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Abstract—In this paper, we present a new model using a Four-
dimensional (4D) Element-Oriented physical concepts based on
a topological approach in electromagnetism. Its general finite
formulation on dual staggered grids reveals a flexible Finite-Difference
Time-Domain (FDTD) method with reasonable local approximating
functions. This flexible FDTD method is developed without recourse
to the traditional Taylor based forms of the individual differential
operators. This new formulation generalizes both the standard
FDTD (S-FDTD) and the nonstandard FDTD (NS-FDTD) methods.
Moreover, it can be used to generate new numerical methods. As
proof, we deduce a new nonstandard scheme more accurate than the
S-FDTD and the known nonstandard NS-FDTD methods. Through
some numerical examples, we validate this proposal, and we show the
power and the advantage of this Element-Oriented Model.

1. INTRODUCTION

To solve complex real-world electromagnetic problems, several methods
have been developed over the past three decades taking advantage
of the powerful computer resources [1–3]. Each one of them has
advantages/disadvantages over the others. Some of the most common
methods can be classified as follows:

• the finite difference method (FDM),
• the finite integral method (FIT),
• the finite element method (FEM),
• the finite volume method (FVM),
• the method of moments (MoM), and
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• the boundary element method (BEM).

All these numerical methods (and their extensions) have been
developed separately, but they have numerous commonalities [4–
6]. Numerical methods yield approximate solutions to the governing
equations through the discretization of space and time. If the user of a
model is unaware of the details of the numerical method, including the
derivative approximations, the scale of discretization, and the matrix
solution techniques, significant errors can be introduced and remain
undetected [8].

In this paper, we initiate the development of a new Four-
dimensional numerical model completely oriented object that we call
an Element-Oriented Model (EOM). Its general formulation is built
on new conceptual views. Therefore, it can be used to review and to
perform the most known methods. We consider the Element-Oriented
Modeling in electromagnetism as a natural process to systematize
the electromagnetic concepts in a model by distinguishing objects or
individual elements that include information (state or data values)
and functionality (behavior). Using an object-oriented approach to
arranging a set of equations allows us to group particular physical
entities together with common functionalities or actions associated
with that information. The state of an object encompasses all
of the (usually static) properties of the object plus the current
(usually dynamic) values of each of these properties. Through the
Object-Oriented Paradigm, we can see electromagnetic problems as a
collection of interacting objects. In practice, this approach is based on
the strategies and techniques (often called Object-Oriented analysis)
for establishing a physical model that distinguishes objects, their
properties and their actions from the perspective of the classes and
objects founded in the vocabulary of the electromagnetism theory. In
this paper, we investigate the differential forms and the concept of
topological laws in electromagnetism to formulate a general Element-
Oriented Model. Notice that topology was recognized by Leibniz,
Gauss and Maxwell to play a central role in the electromagnetism
theory [11]. This tool is not largely exploited in computational
physics [10]. The advantages of the topological approach are various:

• It provides an important framework connection between the
electromagnetic fields and the geometry [7–11, 15, 17, 23, 25–
29, 33, 35].

• It provides an excellent viewpoint for the discretization of
electromagnetic equations [7, 9, 12–15, 35].

• It gives discrete formulations preserving many physically
significant properties of the original problem [8–10, 27, 35].
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• It permits to draw a dynamic representation of Maxwell’s
equations [9, 35].

• Furthermore, this approach facilitates the development of new
numerical methods [9, 35].

Throughout this paper, we investigate this approach, and we
propose an Element-Oriented Model (EOM) enjoying all the benefits of
the Object-Oriented Programming (OOP) (abstraction, encapsulation,
modularity, hierarchy, polymorphism and persistence). The first task
is to find all objects with needed properties and behaviors. Then,
we present a general finite formulation for this model. From which,
we derive a Flexible Finite-Difference-Time-Domain (Flexible FDTD)
algorithm. This formulation generalizes both the standard S-FDTD
and the nonstandard NS-FDTD methods. To show its efficiency, we
present a new nonstandard scheme derived directly from it. Through
a numerical example, we show that this new scheme is more accurate
than the S-FDTD and the known NS-FDTD methods. Because the S-
FDTD and the NS-FDTD methods present distinct discrete derivative
operators, that they are chosen in this work. Indeed, many other
methods like ADI-FDTD [18], LOD-FDTD [19], and CN FDTD [20]
use the same discrete derivative operator as the S-FDTD method.

