely used
as a reference model [33], and has been ubiquitously adopted to model
the nonlinear response of excitable cells exposed to EM radiation
from extremely low frequencies up to the microwave range [34, 35].
According to the H-H model, the total transmembrane current density
is

Jm = JK + JNa + Jl + C̃
d

dt
δφ, (3)

where JK , JNa are the potassium and sodium ionic current densities, Jl

is a leakage current density term, C̃ the membrane specific capacitance
(∼ 10−2 Fm−2 in a typical cell), and δφ is the transmembrane excess
potential, viz.

δφ = φ(R+)− φ(R−)− V0, (4)

ρ = R± identifying the outer/inner membrane surface, and V0 being
the resting potential. The current densities in (3) are given, according
to [14], by 




JK = gKn4(δφ− VK),
JNa = gNahm3(δφ− VNa),
Jl = gl(δφ− Vl),

(5)

where 



gl = 3 ohm−1m−2,
gNa = 1200 ohm−1m−2,
gK = 360 ohm−1m−2,

(6)

and {
Vl = 0.01059V,
VNa = 0.115V,
VK = −0.012V.

(7)

In the original reference [14] the H-H model parameters (6) and (7)
are given at 6.3◦C. A discussion on how temperature affects the H-H
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parameters can be found in [36]. The (dimensionless) coefficients m,
n, h in (5) are obtained by solving the differential equations

du

dt
= αu(1− u)− βuu, (u = m,n, h), (8)

where§ 



αn =
1− 0.1δφ

10 exp
(
1− 0.1δφ

)− 1
,

αm =
2.5− 0.1δφ

exp
(
2.5− 0.1δφ

)− 1
,

αh = 0.07 exp
(−0.05δφ

)
,

(9)

and 



βn = 0.125 exp
(−0.0125δφ

)
,

βm = 4 exp
(−0.055δφ

)
,

βh =
[
exp

(
3− 0.1δφ

)
+ 1

]−1
.

(10)

In (9), (10) δφ is the dimensionless counterpart of δφ. In view of
Eqs. (8), (9), (10), the (dimensionless) coefficients m, n, h, and hence,
via (5), the ionic current densities, and the total transmembrane
current densities (3) are nonlinear functionals of δφ, which can be
written as VS as follows.

As a first step, we expand Eqs. (9) and (10) into McLaurin series

αm,n,h =
∞∑

k=0

α
(k)
m,n,hδφk, βm,n,h =

∞∑

k=0

β
(k)
m,n,hδφk, (11)

where the α
(k)
m,n,h , β

(k)
m,n,h coefficients are collected in Table 1, for

k = 0, 1, 2, 3 and have dimensions V −k. Next, we write the sought

Table 1. Expansion coefficients in Eq. (11).

k 0 1 2 3

α
(k)
n 0.0581 3.3869 75.4738 493.8080

α
(k)
m 0.2236 15.4131 461.3560 6897.23

α
(k)
h 0.0700 −3.500 87.500 −1458.33

β
(k)
n 0.1250 −1.5625 9.7656 −40.6901

β
(k)
m 4.0000 −222.222 6172.84 −114312

β
(k)
h 0.0474 4.5177 204.458 5488.51

§ Equations (9), (10) differ from those in [12] in view of the different units used here
(MKSA).
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solutions of Eqs. (8) in the form

u = u(0) + δu, (u = m,n, h) (12)

where,

u(0) =
α

(0)
u

α
(0)
u + β

(0)
u

, (13)

and

δu =
∞∑

k=1

(
1
2π

)k ∫ ∞

−∞
dω1

∫ ∞

−∞
dω2 . . .

