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Abstract—Breast Microwave Radar (BMR) has been proposed as
an alternative modality for breast imaging. This technology forms
a reflectivity map of the breast region by illuminating the scan
area using ultra wide band microwave waveforms and recording the
reflections from the breast structures. Nevertheless, BMR images
require to be interpreted by an experienced practitioner since the
location and density of the breast region can make the detection of
malignant lesions a difficult task. In this paper, a novel bimodal breast
imaging reconstruction method based on the use of BMR and Electrical
Impedance Tomography (EIT) is proposed. This technique forms an
estimate of the breast region impedance map using its corresponding
BMR image. This estimate is used to initialize an EIT reconstruction
method based on the monotonicity principle. The proposed method
yielded promising results when applied to MRI-derived numeric breast
phantoms.
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1. INTRODUCTION

According to the American Cancer Society, approximately 1.3 million
women will be diagnosed with breast cancer annually worldwide and
465,000 will ultimately die from the disease. [1]. As with many other
types of cancer, early detection and medical intervention are crucial
to the long-term survival of the patients. Currently, mammography
is the gold standard for the detection of breast cancer. Although the
use of this technology as a mass screening tool has led to a decrease
in the mortality rates, it has a false positive rate between 60%–70%
and a false negative rate of 10%–15% allowing significant room for
improvement [2]. Ultrasound (US) and Magnetic Resonance Imaging
(MRI) have been introduced to provide a more accurate diagnosis.
Nevertheless, MRI is not cost effective and US images are difficult to
interpret [2].

During the last 10 years, there has been a widespread interest in
the breast imaging community regarding the use of Electromagnetic
Imaging (EMI) techniques [3–6]. These technologies take advantage
of the impedance differences between normal and malignant tissues
in the 10 KHz–10 GHz frequency range [7–10]. Compared to x-ray
mammography, EMI techniques are safer and less stressful for the
patient since no ionizing radiation is used and the breast is not
compressed during the imaging process. One promising EMI technique
is Breast Microwave Radar (BMR) [6, 11]. This modality records
the reflections from the breast structures when the breast region is
illuminated by an Ultra Wide Band (UWB) electromagnetic wave.
The collected signals are then processed to form a reflectivity map
of the breast. Two recent studies [6, 11] have shown the feasibility and
potential of BMR as a breast imaging method. The results of these
studies indicate that BMR has the potential to detect malignant lesions
of at least 4 mm and can generate 3D reflectivity maps [6].

Although the feasibility of BMR has been assessed in recent
studies, this technology still present limitations that prevents its
widespread use in clinical environments. The most significant challenge
that BMR imaging faces are the effects of the dense tissue structures
in the breast region [6, 11–13]. Recent experimental studies have
shown that these regions have conductivity and permittivity values
that significantly limit the propagation of UWB signals used in BMR
imaging [14, 15]. Furthermore, fibroglandular structures also produce
strong reflections that can potentially be mistaken for breast lesions in
reconstructed BMR images [14, 15]. These effects make the detection
of lesions that are attached or close to a dense tissue structure a
challenging task [14, 15], and may lead to a decrease in specificity as
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the density of the breast region increases. Since 80% of all breast
cancers are invasive ductal carcinomas (which start at fibroglandular
regions), several techniques have been proposed to differentiate tumors
from dense tissue region sin BMR images [16–18]. The majority of
these methods are based on the use of contrast agents that enhance
the contrast between malignant lesions and dense tissue structures.
Nevertheless, similar to other contrast agent-based imaging modalities,
further work is necessary to assess the absorption and diffusion rates of
the agents among the different kinds of tissues in the breast to establish
a suitable imaging protocol.

An alternative approach is the joint use of BMR and tomographic
EMI modalities. Tomographic EMI techniques generate an impedance
(or conversely admittance) distribution map of the breast region,
in which the presence of malignant lesions can be quantitatively
assessed [3–5, 19–23]. A recent study has shown that multi modality
EMI approaches have an increased sensitivity and sensibility compared
to individual EMI techniques [3]. However, the detection of non
palpable tumors (smaller than 1 cm) using current tomographic EMI
reconstruction techniques is a difficult task since these approaches
generate images with diffused edges and where only targets with sizes
in the order of centimeters can be resolved [3].