2. THE ELEMENT-ORIENTED MODEL

2.1. Geometric Objects

The concept of the geometric objects is ubiquitous in physical field
theories [6–9, 17, 33]. In three-dimensional space, the integral form
of Maxwell-Heaviside equations reveals four basic spatial geometrical
objects such as points P , lines L, surfaces S and volumes V , and two
temporal geometrical elements such as instants T and time-intervals
I. However, this integral formulation does not clearly reflect the
orientation of these objects neither does the axial/polar nature of
electromagnetic fields associated with them [35]. Indeed, all geometric
objects are endowed with two kinds of orientation: internal or external.
We will conventionally add a tilde to distinguish externally oriented
objects, from internally oriented ones, thus writing P̃ , L̃, S̃, Ṽ , T̃ ,
and Ĩ for externally oriented point, line, surface, volume, instant, and
interval respectively. For more details on these geometric objects, we
refer the reader to [8, 9, 33].

If we adopt a strict space-time viewpoint, we must consider space
and time as one four-dimensional space. Therefore, the space-time
objects can be considered as Cartesian products of a space object by
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a time object. So, we obtain a new space-time structure characterized
by two cell complexes:
• A primal cell Complex K defined by:

K = {P,L,S,V,H} = {P, L, S, V } × {T, I} (1)

• A dual cell Complex K̃ defined by:

K̃ =
{
P̃, L̃, S̃, Ṽ, H̃

}
=

{
P̃ , L̃, S̃, Ṽ

}
×

{
T̃ , Ĩ

}
(2)

The space-time objects in the primal cell complex K have inner
orientation, whereas the space-time objects in the dual cell complex K̃
have outer orientation. To distinguish space-time objects from merely
spatial ones, we will use the symbols P, L, S, V, and H for the former
and the symbols P , L, S, and V for the latter. H = V × I is an
hypervolume in the cell complex K. On these geometric objects, we
can apply the boundary operator ∂. So, we get, as examples ∂S = L;
∂Ṽ = ∂(S̃ × Ĩ) = ∂S̃ × Ĩ = S̃ × ∂Ĩ = ∂Ṽ × T̃ .

These geometric objects are considered basic tools of algebraic
topology. They are called oriented p-dimensional cells (p = 0, 1, 2, 3,
4) in a four-dimensional space (space-time as example). A generic sub
domain of p-dimensional cells is called a p-chain. So, the boundary
operator ∂ can be shown as a linear mapping of the space of p-chains
into that of (p− 1)-chains.

2.2. Physical Global Quantities of Electrodynamics

After defining the oriented geometric objects, the next task is to find
their association with electromagnetic entities. For this, we define the
following physical variables on the space-time structure characterized
by K and K̃:
• Φ2 = (Φe, Φb) is the electromagnetic flux associated to primal

surfaces S. Φ2 is a pairing of Φe with Φb where Φe is the electric
flux associated with the object ∂S× I and Φb is the magnetic flux
associated with S × ∂I.

• Q̃3 = (Q̃ρ, Q̃j) is the electromagnetic charge associated with dual
volumes Ṽ. Q̃3 is a pairing of Q̃ρ with Q̃j where Qρ is the electric
charge content associated with the object Ṽ × T̃ and Qj is the
electric charge flow associated with S̃ × Ĩ.

• U1 = (Ua, Uv) is the electromagnetic potential associated with the
object L. U1 is a pairing of Ua with Uv where Ua is the potential
associated with the object L× ∂I and Uv is the electric potential
associated with the object ∂L× I.
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• Ψ̃2 = (Ψ̃d, Ψ̃h) is the electromagnetic charge-current potential (as
called in [27]) associated with the object S̃. Ψ̃2 is a pairing of Ψ̃d

with Ψ̃h where Ψ̃d is the electric flux associated with the object
S̃ × ∂Ĩ and Ψ̃h is the magnetic voltage impulse (as called in [17])
associated with ∂S̃ × Ĩ.

Each Physical Global Quantity is indexed by a prime to emphasize
the dimension of the object associated with it. Association of these
quantities with geometric objects makes more understandable any
electromagnetic model.