∫ ∞

−∞
dωk

·ξ(k)
u (ω1, ω2, . . . , ωk)

k∏

n=1

δΦ(ωn) exp (ıωnt) . (14)

Following [29], the Volterra kernels ξ
(k)
u (·) in (14) are obtained by first

i) letting‖

δφ(ω) = 2π[A1δ(ω − Ω1) + A2δ(ω − Ω2) + . . . + Aqδ(ω − Ωq)], (15)

then ii) plugging Eqs. (11) to (15) into (8), and differentiating the
resulting identity once with respect to each and any of the A1,
A2, . . . , Aq, and finally, iii) setting A1 = A2 = . . . = Aq = 0. This
yields a linear equation in ξ

(q)
u (Ω1,Ω2, . . . , Ωq). Letting successively

q = 1, 2, 3 one accordingly gets, after some straightforward algebra

ξ(1)
u (Ω1) =

[
α(1)

u −u(0)(α
(1)
u +β(1)

u )
]
·
[
α(0)

u +β(0)
u +ıΩ1

]−1
, (16)

ξ(2)
u (Ω1, Ω2) =

{
α(2)

u −u(0)(α
(2)
u +β(2)

u )− 1
2

(
α(1)

u +β(1)
u

)}

·
[
ξ(1)
u (Ω1)+ξ(1)

u (Ω2)
][

α(0)
u +β(0)

u +ı(Ω1+Ω2)
]−1

,(17)

ξ(3)
u (Ω1, Ω2, Ω3) =

[
α(3)

u − u(0)(α
(3)
u + β(3)

u )− 1
3

(
α(2)

u + β(2)
u

)

3∑

k=1

ξ(1)
u (Ωk)− 1

3

(
α(1)

u + β(1)
u

) i<j∑

i,j=1...3

ξ(2)
u (Ωi,Ωj)




·
[
α(0)

u + β(0)
u + ı(Ω1 + Ω2 + Ω3)

]−1
. (18)

By using Eqs. (16)–(18) in (12)–(14), the ionic current densities in (5),
and the total transmembrane current (3) can be cast in the Volterra
‖ The Ωi in (15) are purposely assumed as incommensurable.
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series form (1), (2). The first three kernels are given explicitly in the
Appendix. As noted in [4], the membrane specific capacitance may also
exhibit nonlinear properties. The Volterra series approach summarized
above can be easily extended to this more general case.

3. CYLINDRICAL CELL IN A HOMOGENEOUS
MEDIUM

The Volterra series formalism can be used to solve the nonlinear
boundary value problem of an insulated cell with nonlinear membrane
in a uniform unbounded medium. The spherical cell case has been
discussed in [15]. In this section we shall consider a cylindrical cell
with radius R and membrane thickness δ ¿ R, exposed to a (plane
wave) EM field whose wave vector is normal to the cell axis. The
related boundary value problem, sketched in Fig. 1, is effectively 2-
dimensional (z-independent) with no action potential propagation.

Figure 1. Geometry of problem and notation.

In view of the typical radii (1µm to 1 mm) of a cell, a quasi-static
analysis is appropriate up to 1010 Hz and above. Thus, all electrical
quantities can be derived from a scalar potential

φ(~r, t) = φ0(~r)−Ae(inc.)(0, t) ρ sin θ + φs(~r, t). (19)
Here e(inc.)(0, t) is the (y-polarized) incident field

φ0(~r) = [1− U(ρ−R)]V0, (20)
V0 being the cell-resting potential, and U(·) Heaviside’s step-function;
φs(·) is the scattered potential, which is a nonlinear functional of the
incident field, viz.

φs(~r, t) =
∞∑

m=1

Amφ(m)
s (~r, t). (21)
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The coefficient A in (19), (21) is used as a (dimensionless) book-keeping
device, to be eventually set equal to one, which helps identifying the
order of the various terms in the nonlinear response with respect to
the incident field. For any A, the induced potential φs, and hence all
terms φ

(m)
s in (21), must be a solution of Laplace equation, whence¶

φ(m)
s (~r, t)=





∑∞
n=1

[
c
(m)
n (t) cosnθ+s

(m)
n (t) sin nθ

]
ρn, ρ<R

∑∞
n=1

[
C

(m)
n (t) cos nθ+S

(m)
n (t) sin nθ

]
ρ−n, ρ>R

(22)

The unknown time functions c
(m)
n (·), C

(m)
n (·), s

(m)
n (·), S

(m)
n (·) can be

found by enforcing continuity of the (radial, inward) current density
across the cell membrane, viz.