In this paper, a novel multimodal EMI image formation technique
is proposed. This approach uses BMR and Electrical Impedance
Tomography (EIT) methods to form a conductivity map of the scan
region. The BMR images are processed to extract the location of the
tissue boundaries in the breast region and form an initial estimate
of the resistivity distribution of the scan region. Since the reflected
waves are caused by the interfaces between the different kinds of
tissues in the in the breast region (fatty, fibroglandular and tumors),
BMR images provide the location of the boundaries between different
breast areas. Next, this information is used to initialize a novel EIT
reconstruction process based on the monotonicity principle [24]. This
EIT reconstruction approach forms a resistivity map of the conducting
domain without iteratively solving a series of forward problems. In this
methodology, the ill posed nature of the inverse EIT problem can be
compensated by making use of known physical properties of the object
being imaged [7]. Monotonicity methods have a number of features
that make their use in a clinical environment quite attractive, such
as robustness in the presence of noise [24]. The work in this paper
extends the preliminary results presented by the authors in [25] in two
key aspects. Firstly, it provides a more detailed mathematical analysis
of the monotonicity principle applied in breast imaging scenarios.
Secondly, the validation is performed using breast phantoms with a
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significantly higher amount of fibroglandular tissue and where the
malignant lesions are attached to the dense tissue structures. The
proposed method is capable of producing spatially accurate images
with defined edges where the malignant lesions can be distinguished.

This paper is organized as follows: A brief description of the BMR
wavefront reconstruction methodis given in Section 2. In Section 3,
the principles of EIT reconstruction using a monotonicity approach
are explained; the proposed method is then described in Section 4. A
series of reconstructed images obtained using numeric test beds are
shown in Section 5. Finally, some concluding remarks are addressed in
Section 6.

2. BMR WAVEFRONT RECONSTRUCTION

BMR images are created by illuminating the breast region with a UWB
waveform from a predefined scan geometry that is parallel to the breast
surface. At each location a waveform f(t) with a bandwidth W , is
irradiated and the responses from the structures within the scan area
are recorded. BMR models the breast structures as a set of point
scatters where each one has a specific reflectivity value.

A 2D cylindrical scan geometry is considered in this paper,
in which the scan process is performed along a series of circular
trajectories in the (x, y) plane with a radius R. This geometry was
chosen due to its ability to generate a high SNR images and to achieve
a spatial resolution in the order of millimeters [26]. In cylindrical
scan geometries, the antennas are facing towards the center of the
circular trajectory at all scan locations. A total of Q point scatters
are assumed to be inside the scan region. In the following discussion,
a polar coordinate system is used to simplify the calculations, with M
planes in which each scan plane has N scan locations. For the scan
element located at (R, θ), where θ is the angular position, the received
signal can be expressed as:

s(t, θ) = ΣT
q=1ϑqf

(
t− 2 · Lq(θ)

υ

)
(1)

where υ is the medium propagation, ϑq is the reflectivity of the qth
scatter, Lq(θ) is the distance between the scan location at (R, θ) and
the qth scatter given by:

Lq(θ) =
√

R2 + r2
q − 2 ·R · rq cos(φq − θ) for θ ∈ [0, 2π] (2)

and rq =
√

x2
q + y2

q , φq = tan−1(yq/xq) and (xq, yq) is the location of
the qth scatter.
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Figure 1. Unprocessed BMR dataset.

Breast structures in BMR data sets present nonlinear signatures
due to the different signal travel times along the different scan
locations [7] and the near field distances between the targets and the
scan geometry. As illustrated in Figure 1, it is difficult to assess the
locations and dimensions of the targets present in the scan area. To
properly assess the target dimensions and locations, the data must
be reconstructed. An effective way of doing this is by using the
wavefront reconstruction approach proposed in [13, 27]. This method
compensates the spectrum of the recorded responses by removing the
effects of the scan geometry. The first step is to calculate the Fourier
transform of the spherical phase function along the z and θ directions.
This operation is given by:

Sp(ω, ζ) =
∫ 2π

0
σp · F (ω) · exp(−j(2k · Lp(θ, z) + ζθ))dθ (3)

where ζ is the spatial frequency counterparts of θ. After Sp(ω, ζ) is
determined, by using the mathematical procedure described in [7] the
compensated spectrum with the following form will be obtained:

Up(ω, ζ) = 4ϑp · ξp(ω, ζ) · exp
(
−j

(√
4k2r2

p − ζ2

+ζ · sin−1(ζ/2krp)+ζφp

))
(4)

where k = ω/ν. The next step is to transfer the data in Up(ω, ζ),
from the (ω, ζ) frequency space to the (kx, ky) spatial frequency space,
where kx and ky are the spatial frequency counterparts of x and y
spatial domains. This is achieved by first calculating the inverse FFT
of the focused data in the ζ direction, resulting in a representation of
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the collected data in the (k, θ) domain. We will refer to the resulting
spectrum as Up(k, θ). According to the Fourier slice theorem, S(ω, θ)
corresponds to a set of N equally spaced projections of the rectangular
frequency spectrum, I(kx, ky). Each projection passes through the
origin and has the same angle as the scan location where it was
recorded. By using this property, Up(k, θ) can be transferred into a
rectangular coordinate system using the following mapping:

kux = k · cos(θ) (5)
kuy = k · sin(θ) (6)

This new mapped spectrum will be denoted as Ip(kux, kuy). The
differences between adjacent samples in the (kux, kuy) plane are not
constant, resulting in an unevenly sampled frequency space. In order
to obtain a uniformly sampled spectrum, a new discrete frequency
space, denoted as (kx, ky), is defined. In this space the separation
between samples in each (kx, ky) plane is ∆ky = ∆kx = π/R. Next,
the evenly sampled spectrum Ip(kx, ky), is generated by interpolating
the data contained in Ip(kux, kuy) into the frequency values specified in
the (kx, ky) space. Finally, to visualize the reconstructed data in the
spatial domain, a 2D inverse FFT is applied to Ip(kx, ky). The result
of this process is the image ip(x, y). A more detailed explanation of the
cylindrical BMR holographic reconstruction technique is given in [13].