These global quantities are also called global variables by other
authors such as in [17]. By integration of field functions (E, B, H,
D, ρ, J) on space domains (lines, surfaces, volumes) and on time
intervals. Some authors deduce all these global variables [8, 9, 33]. In
the next section, we use a formal analysis based on the differential
forms in electromagnetism and some basic tools of algebraic topology.
We deduce global quantities and we establish the discrete topological
equations.

2.3. Discrete Topological Equations

In terms of differential forms, Maxwell equations can be written
as [30, 31]:

dE = −∂B

∂t
; dD = ρ (3)

dH =
∂D

∂t
+ J ; dB = 0 (4)

where

• d denotes the spatial exterior derivative; when applied to 0, 1 or 2-
forms respectively, d is equivalent to grad, curl and div operators
of vector calculus. When acting on a k-form, d produces a (k+1)-
form.

• E is the electric intensity 1-form.
• B is the magnetic flux density 2-form.
• J is the current density 2-form.
• ρ is the charge density 3-form.

These equations are independent from the space metric. So, they
are invariant under diffeomorphisms. The metric equations also called
constitutive equations can be defined as [8, 9, 13, 14, 17, 22, 25]:

D = ∗εE; B = ∗µH; J = ∗σE (5)
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where ∗ is the spatial Hodge star operator.
In the four-dimensional space-time, we define some electromag-

netic entities. Each entity is indexed by a prime to emphasize the
dimension of its form. So, we define the electromagnetic strength F
2-form as:

F2 = E1 ∧ dt + B2 (6)

Its dual ∗F 2 is expressed as:

∗F2 = (∗µB2) ∧ dt− ∗εE
1 (7)

∗F2 = H1 ∧ dt−D2 (8)

where ∧ is the exterior product and ∗ is the four-dimensional Hodge
star operator.

We define the electromagnetic charge J as:

J 3 = ρ3 − J2 ∧ dt (9)

We define the electromagnetic potential E as:

E1 = V 0 ∧ dt + A1 (10)

where V is the electric potential 0-form and A is the vector potential
1-form.

By applying the four-dimensional exterior derivative d to the
Equations (6), (8), (9) and (10), we get:

dF2 = 03 (11)
d ∗ F2 = J 3 (12)

dJ 3 = 04 (13)
dE1 = F2 (14)

Equation (12) reveals that the electromagnetic charge J is a dual
electromagnetic entity.

The projection of these continuous electromagnetic entities in
Equations (11)–(14) on the cell complexes K and K̃ provides the
following discrete topological equations:

dF2 = 03 Proj. on K−−−−−−−→ δΦ2= 03 (15)

d ∗ F2 = J 3 Proj. on K̃−−−−−−→ δΨ̃2 = Q̃3 (16)

dJ 3 = 04 Proj. on K̃−−−−−−−→ δQ̃3 = 0̃4 (17)

dE1 = F2 Proj. on K−−−−−−−→ δU1 = Φ2 (18)

where:
• δ is the coboundary operator.
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• Φ2 = (Φe,Φb) is the global electromagnetic flux corresponding to
the electromagnetic strength 2-form F2 = (E,B).

• Q̃3 = (Q̃ρ, Q̃j) is the global electromagnetic charge corresponding
to the electromagnetic charge 3-form J = (ρ, J).

• U1 = (Uv, Ua) is the global electromagnetic potential correspond-
ing to the electromagnetic potential 1-form E1 = (V, A).

• Ψ̃2 = (Ψ̃d, Ψ̃h) is the global electromagnetic charge-current
potential corresponding to the dual of the electromagnetic
strength 2-form ∗F2 = (H,D).

We surmount by a tilde all global entities corresponding to
dual electromagnetic entities. On their associated geometric objects
endowed with inner/outer orientation, we reformulate the discrete
equations as: 〈

ci
3, δΦ

2
〉

=
〈
ci
3, 0

3
〉

(19)〈
c̃i
3, δΨ̃

2
〉

=
〈
c̃i
3, Q̃3

〉
(20)

〈
c̃i
4, δQ̃3

〉
=

〈
c̃i
4, 0̃

4
〉

(21)
〈
ci
2, δU1

〉
=

〈
ci
2, Φ

2
〉

(22)

where ci
p (c̃i

p) designates a p-dimensional geometric object of index i
endowed with inner (outer) orientation.