Σext. ∗ ∂ρφ|ρ=R+ = Σint. ∗ ∂ρφ|ρ=R− = Jm(δφ), (23)

where Σext., Σint. are the inverse Fourier transforms of the (complex)
frequency domain conductivities of the external and intracellular
medium, R± denote the outer/inner membrane surface, ∗ is time-
convolution and Jm(δφ) is given by Eq. (1). For the sake of simplicity,
we shall assume Σext. = Σint. = Σ, which entails from the first equality
in (23)

C(m)
n (t)=−R2nc(m)

n (t), S(m)
n (t)=−R2ns(m)

n (t), ∀m, (24)

whence, using (19), (21), (22) and (24)

δφ(θ, t) = φs(R+, θ, t)−φs(R−, θ, t)

= −
∞∑

m=1

Am

{ ∞∑

n=1

2Rn
[
c(m)
n (t) cosnθ+s(m)

n (t) sin nθ
]}

. (25)

In view of (21), 22), (24) and (25), the second equality in (23) yields
the following equation, which holds true for any A within the circle of
convergence of (21)

Σ∗
∞∑

k=1

Ak
∞∑

n=1

nRn−1
[
c(k)
n (t) cosnθ+s(k)

n (t) sinnθ
]

−δk1AΣ∗e(inc.)(t) sin θ

= Jm

(
−

∞∑

m=1

Am ·
{ ∞∑

n=1

2Rn
[
c(m)
n (t) cos nθ+s(m)

n (t) sin nθ
]})

. (26)

¶ The logarithmic n = 0 terms are omitted from (22) in order to satisfy the condition of
finiteness and regularity of the field at ρ = 0 and ρ →∞.
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The unknown functions c
(m)
n (t) and s

(m)
n (t) can now be expanded into

Volterra series by letting+

c(m)
n (t) =

(
1
2π

)k∫ ∞

−∞
dω1

∫ ∞

−∞
dω2. . .

∫ ∞

−∞
dωm

·Ξ(m)
n (ω1, ω2, . . . , ωm) ·

m∏

k=1

E(inc.)(ωk) exp(jωkt), (27)

and

s(m)
n (t) =

(
1
2π

)k∫ ∞

−∞
dω1

∫ ∞

−∞
dω2. . .

∫ ∞

−∞
dωm

·Ξ̃(m)
n (ω1, ω2, . . . , ωm) ·

m∏

k=1

E(inc.)(ωk) exp(jωkt), (28)

where E(inc.)(ω) is the Fourier transform of e(inc.)(0, t). The (spectral)
kernels Ξ(m)(ω1, ω2, . . . , ωm) and Ξ̃(m)(ω1, ω2, . . . , ωm) are determined
by letting
E(inc.)(ω) = 2π[A1δ(ω−Ω1)+A2δ(ω−Ω2)+ . . .+Aqδ(ω−Ωq)], (29)

into (27) and (28), plugging into (26), and proceeding as already
explained in connection with Eq. (15). One accordingly obtains, after
some algebra

Ξ̃(1)
1 (ω1) =

σ(ω1)
σ(ω1) + 2RΓ(1)(ω1)

, (30)

Ξ(2)
0 (ω1, ω2) = R2 Γ(2)(ω1, ω2)

2Γ(1)(ω1 + ω2)
Ξ̃(1)

1 (ω1)Ξ̃
(1)
1 (ω2), (31)

Ξ(2)
2 (ω1, ω2) = −R

Γ(2)(ω1, ω2)Ξ̃
(1)
1 (ω1)Ξ̃

(1)
1 (ω2)

σ(ω1 + ω2) + RΓ(1)(ω1 + ω2)
(32)

Ξ̃(3)
1 (ω1, ω2, ω3)

=
[
σ(ω1+ω2+ω3)+2RΓ(1)(ω1+ω2+ω3)

]−1

·




∑

(arg. perm.)