3. THE MONOTONICITY PRINCIPLE

Consider a 2D observation domain, D, formed by an ohmic material
with an impedivity given by z(x, y, ω) = ρ(x, y, ω)+j ·ψ(x, y, ω), where
ρ(x, y, ω) and ψ(x, y, ω) denote the electrical resistivity and reactivity
respectively. The observation domain is accessible by means of a finite
number, M , of electrodes located at its boundary. The measurement
protocol can be described as follows. A current pattern of the form
A · cos(ωt) is injected between the first and the Mth electrodes. Next
the potential difference between the kth, where k = 1, 2, 3 . . . ,M − 1,
and the Mth electrodes are measured. The field equations that model
the conduction in D are given by:

∇× E = 0 in D (7)
∇ · J = 0 in D (8)
z(x, y, ω)J(x, y, ω) = E(x, y, ω) in D (9)
J · n = 0 on S⊥ (10)
E × n = 0 on S1 ∪ S2 ∪ . . . SM−1 (11)∫

γk
E · dl = vk k = 1, 2, . . . , M − 1 (12)
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∫

Sk

J · ndS = ik k = 1, 2, . . . , M − 1 (13)

where Sk is the part of the boundary S = ∂D in contact with the kth
electrode, S⊥ is the part of S in contact with the host medium, n is
the normal component to S, γk is a line contained in D connecting the
kth and the Mth electrodes, ik is the current at the kth electrode, and
vk is the voltage difference between the kth and the Mth electrodes.
This process is then repeated for the M − 1 electrodes surrounding D.
In this data acquisition protocol, the Mth is always grounded and all
the voltage measurements are made with respect to this reference.

The relationship between the injected currents and the measured
voltages is given by:

V = ZDI (14)

where I = [i1, i2, i3, . . . , iM−1]
T , V = [v1, v2, v3, . . . , vM−1]

T , and ZD is
known as the impedance matrix. The power dissipated by D is given
by:∫

D
E ·Jdr = I ·ZD ·IT =

∫

D
ρ(x, y, ω)+j ·ψ(x, y, ω)‖∇×T‖2dxdy (15)

The real part of (15) can be expressed as follows:

Re
(
I · ZD · IT

)
=

∫∫

D
ρ(x, y, ω)‖∇ × T‖2dxdy (16)

where T is the electric vector potential. The variational
characterization of the real components of the problem described in
Equations (11)–(16) can be described in terms of the electric scalar
and vector potentials as follows:

find ϕ ∈ Φv minimizing
∫∫

D
σ(x, y)‖∇ϕ‖2dxdy (17)

find T ∈ Al minimizing
∫∫

D
ρ(x, y)‖∇ × T‖2dxdy (18)

where σ(x, y) = ρ(x, y)/((ρ(x, y, ω))2 + (ψ(x, y, ω))2) :

Φv ,
{
ϕ′∈φ|ϕ′|sM+1 = 0, ϕ′|sk =vk, k=1, 2, 3, . . . , M

}
(19)

Al ,
{

H ′ ∈ A|
∫

Sk

∇× T ′ · nds = ik, k= 1, 2, 3, . . . , M

}
(20)

Φ ,
{
ϕ′∈L2

grad(D)|n×∇ϕ′ = 0 on S1 ∪ S2 ∪ . . . ∪ SM+1

}
(21)

A ,
{
H ′ ∈ L2

rot(D)|n · ∇ × T ′ = 0 on S⊥
}

(22)

L2
grad(D) ,

{
ϕ′ ∈ L2(D)|∇ϕ′ ∈ L2(D)

}
(23)

L2
rot(D) ,

{
a ∈ L2(D)|∇ × a ∈ L2(D)

}
(24)
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EIT reconstruction approaches form an impedance (or admittance)
distribution map of the scan region based on the boundary measure-
ments. Currently, the most common methodology to reconstruct EIT
images is by using nonlinear iterative reconstruction techniques [28–
32]. Iterative methods perform a nonlinear optimization process in
which finite element solutions are iteratively generated to minimize a
predefined cost function between the measured electrode surface cur-
rents and those predicted by the model, as the estimated property
distribution is changed [28, 29, 31, 32]. The potential solutions are gen-
erated using a Finite Element Modeling (FEM) approach in which the
Laplace equation is commonly used to model the EIT forward prob-
lem. These techniques perform a regularization process to compensate
the ill-posed nature of the EIT inverse problem. Although iterative
approaches represent the state of the art to solve non-linear inverse
problems, they require the solution of the direct problem for several
assigned tentative shapes of the inclusion and can be very expensive
in terms of computer time [24]. Moreover, the convergence cannot be
guaranteed [24].