This formulation has important consequences [23] since the
objective is to find a consistent discretization scheme for Maxwell’s
equations. Otherwise, these continuous and discrete equations permit
to redraw the space-time classification diagrams, also called the Tonti
diagrams [7–10, 24], as shown in the Figure 1.

By decoupling the electromagnetic fluxes to the electric and the
magnetic fields, Equations (15) and (16) can be rewritten in a detailed
manner:

Φe(∂S × I) + Φb(S × ∂I) = 03(S × I) (23)

Ψ̃h(∂S̃ × Ĩ) + Ψ̃d(S̃ × ∂Ĩ) = Q̃j(S̃ × Ĩ) (24)

These equations are visualized graphically on the Figure 2. The
Maxwell equations are given in a compact and elegant form [30–
32] in terms of the four-dimensional differential form representation.
This formalism appears to be an ideal tool for electromagnetic
analysis [31], particularly for numerical algorithms. Moreover, Its
geometric interpretation holds many pedagogical interests since it
enables conjointly an intuitive and a dynamic visualization.
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(a) (b)

Figure 1. The Tonti classification diagrams of (a) electromagnetic
entities linked by continuous equations, and (b) global electromagnetic
quantities linked by discrete topological laws.

(a) (b)

Figure 2. Graphical representations of (a) Faraday’s law and (b)
Maxwell-Ampere’s law interpreted as balance laws on space-time
cylinders.

2.4. Discretization of Metric Equations

The discrete topological equations were carried out without recourse
to any approximation. Thus, discretization errors come only from
the discretization of metric relations [9, 33]. At first, we show how
to perform the discretization of continuous operators ∗ to be discrete
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operators [∗]. On a complex K and its dual K̃, we define the discrete
operators [∗ε], [∗µ] and [∗σ] as:

[∗ε] : K̃ → K〈
c̃i
2, Ψ̃

d
〉

→ ∑
j [∗ε]ij

〈
cj
2,Φ

e
〉

[∗µ] : K → K̃〈
ci
2, Φ

b
〉 → ∑

j [∗µ]ij
〈
c̃j
2, Ψ̃

h
〉

[∗σ] : K̃ → K〈
c̃i
3, Q̃J

〉
→ ∑

j [∗σ]ij
〈
cj
2, Φ

e
〉

(25)

For a consistent discretization, the discrete Hodge operators [∗] must
complete some conditions. For example, on the usual Euclidean space,
they should be symmetric and positive definite operators. When
explicit schemes are preferred, it is necessary to verify that at least
one of these matrixes needs to be diagonal. For an orthogonal grid
mesh, we accomplish these conditions. The Voronoi-Delaunay mesh,
by its construction, is a good example.

However, this discretization does not mean that [∗]i is constant. It
simply means that the discrete operator is only depending on the cell
where it is defined. In this way, the parameter — the permittivity ε as
example — is an electromagnetic property of the corresponding object.
Thus, a member function of the object — function UpdateEpsilon (. . .):
Number as example — can adjust the parameter at any moment t and
at any angular frequency ω.

2.5. The General Finite Formulation

The discrete topological Equations (15)–(17) and (18) have the form:

δap = bp+1 (26)

where ap and bp+1 are called cochains [25, 28]. Cochains therefore
constitute the discrete representation of the electromagnetic fields.
This Equation (26) is known as the discrete strong form of the
continuous Equations (3) and (4). By using the discrete generalized
Stocke’s theorem†: 〈

ci
p+1, δa

p
〉

=
〈
∂ci

p+1, a
p
〉∀ci

p+1 (27)

We get the discrete weak form:〈
∂ci

p+1, a
p
〉

=
〈
ci
p+1, b

p+1
〉∀ci

p+1 (28)

† The continuous generalized Stocke’s theorem is:
∫

Dp+1
dωp =

∫
∂Dp+1

ωp∀Dp+1.
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The boundary ∂ci
p+1 is by definition the collection of its faces:

∂ci
p+1 =

np∑

j=1

[
ci
p+1, c

j
p

]
cj
p (29)

where:
(i) np is the number of p-dimensional objects in the complex K.