{
2
3
Γ(2)(ω1, ω2+ω3)Ξ̃

(1)
1 (ω1)

[
RΞ(2)

0 (ω2, ω3)

−R3Ξ(2)
2 (ω2, ω3)

]}
+6R3Γ(3)(ω1, ω2, ω3)

3∏

i=1

Ξ̃(1)
1 (ωi)

}
, (33)

+ Note that c
(m)
n and s

(m)
n are measured in units of [volt meter−n] whereas Ξ

(m)
n and Ξ̃

(m)
n

are measured in [volt−m+1 meterm−n].
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Ξ̃(3)
3 (ω1, ω2, ω3)

= R
[
σ(ω1+ω2+ω3)+2RΓ(1)(ω1+ω2+ω3)

]−1

·




∑

(arg. perm.)

{
2
3
Γ(2)(ω1, ω2+ω3)Ξ̃

(1)
1 (ω1)Ξ̃

(2)
2 (ω2, ω3)

}

−2Γ(3)(ω1, ω2, ω3)
3∏

i=1

Ξ̃(1)
1 (ωi)

}
, (34)

all other kernels of order ≤ 3 being identically zero.
In (31)–(34) σ is the spectral (frequency dependent) conductivity

of the external and intracellular medium, and the sums in (33), (34)
include all terms obtained from those explicitly written by permuting
the frequency arguments in the factors. Knowledge of the kernels
Ξ(m)

n (·) and Ξ̃(m)
n (·) allows finally to expand the transmembrane

excess potential δφ into a Volterra series in the incident field, via
Eqs. (22), (24), (27) and (28), yielding

δφ(θ, t) =
∞∑

m=1

δφ(m)(θ, t), (35)

where

δφ(m)(θ, t) =
(

1
2π

)m ∫ ∞

−∞
dω1

∫ ∞

−∞
dω2 . . .

∫ ∞

−∞
dωm

·Q(m)(θ; ω1, ω2,. . ., ωm)·
m∏

k=1

E(inc.)(ωk) exp(ıωkt), (36)

with

Q(1)(θ; ω1) = −2RΞ̃(1)
1 (ω1) sin θ, (37)

Q(2)(θ; ω1, ω2) = −Ξ(2)
0 (ω1, ω2)−2R2Ξ(2)

2 (ω1, ω2)cos2θ, (38)

Q(3)(θ; ω1, ω2, ω3) = −2
[
RΞ̃(3)

1 (ω1, ω2, ω3) sinθ

+R3Ξ̃(3)
3 (ω1, ω2, ω3) sin3θ

]
. (39)

Equations (30) to (39) allow to compute the nonlinear transmembrane
excess potential response up to 3rd order (included) in the incident
field. Explicit expressions for the Q functions pertinent to the spherical
cell case have been derived in [15].
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4. NONLINEAR RESPONSE TO A WHITE GAUSSIAN
FIELD

The Volterra series solution allows to write down the statistical
moments of the nonlinear response as straightforward expansions
involving the cumulants of the impressed field, when this latter is
a stochastic process [37]. Here, as a simple model of a noisy EM
environment, we shall consider a zero-average stationary Gaussian
white noise EM field, which is entirely characterized by its first and
second order moments, viz.