An alternative method to form EIT images is by using direct
reconstruction methods, such as the D-bar, linear modeling, and strip
line just to mention a few [24, 33–35]. These approaches form a
distribution map of the conducting domain without iteratively solving
a series of forward problems. Direct reconstruction compensate for the
ill posed nature of the inverse EIT problem by making use of known
physical properties of the object being imaged. This is the equivalent
of the regularization procedure, which can also be considered as a way
to utilize a priori information about the electric characteristics of the
scan region in the reconstruction process, since the regularization used
by iterative approaches should favor known physical properties of the
target [24, 29].

In this paper, a direct approach based on the monotonicity
principle is used [24]. This methodology relies on the monotonicity
of the map (x, y) 7→ Re(ZD). This approach was chosen because
it is extremely resilient to noise and requires a smaller number of
boundary measurements than conventional direct methods resulting
in a robust convergence criterion [24]. The monotonicity principle can
be described as follows. Consider two different domains, D1 and D2,
where ρ1(a) > ρ2(a) and ψ1(a)<ψ2(a) where a is a particular location.
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If the current vector is fixed, from (18), it can be shown that:

Re
(
I · Zρ1 · IT

)
=

∫∫

D1

ρ1(x, y)‖∇ × T1‖2dxdy

≥
∫∫

D2

ρ2(x, y)‖∇ × T1‖2dxdy

≥
∫∫

D2

ρ2(x, y)‖∇ × T2‖2dxdy

= Re
(
I · Zρ2 · IT

)
(25)

where T1 and T2 are the electric vector potentials corresponding to D1

and D2. Therefore Re(Zρ1) ≥ Re(Zρ2). Next, consider a conduction
domain DΩ defined as:

DΩ(x, y) =
{

ρh + j · ψh for (x, y) ∈ DΩ(x, y) \ Ω
ρΩ + j · ψΩ for (x, y) ∈ Ω (26)

where Ω is perfectly conducting inclusion within DΩ(x, y), ρΩ + j · γΩ
and ρh + j · γh are the impedivity of the inclusion and the background
respectively. Additionally:

0 = ρΩ < ρh ¿∞ (27)
0 < ψh < ψΩ ¿∞ (28)

Ω̄c, the closure of Ω, is not in contact with any electrodes. A
graphical illustration of DΩ(x, y) can be seen in Figure 2(a). Using
the monotonicity principle, it can be shown that for an inclusion Ω1:

Ω1 ⊆ Ω ⇒ Re(ZΩ) ≤ Re(ZΩ1) (29)

from:

Re
(
I · ZΩ · IT

)
=

∫∫

DΩ\Ω

ρ(x, y)‖∇ × TΩ‖2dxdy

≤
∫∫

DΩ1
\Ω

ρ(x, y)‖∇ × TΩ‖2dxdy

=
∫∫

DΩ1
\Ω

ρ(x, y)‖∇ × TΩ1‖2dxdy

= Re
(
I · ZΩ1 · IT

)
(30)
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(a) (b)

DΩ1ΩD

Ω

Figure 2. 2D inclusion example. (a) DΩ(x, y). (b) DΩ1(x, y).

where:

DΩ1(x, y) =
{

ρh + j · ψh for (x, y) ∈ h \ Ω1

ρΩ + j · ψΩ for (x, y) ∈ Ω1 ∈ Ω , (31)

ZΩ and ZΩ1 are impedance matrices corresponding to DΩ(x, y) and
DΩ1(x, y), the simulated dataset containing Ω1, and TΩ, TΩ1 are the
corresponding electric vector potentials of these datasets. The first and
last lines follow from the definition of impedance matrix, the second
line from∇×TΩ ≥ 0 in Ω ⊃ Ω1 and the third line from TΩ ∈ Al

Ω ⊂ Al
Ω1

.
The relation Re(ZΩ) ≤ Re(ZΩ1) can be determined by evaluating if
the sign of Re(ZΩ) − Re(ZΩ1) is negatively well defined respectively.
Figure 2(b) has an illustration of DΩ1(x, y). A more detailed proof can
be found in [24].