(ii) [ci
p+1, c

j
p] is the incidence number resulting from the induced

orientation of the cell ci
p+1 on the cell cj

p:

[
ci
p+1, c

j
p

]
=





+1 if cj
p is a face of ci

p+1 and has the
same orientation

0 if cj
p is not a face of ci

p+1

−1 if cj
p is a face of ci

p+1 and has the
opposite orientation

The linearity of the chain-cochain pairing gives:
np∑

j=1

[
ci
p+1, c

j
p

] 〈
cj
p, a

p
〉

=
〈
cp+1, b

p+1
〉∀cp+1 (30)

Thus, we rewrite Equations (19) and (20) as follows to obtain the finite
formulation of the Element-Oriented Model:

n2∑

j=1

αi,j
3,2

〈
cj
2,Φ

2
〉

= 0 (31)

n2∑

j=1

β̃i,j
3,2

〈
c̃j
2, Ψ̃

2
〉

=
〈
c̃3, Q̃3

〉
(32)

where n2 is the number of the 2-dimensional cells in the complex K,
αi,j

3,2 = [ci
3, c

j
2] and β̃i,j

3,2 = [c̃i
3, c̃

j
2].

These Equations (31) and (32) govern the behaviors of the objects
ci
3 and c̃i

3 in the space-time structure previously described.
Decoupling the electromagnetic fluxes to the electric and the

magnetic fields (see Figure 2) gives:
〈

c
n+ 1

2
2 , Φb

〉
=

〈
c
n− 1

2
2 , Φb

〉
−

n2∑

j=1
j 6=n± 1

2

αi,j
3,2

〈
cj
2, Φ

e
〉

(33)

〈
c̃n+1
2 , Ψ̃d

〉
=

〈
c̃n
2 , Ψ̃d

〉
−

n2∑

j=1
j 6=n±1

β̃i,j
3,2

〈
c̃j
2, Ψ̃

h
〉
−

〈
c̃3, Q̃3

〉
(34)
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where:

• c
n+ 1

2
2 (c

n− 1
2

2 ) denotes the 2-dimensional geometric object (S × ∂I)
localized at the instant t = n + 1

2 (t = n− 1
2).

• c̃n+1
2 (c̃n

2 ) denotes the 2-dimensional geometric object (S̃ × ∂Ĩ)
localized at the instant t̃ = n + 1 (t̃ = n).

Notice that the electric flux Φe is computed on the cell cj
2 = ∂S×I

during the time interval I = [n− 1
2 , n + 1

2 ]. Similarly, Ψ̃h is computed
during the time interval Ĩ = [n, n + 1] (see Figure 2). This statement
constitutes the main disagreement with the most FDTD schemes where
the flux Φe (Ψ̃h) is calculated implicitly at the time instant t = n
(t̃ = n + 1

2). So, if we restrict these fluxes at an instant time, these
equations become only approximation relations.

3. A FLEXIBLE FDTD SCHEME OF THE
ELEMENT-ORIENTED MODEL

The computing restriction mentioned in the previous section also
can be explained by considering the fluxes Φe and Ψ̃h constants on
their associated surfaces ∂S × I and ∂S̃ × Ĩ. In this section, we
examine a first idea to correct this disagreement by taking these fluxes
variables on their surfaces. In other hand, the most known standard
S-FDTD and nonstandard NS-FDTD methods use the Taylor form to
approximate the differential operator acting on the electric and the
magnetic fields. However, it is the solution that is sought, and hence
it is redundant to approximate any function other than the solution
itself [37, 38]. Unlike these methods, we attempt to incorporate
any reasonable local approximating functions (such as plane wave,
harmonic polynomial, sinusoidal, exponential, cylindrical or spherical
harmonics, etc.) into the previous formulation of the Element-Oriented
Model. In fact, solutions of many physical problems have salient
local features that are qualitatively known a priori. In this situation,
the accuracy of finite-difference methods in electromagnetic can be
improved by approximating the solution itself and not the differential
equations [37, 38].