〈e(inc.)(t)〉 = 0, (40)

〈e(inc.)(t1)e(inc.)(t2)〉 = W0δ(t1 − t2). (41)

where 〈x〉 denotes the expected value of x, and W0 is the field power
spectral density [V2m−2sec]. The induced transmembrane excess
potential average value and power spectral density can be easily
obtained using (35)–(39) and capitalizing on Isserlis formulae [38],

〈e(inc.)(t1)e(inc.)(t2)e(inc.)(t3)〉 = 0, (42)

and

〈e(inc.)(t1)e(inc.)(t2)e(inc.)(t3)e(inc.)(t4)〉
= W 2

0 [δ(t1−t2)δ(t3−t4)+δ(t1−t3)δ(t2−t4)+δ(t1−t4)δ(t2−t3)] , (43)

yielding, after some simple algebra

〈δφ(θ)〉 =
W0

2π

∣∣∣∣
∫ ∞

−∞
dηQ(2)(θ, η,−η)

∣∣∣∣ , (44)

Π(ω, θ) = Fτ→ω〈δφ(θ, t)δφ(θ, t + τ)〉
= W0|Q(1)(θ, ω)|2 +

W 2
0

2π

{
2

∫ ∞

−∞
dη |Q(2)(θ, η, ω − η)|2

+6Re
[
Q(1)∗(θ, ω)

∫ ∞

−∞
dη Q(3)(θ, ω, η,−η)

]}
. (45)

For a Gaussian colored noise the solution may be written basically in
the same form, provided the linear response Q(1) in the above formulas
is suitably modified.

5. NUMERICAL RESULTS

We present hereinafter some numerical results, based on the simplifying
assumption that both the external and intracellular medium may be
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modeled as (0.1Neq NaCl) saline solutions whose complex, frequency-
dependent conductivity is computed using Stogryn’s formulas [39],
including some fixes and improvements from [40].

The most obvious effect of membrane nonlinearity is rectification,
producing a DC component in the transmembrane excess potential,
described by (44). The DC component (44) is maximum at θ = 0, π.
This maximum value, scaled to W0 is shown in Fig. 2 as a function of
the cell radius R.

All terms in the transmembrane excess potential PSD in (45) are
also θ-dependent. The first term on the r.h.s. of (45) originates from
the linear response kernel Q(1), while the second and third term stem
from the leading (lowest order) even and odd nonlinear (n.l.) kernels,
respectively.

In order to gauge the order of magnitude and relative weight of
these terms, it is convenient to introduce the quantities

Π(linear)(ω) = max
θ
|Q(1)(θ, ω)|2, (46)

Π(n.l.)
odd (ω) = max

θ

∣∣∣∣
3
π

Re
[
Q(1)∗(θ, ω)

∫ ∞

−∞
dηQ(3)(θ; ω, η,−η)

]∣∣∣∣ (47)

and

Π(n.l.)
even (ω)=max

θ

∣∣∣∣
1
π

∫ ∞

−∞
dη|Q(2)(θ, η, ω−η)|2

∣∣∣∣ (48)

Figure 2. Scaled DC component of transmembrane excess potential
at θ = 0, π as a function of cell radius.
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which, apart from the factors W0 and W 2
0 , represent the extremal

absolute values of the three θ-dependent terms in (45).
The function Π(linear)(ω) is plotted in Fig. 3 as a function of

frequency, in a double log-scale.
It is seen that for all cell radii, a well defined knee point exists

across which the frequency dependence of Π(linear)(ω) changes from
essentially flat to ∝ f−2. The knee frequency as a function of the cell
radius is plotted in Fig. 4, and is seen to scale roughly as R−1.

The functions Π(n.l.)
odd (ω) and Π(n.l.)

even (ω) in Eqs. (47) and (48) are
shown in Figs. 5 and 6, respectively. It is seen that Π(n.l.)

odd (ω) is the
leading nonlinear contribution to the transmembrane excess potential
PSD, so that Π(n.l.)

even (ω) can be neglected in (45).
It is interesting to compare the relative weights of the linear and

nonlinear terms in (45). The linear term is dominant under ordinary
conditions — and must be so in order for the Volterra series solution
to be reliable. In the spirit of asymptotic approximation theory, the
ratio Π(linear)/Π(n.l.)

odd provides a loose estimate of the limiting value of
W0 which can be used in (45) for trustable results. Beyond this value,
higher order terms can be no longer neglected. The reciprocal of this
ratio is shown in Fig. 7.