In practice, the value resistivity value of Ω will likely be greater
than 0, which can result in an overestimation of the inclusion
dimensions. To avoid this, a two phase reconstruction procedure is
performed as follows. Lets model DΩ as the union of individual non
overlapping elements τ1, τ2, . . . τT with equal dimensions. A set of test
matrices ZΩτn

is then generated to assess the presence of an inclusion in
the conducting domain. If the sign of Re(ZΩ)−Re(ZΩτn

) is negatively
well defined, then Ωτn ⊆ Ω. A matrix is negatively well defined if the
sign index, denoted as sn, is equal to −1. The sign index is defined as:

sn =
ΣT

j=1λτn,j

ΣT
j=1|λτn,j |

(32)

where λτn,j is the jth eigenvalue of Re(ZΩ) − Re(ZΩτn
) and T is the

total number of eigenvalues in the difference matrix.
Next, a second step is performed to eliminate the residual areas in
this initial estimate, denoted as Ωext. In this procedure, the sign
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of Re(ZΩ) − Re(ZΩext\τn
) is evaluated, where Ωext = ∪N

n=1τn. If the
corresponding sign index is negatively well defined then Ωn is not part
of Ω [24]. Similarly to the previous step, this process is repeated for
all the ZΩext\τn

scenarios. The reconstructed inclusion, Ωint, is then
assembled using all the spatial components of the candidate matrices
corresponding sign is not negative well defined (sn> − 1). This same
analysis holds for scenarios where:

0 < ρh < ρΩ = ∞ (33)
0 < ψΩ < ψh ¿∞ (34)

In this case, Ωτn ⊆ Ω ⇒ Re(ZΩ) ≤ Re(ZΩτn
), the criteria for sign of the

matrix subtraction should be positively well defined, which is indicated
if and only if sk = 1. A more detailed explanation of the theoretical
framework behind the monotonicity principles given in [24].

4. METHODOLOGY

4.1. The Electric Properties of Breast Tissues

The interior of a healthy breast region can be considered to be formed
primarily by two main types of tissues: fatty and fibroglandular.
The average proportion of these tissues in an average breast region
is 70 : 30 [36]. During the last three decades, several research groups
have measured the electric properties of the different breast tissues.
The latest studies suggest that the admittance of cancer tissues have
an average contrast of at least 5 : 1 compared to fatty tissues [7, 8, 10].
The contrast between malignant lesions and fibroglandular structures
seem to be highly variable, ranging between 2 : 1 to 1.1 : 1 [8, 9].
This contrast is caused by the higher water content in cancer tissues,
which increases both their conductivity and permittivity compared to
healthy breast structures. Overall, the vast majority of the studies
show that the electric properties of breast tissues follow the following
relationship:

0 < σf (ω) ≤ σU
f (ω) < σL

b (ω) ≤ σb(ω) ≤ σU
b (ω) < σL

c (ω) ≤ σc(ω) ¿∞
0 < εf (ω) ≤ εU

f (ω) < εL
b (ω) ≤ εb(ω) ≤ εU

b (ω) < εL
c (ω) ≤ εc(ω) ¿∞

for ω ∈ [2π · fmin, 2π · fmax] (35)

where:

σc(ω) + jω · εc(ω) is the admittivity of the malignant breast tissue
σf (ω) + jω · εf (ω) is the admittivity of the fatty breast tissue
σb(ω)+ jω · εb(ω) is the admittivity of the fibroglandular breast tissue
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σU
c (ω) is the upper bound of the tumor tissues conductivity values

σL
c (ω) is the lower bound of the tumor tissues permittivity values

σL
b (ω) the lower bound of the fibroglandular tissues conductivity values

εL
b (ω) the lower bound of the fibroglandular tissues permittivity values

σU
b (ω) the upper bound of the fibroglandular tissues conductivity values

εU
b (ω) the upper bound of the fibroglandular tissues permittivity values

σL
f (ω) is the upper bound of the fatty tissues conductivity values

εU
f (ω) is the lower bound of the fatty tissues permittivity values

and fmin, fmax are 10KHz and 10 GHz respectively.

Consider the scenarios depicted in Figure 3. If a fixed current
pattern of the same intensity, I, is injected in all three scenarios, it
can be proven that:

Re
(
I · ZΩc · IT

)
< Re

(
I · ZΩb

· IT
)

< Re
(
I · ZΩf

· IT
)

(36)

Using the theory presented in Section 3 and the conversion functions
ρ = σ/((σ)2 + (ωε)2) and ψ = ε/ω((σ)2 + (ωε)2), it is trivial to
deduct that ZΩc < ZΩb

< ZΩf
. Since the electric properties of

breast tissues satisfy the conditions needed to use the monotonicity
principle, this reconstruction methodology seems a feasible option to
reconstruct an EIT breast image. However, conventional monotonicity
approaches are designed to be used in scenarios where the conducting
medium is homogeneous and its use for breast imaging can therefore
be problematic. The most important concern is that sometimes the
monotonicity approaches can generate inaccurate estimates of the scan
region. In some cases this is caused by the fact that the resistance
matrix of two regions can be similar while the impedance distributions
are completely different [24]. Consider the 1D example in Figure 4.
The impedance does not depend on the position x of the crack.
Although ZΩ1 = ZΩ2 , the two regions are unrelated.