In the low-end of the spectrum, below ∼ 104 Hz, the ratio
Π(n.l.)

odd /Π(linear) is almost frequency-independent (see Fig. 7), being

Figure 3. The Π(linear) function, Eq. (46), vs frequency, for some
values of the cell radius R.
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Figure 4. Knee frequency in Fig. 3 vs cell radius.

Figure 5. The Π(n.l.)
odd function, Eq. (47), vs frequency for some values

of the cell radius R.

only a function of the cell radius R, and turns out to be well
approximated by ∼ 102 log(R)+7. At f ∼ 108 Hz this ratio is ≈ 10−6

and becomes almost R-independent above this frequency, rolling off
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Figure 6. The function Π(n.l.)
even , Eq. (48), vs frequency for some values

of the cell radius R.

Figure 7. Ratio between the nonlinear and linear response coefficients
Π(n.l.)

odd and Π(linear) in Eq. (45) vs frequency for some values of the cell
radius R.
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roughly as f−2.
Figures 3 and 5 show that the induced transmembrane potential

power spectral density is almost entirely confined, and essentially
flat, in the low frequency part of the spectrum, up to some cell-
radius dependent frequency in the 103–106 Hz range. Accordingly, the
obtained results should remain valid for the more realistic case of a
band-limited Gaussian EM field.

This low-pass behaviour is consistent with recent experimental
findings indicating the absence of harmonic cell response to EM carriers
in the mobile-telephone frequency bands [41, 42], and the presence of
such responses to (very) low frequency fields [43, 44].

6. DISCUSSION

As stressed in Section 1, induced changes in the physiological level and
frequency distribution of the membrane voltage noise are thought as
being able of affecting cell homeostasis.

Endogenous cell membranes noise includes several terms of
different origin [45]: i) thermal (Johnson) noise, ii) excess noise
associated with fluctuations of the ionic currents through the
membrane channels, iii) shot noise associated to the discrete nature of
transmembrane charge carriers, iv) cross-talk noise due to the electrical
activity of surrounding organs (e.g. heart and nervous system), etc.
The first two mechanisms are credited as dominant under ordinary
conditions, yielding, respectively, estimated r.m.s transmembrane
excess potential fluctuations ∼ 2µV and ∼ 10µV [45].

We shall make the, admittedly crude, tentative assumption that
a fiducial critical value of the r.m.s. transmembrane excess potential
for the onset of sensible biological effects be ∼ 10 times the size of
typical endogenous fluctuations, i.e., ∼ 102 µV (see, e.g., [46, 47] for
a discussion). The corresponding critical value W

(crit)
0 of the applied

field power spectral density W0 can be estimated from (45). For a cell
radius of R = 10−3 m, one gets W

(crit)
0 ∼ 10−2 (V2m−2sec2), which

corresponds, e.g., to a 10 V/m r.m.s. field in the effective (low-pass)
cell-response band of 104 Hz.

Note that for the same W0, the induced (nonlinear) transmem-
brane potential DC shift from Fig. 2 is negligible compared to the
resting value V0.

Understanding whether such crude estimates may have any
relevance in connection with presumed biological effects of low-level
(non-thermal) EM exposure would require substantial experimental
work, well beyond the skills of the Authors and the scope of this paper,
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which is merely aimed at providing a hopefully useful and sufficiently
general modeling tool.

A well established conceptual and experimental framework exists
for the measurement of membrane voltage noise [48–51], and several
groups are presently engaged in the experimental study of membrane
noise, and its changes under the action of external fields [52, 53]. We
plan to establish a research cooperation with these groups, aimed at
checking our results against experiments in a future paper.

On the other hand, the proposed approach is based on the highly
trusted Hodgkin-Huxley nonlinear cell membrane model, and the
widely used Volterra series framework for the analysis of nonlinear
systems. This makes us confident that the present analysis may
decently reflect our current modeling capabilities and understanding
of the problem.

7. CONCLUSIONS AND FUTURE WORK

The transmembrane excess potential in a cylindrical cell with
(nonlinear) Hodgkin-Huxley membrane induced by an applied
electromagnetic field has been computed in analytic form, using
nonlinear (Volterra) functional calculus. The leading odd and even
nonlinear response terms have been explicitly derived for the simplest
2-dimensional case where the cell excitation is uniform along the cell
axis (no action potential propagation). The spherical cell case can
be studied along similar lines, and the relevant (qualitatively similar)
results have been presented elsewhere [15].

The ideal relevant case of a white Gaussian incident field has
been discussed in detail, being a possible simple model of a polluted
electromagnetic environment.

The induced transmembrane potential power spectral density was
found to be essentially confined to the low frequency part of the
spectrum (where it looks almost flat), up to a frequency in the kHz to
MHz range, depending on the cell radius.

Some order of magnitude estimates for the induced transmembrane-
potential DC-shift and noise PSD have been discussed. The transmem-
brane voltage noise rms level of exogenous origin may exceed by one
order of magnitude the endogenous one for an applied electric field
∼ 10V/m spanning a 104 Hz bandwidth. The static shift in the trans-
membrane potential, on the other hand, turns out to be negligible
under the same exposure conditions.

The proposed approach can be extended, in principle, to more
complicated geometries (e.g., cells with internal organelles) and
systems (e.g., cell aggregates, or tissues).
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APPENDIX A.

In the appendix we report the explicit formula for the kernels Γ(1)(ω1),
Γ(2)(ω1, ω2), Γ(3)(ω1, ω2, ω3) in (2).

Γ(1)(ω1) = jω1C̃+gl+gK

[
n4

(0)−4n3
(0)VKξ(1)

n (ω1)
]
+gNa

·
[
m3

(0)h(0)−m3
(0)VNaξ

(1)
h (ω1)−3VNam

2
(0)h(0)ξ

(1)
m (ω1)

]
;

Γ(2)(ω1, ω2) = gK

{
4n3

(0)[ξ
(1)
n (ω1)+ξ(1)

n (ω2)]−12n2
(0)

·VKξ(1)
n (ω1)ξ(1)

n (ω2)−8n3
(0)VKξ(2)

n (ω1, ω2)
}

+gNa

·
{

m3
(0)[ξ

(1)
h (ω1)+ξ

(1)
h (ω2)]+3m2

(0)h(0)[ξ
(1)
m (ω1)+ξ(1)

m (ω2)]

−2m3
(0)VNaξ

(2)
h (ω1, ω2)−6m2

(0)h(0)VNaξ
(2)
m (ω1, ω2)

−6m(0)h(0)VNaξ
(1)
m (ω1)ξ(1)

m (ω2)−3m2
(0)VNa

[
ξ(1)
m (ω1)

·ξ(1)
h (ω2) +ξ

(1)
h (ω1)ξ(1)

m (ω2)
]}

;

Γ(3)(ω1, ω2, ω3) = gK

{
12n2

(0)

[
ξ(1)
n (ω1)ξ(1)

n (ω2) +ξ(1)
n (ω2) · ξ(1)

n (ω3)

+ξ(1)
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(0)
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ξ(2)
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n (ω2, ω3)

+ξ(2)
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]
−8n2
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Note in passing that letting ξ
(k)
n = 0 (respectively, ξ

(k)
m = ξ

(k)
h = 0),

k = 1, 2, 3, in the above formulas one may single out the contributions
of the potassium (respectively, sodium) channels to the nonlinear
response.
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