(a) (b)

Figure 3. One dimensional impedance example. (a) First profile.
(b) Second profile.
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(a) (b) (c)

Figure 4. 1D breast tissue example. (a) Fatty tissue inclusion.
(b) Fibroglandular inclusion. (c) Tumor inclusion.

4.2. EIT-BMR Reconstruction Approach

Let consider a given breast region B whose impedivity is given by:

ZB(x, y, ω),
{

ρf (ω) + j · ψf (ω) for (x, y) ∈B\Ωb and r∈B \Ωc

ρb(ω) + j · ψb(ω) for (x, y) ∈ Ωb

ρc(ω) + j · ψc(ω) for (x, y) ∈ Ωc

(37)

In this case, the impedivity of B is also modeled as a function
of the frequency to incorporate the dispersive behavior of breast
tissues. To rule out impedance matrices that would yield inaccurate
breast resistivity distributions, an initial estimate of the locations
and dimensions of the fibroglandular and tumor regions will be
incorporated to the reconstruction process. This methodology
has been used successfully in the past for iterative reconstruction
methods, resulting in lower execution times and improved spatial and
impedivity estimation accuracy [10]. The proposed method extracts
this information from BMR images since they provide a map of the
tissue interfaces within the breast region. Additionally, current BMR
reconstruction methods can produce accurate reflectivity maps in real
time [37]. A sample BMR image and its corresponding MRI image are
shown in Figure 5.

The dense tissue regions estimate is formed by performing an edge
linking process over the reflectivity map iB(x, y) [38]. Then, by using
the extreme values of the breast tissues resistivity and reactivity values
the following estimate is defined over a discrete grid:

ẐB(x, y, ω)





ρf (ω)+j ·ψf (ω) for (x, y) ∈B\Ω̂b and (x, y)∈B\Ω̂c

ρb(ω)+j ·ψb(ω) for (x, y) ∈ Ω̂b

ρc(ω)+j ·ψc(ω) for (x, y) ∈ Ω̂c

(38)

where Ω̂b and Ω̂c are the locations of the candidate fibroglandular and
tumor regions. The candidate dense tissue regions Ω̂r = Ω̂b ∪ Ω̂c, are
considered to be formed by a series of G non overlapping elements, τk,
where k = 1, 2, 3, . . . G. The next step is to generate a test set, ẐΩr\τn

,
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Figure 5. BMR image example. (a) Dielectric profile without a
tumor. (b) Reconstructed BMR image. (c) Dielectric profile with
a tumor. (d) Reconstructed BMR image.

to rule out the locations that do not correspond to Ωb and Ωc. However,
the noise in the measured data and/or the numerical errors in the
simulation process can affect the eigenvalues of the difference matrices,
yielding false estimates. To avoid this scenario, a thresholding process
on the sign indices is performed. The threshold, ϕ, is determined
by calculating the sign index of the corresponding to the element in
ẐΩr\τk

that minimizes ‖Re(ZD) − Re(ẐΩn)‖2, where ‖ ‖ is the norm
operator. The final estimate Ωint is obtained by determining the union
of the elements in ẐΩr\τn

whose sign index is greater than ϕ− 1. The
outcome of the proposed method is a conductivity map of the breast
region. The proposed method can be summarized as follows:

1. First, the BMR data set corresponding to B is collected and
reconstructed, yielding the reflectivity map iB(x, y).

2. The surface responses in iB(x, y) are eliminated and an
edge linking process is performed to segment the estimated
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fibroglandular and tumor regions, generating ẐB(x, y).
3. A grid inside the scan region is defined. This grid is formed by

square cells of length is l.
4. The set of test matrices, ẐΩr\τn

, is then simulated. ẐΩr\τn
is

defined as follows:

ẐΩr\τn
=

{
ẐΩr\τ1 , ẐΩr\τ1 , ẐΩr\τ2 , ẐΩr\τ3 . . . ẐΩr\τN

ẐΩr\τN

}
(39)

5. The sign index of Re(ZB)−Re(ẐΩr\τn
), sn, is then calculated for

all the test matrices. This index is defined as:

sn =
Σjλn,j

Σj |λn,j | (40)

where λn,j is the jth eigenvalue of Re(ZB)−Re(ẐΩr\τn
).

6. The noise present in the measured data can corrupt the eigenvalues
of Re(ZB) − Re(ẐΩr\τn

) and consequently the value of tn. The
effect of noise on sn is harmful because it can be responsible for

Figure 6. Flow diagram of the proposed method.
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excluding spatial locations from the final reconstructed profile [24].
To compensate this effect, the following threshold is calculated:

ϕ,
{

Σjλϕ,j

Σj |λϕ,j | | arg min
∥∥∥Re(ZB)−Re

(
ẐΩϕ

)∥∥∥
2
, ẐΩϕ∈ẐΩr\τn

}
(41)

where ϕ ∈ [−1, 0], λϕ,j are the eigenvalues of Re(ZB)−Re(ẐΩϕ
).

7. The final reconstructed profile is defined as:

Ωint , ∪n∈Iintsn (42)

Iint ,
{

Re
(
ẐΩr\τn

)
|ϕ− 1 < sn, n = 1, 2, 3 . . . N

}
(43)

Note that in scenarios where no disturbances are present, the criterion
would become −1 < sn which is essentially all the scenarios that are
not negatively well defined. A flow diagram of the proposed method
can be seen in Figure 6.

5. RESULTS

To evaluate the performance of the proposed method, four numerical
breast phantoms were used. These breast phantoms were generated
using breast MRI images obtained from the University of Wisconsin-
Madison online repository. The tissue type and water content of the
different intensities on the MRI images were obtained using the process
outlined in the repository webpage. All the images used in this study
are an axial view from the mid section level (3–4 cm from the chest wall)
of an ACR2 type breast from a patient with average breast density.

An EIT and a BMR datasets were simulated for each testbed.
The electric properties of the different breast tissues in the EIT and
BMR datasets were based on the values published in [3, 4, 7] and [8]
respectively. The EIT datasets were simulated using the FEM engine
included in Quickfield 5.1 (Tera Analysis Inc.). The breast regions
were surrounded by sixty-four 1 mm electrodes, arranged in a circular
pattern. A sinusoid current pattern with an amplitude of 5 mA and
a frequency of 55 KHz was applied. The original EIT data sets were
simulated using a grid that had a cell size of 500µm. To avoid the
inverse crime, the cell size used during to simulate the test matrices
was 1mm, according to the criteria described in [30]. White noise
with a zero mean and an average variance of 0.2 mV was added to the
simulated data sets. A tumor with a diameter of 6 mm was included
in all datasets. The tumor dimensions and locations in all the testbeds
were chosen to mimic the position and sizes of non-palpable lesions
in realistic scenarios [39]. The BMR data sets were produced using
a radar simulator developed by the authors [40]. This simulation
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suite is based on the first order Born approximation of a monostatic
radar signal and has been tested by the authors using finite difference
time domain approach and experimental radar datasets from synthetic
breast phantoms, yielding promising results. The BMR scan geometry
had 72 scan equally spaced locations around a circle with a 18 cm
radius in the (x, y) plane. A Vivaldi antenna with length of 11 cms
was modeled as the irradiating element. The same MRI data sets
were used to generate the corresponding BMR numeric phantoms. A
Stepped Frequency Continuous Wave (SFCW) was irradiated in each
scan location. The SCFW had a bandwidth of 11 GHz with a center
frequency of 6.5 GHz. The proposed method was implemented in a
desktop PC with a 2.6 GHz Phenom 9950 Quad CPU and 8 GB RAM.
To allow a better display of the breast structures in the reconstructed
BMR images, the skin responses were located and removed using the
algorithm proposed by the authors in [41]. A red contour is instead
used to indicate the location of skin. In all the BMR images, the
energy of the reconstructed responses is shown. Since the bimodal
reconstruction method assigns every region in the conducting domain
into one of the main types of tissues, the images generated by the
proposed approach are shown in four colors: dark gray for fatty
tissues, light gray for fibroglandular,white for tumor and black for the
background material.

The spatial accuracy of the proposed method was evaluated by
determining the dimension and location errors of the tumors in the
reconstructed images. Additionally, the area overlap between the
reconstructed images and the original testbeds were evaluated using
the Dice Similarity Coefficient (DSC). This metric is defined as:

DSC =
A ∩B

2(A + B)
(44)

where A are the regions manually segmented by an expert and B
are the regions generated by the proposed method. A DSC of
1 indicates a perfect agreement in dimensions and locations between
the objects under evaluation. This metric was calculated for both the
fibroglandular areas and the cancerous regions.

An initial MRI testbed and the results of the proposed method
on its corresponding datasets are shown in Figure 7. This testbed
consist of a several fibroglandular regions and a tumor located at in
the middle. This is a quite challenging scenario for BMR since the
responses from the fibroglandular region and the tumor will likely have
comparable magnitudes, making an accurate assessment of the tumor
presence a difficult task. Notice how the BMR image gives a rough
illustration of the reflectivity of the scan region and that there are a
number of extra locations that also have a high reflectivity, such as
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the lower region of the fibroglandular area. The results of the joint
approach are shown in Figure 7(c). The edges in the resulting image
can be clearly appreciated and the location of the tumor is well defined
and consistent with its location on the simulated testbed, as indicated
by its DSC, spatial and area errors (0.98, (0.5, 0.7) mm and 3 mm2

respectively). Note also that the different nature of the tumor can be
distinguished from the surrounding fibroglandular region, contrary to
the BMR image, allowing a more accurate diagnosis. The DSC value
for the fibroglandular regions was 0.92.

A second testbed is shown in Figure 8(a). In this case, the breast
region includes a large fibroglandular area (3 cm major diameter, 2.5 cm
minor diameter) with a tumor attached to its lower end. Small portions
of fibroglandular tissue are present in the upper and mid region of
the breast region as well. Figure 8(b) shows the reconstructed BMR
image. Notice that the predominant response comes from the tumor
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Figure 7. Experiment 1. (a) Numeric testbed. (b) Reconstructed
BMR image. (c) Image produced by the proposed method.
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location, but a radar signature with considerable energy (3.7 × 10−4

watts) is located 2.5 cm above it. This response corresponds to the
location of a sharp corner reflector at the top of the fibroglandular
patch. The image generated by the proposed approach is shown in
Figure 8(c). Notice how the presence of tumor location is consistent
with its location on the testbed, and how it is easier to distinguish
the difference between the sharp corner reflectors since they appear
as fibroglandular tissue. Although some of the smaller fibroglandular
regions do not appear in the reconstructed image, the main dense tissue
region and the tumor can be clearly identified. The reason why these
regions did not appear in the final is mostly because they had responses
with magnitudes similar to noise levels in the BMR datasets. The
tumor location and area errors in the image produced by the proposed
approach were (−1, 1)mm and 13mm2 respectively. The DSC values
for the tumor and fibroglandular regions were 0.8824 and 0.9181.
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A third numeric phantom is shown in Figure 9(a). In this case,
the breast region also has a large fibroglandular patch at its lower half,
with a tumor attached at its top end. This is a challenging scenario
for BMR imaging, as the fibroglandular region tends to obscure the
reflections from the tumor. As it can observed in Figure 9(b), there
are two main responses in the BMR reconstructed image. Notice how
the largest response corresponds to the lower end of the fibroglandular
region. Additionally, the response on the top of the fibroglandular area
has a magnitude comparable to the tumor response. These additional
responses make difficult to identify the presence and location of the
tumor in the BMR image. The results of the proposed algorithm
are shown in Figure 9(c). Note how the tumor can be clearly
identified and its location is consistent with its position in the testbed.
Similarly to the results of the previous numeric phantom, some of the
small fibroglandular regions were not reconstructed properly, although
the large dense tissue regions and the malignant lesion are clearly
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identifiable. The tumor location and area errors in the image produced
by the bimodal technique were (−0.3, 0.9) mm and 3 mm2 respectively.
The DSC values for the tumor and fibroglandular regions were 0.81
and 0.99.

A fourth testbed and its corresponding images are displayed in
Figure 10. This numeric phantom has a smaller, but more spiculated
fibroglandular region that the previous three cases. As it can be seen
in Figure 10(b), the additional corner reflectors yield high magnitude
responses that can obscure the reflections from the tumor. In specific,
the dominant responses in the image correspond to the upper-right
interface of the fibroglandular region. The lower-left interface also
presents a significant response, which has a higher magnitude than
the tumor radar signature. These high magnitude responses in the
BMR image difficult the detection of the tumor present in the breast
region. The results of the proposed method are shown in Figure 10(c).
Notice how the tumor can be clearly distinguished in the image
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Table 1. Location and area errors for the reconstructed datasets.

Dataset Location error Area error
1 (0.5, 0.7) mm 3mm2

2 (−1, 1)mm 13mm2

3 (−0.3, 0.9)mm 2mm2

4 (1,−1.5)mm 8mm2

Table 2. DSC values for the reconstructed datasets.

Experiment DSC fibroglandular regions DSC tumor regions

1 0.92 0.98

2 0.9181 0.8824

3 0.81 0.99

4 0.9589 0.9118

generated by the proposed method, when compared to the BMR image.
Additionally, location and dimension of the main fibroglandular region
and the tumor in the image produced by the bimodal approach are
consistent with its position in the testbed as shown by the DSC values
(0.9118 for the tumor and 0.9589 for the fibroglandular area). The
tumor location and area errors in the image produced by the proposed
approach were (1,−1.5) mm and 8mm2 respectively. The error and
DSC values for all the experiments are summarized in Table 1 and
Table 2 respectively.

6. CONCLUSIONS

In this paper, a novel bimodal EMI image formation technique was
presented. This technique combines both BMR and EIT methods to
form a resistivity distribution map of a breast region that can be used
to assess the presence of malignant lesions. The proposed approach
generates an estimate of the dense tissue regions using the BMR
image of the breast while accurately preserving the borders between
dense and fatty regions. This estimate is then used to initialize an
EIT reconstruction method based on the monotonicity principle. The
proposed technique yielded very promising results when applied to
MRI-derived numeric phantoms. Although some of the smaller dense
tissue regions did not appear on the reconstructed images, all simulated
tumors were successfully located. Additionally, the performance of the
proposed method was quantitatively assessed yielding spatial errors
of less than 4 mm and DSC values over 0.9 for fibroglandular tissue
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regions and 0.85 for malignant lesions. Future research will be focused
on developing a multimodal data acquisition system that will be used
to assess the experimental feasibility of this algorithm.
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