For simplicity, we choose to develop our study (but not necessarily)
on dual rectangular Cartesian grids. We focus our interest on the
hypervolumetric primary cell H located between the coordinates (x =
i, y = j, z = k, t = tn−

1
2 ) and (x = i+1, y = j+1, z = k+1, t = tn+ 1

2 ).
It first base face is a volumetric primary cell (Vk = ∂H|z=k) located at
z = k between the coordinates (x = i, y = j, t = tn−

1
2 ) and (x = i+1,
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Figure 3. The volumetric primary cell (Vk = ∂H|z=k) and its dual
orthogonal geometric objects staggered by a half step both in space
and in time.

y = j + 1, t = tn+ 1
2 ) as illustrated on the Figure 3. The main basic

idea is to consider a local solution ψ(x, y, z, t) defined on a cell. So, we
assert that each component of the electric and magnetic fields can be
written as:

Eα(x, y, z, t) = Eα · ψeα(x, y, z, t) α = x, y, z (35)

Bα(x, y, z, t) = Bα · ψbα(x, y, z, t) α = x, y, z (36)

where Eα and Bα are the local magnitudes of the electric component
Eα and the magnetic induction component Bα in a given direction
α = x, y, z. These components Eα and Bα are defined at the center
of the dual cells because they are deduced from the electric induction
D̃ and the magnetic field H̃ also associated with the same cells. In
general, at a node (xi, yj , zk, tn), we have: Eα = f−1

ε D̃ and Bα = fµH̃.
We emphasize that the ψ functions are defined on the dual cells which
constitute also their supports.

From the Equations (33) and (34), we can deduce an algebraic set
of equations. As example of demonstration, we choose‡ to compute
the flux Φbz = f(Φex , Φey) on the volumetric primary cell Vk. On each
face V of H and its dual, we obtain two algebraic equations Φb = f(Φe)
and Ψ̃d = f(Ψ̃h).

On the left face of the electromagnetic object (see Figure 4(a)),
‡ Since our mesh and our equations present many symmetries, only one equation is
sufficient to deduce all remain equations by permutation and translation.
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(a) (b)

Figure 4. (a) The left and (b) the front faces of the primary cell Vk.

the flux Φey

L is:
Φey

L = Φey

L1 + Φey

L2 + Φey

L3 + Φey

L4

The flux Φe
L1 is:

Φey

L1 =
∮

L1
Ey(x, y, z, t) · dydt

=
∮

L1
Ey|n+ 1

2

i+ 1
2
,j+1,k

· ψey

L1(x, y, z, t) · dydt

= Ey|n+ 1
2

i+ 1
2
,j+1,k

· ϕey

L1 (37)

where ϕ
ey

L1 =
∮
L1 ψ

ey

L1(x, y, z, t) · dydt.
In the same manner we obtain:

Φey

L2 = Ey|n+ 1
2

i+ 1
2
,j,k

· ϕey

L2

Φey

L3 = Ey|n−
1
2

i+ 1
2
,j,k

· ϕey

L3

Φey

L4 = Ey|n−
1
2

i+ 1
2
,j+1,k

· ϕey

L4

(38)

Hence, we deduce the total flux Φe
L on the left face:

Φey

L =
∑

α,β,γ,τ

Ey|τα,β,γ · ϕ
ey

L1 : L4

α = i +
1
2
; β = j, j + 1; γ = k; τ = n− 1

2
, n +

1
2

(39)
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On the right face, we obtain:

Φey

R =
∑

α,β,γ,τ

Ey|τα,β,γ · ϕ
ey

R1 : R4

α = i +
3
2
; β = j, j + 1; γ = k; τ = n− 1

2
, n +

1
2

(40)

Therefore, the total flux Φe
R−L = Φe

R − Φe
L is:

Φey

R−L =
∑

α,β,γ,τ

(−1)i+ 3
2
−α Ey|τα,β,γ · ϕ

ey

1 : 8

α = i +
1
2
, i +

3
2
; β = j, j + 1; γ = k; τ = n− 1

2
, n +

1
2

(41)

The total flux Φex
B−T = Φex

B − Φex
T is:

Φex
B−T =

∑

α,β,γ,τ

(−1)j+ 3
2
−βEτ

x(α,β,γ) · ϕex
1 : 8

α = i, i + 1; β = j +
1
2
, j +

3
2
; γ = k; τ = n− 1

2
, n +

1
2

(42)

The total flux of Bz on the back-front faces is:

Φbz
Bk−F =

∑

α,β,γ,τ

(−1)n+1−τBτ
z(α,β,γ) · ϕbz

1 : 8

α = i, i + 1; β = j, j + 1; γ = k; τ = n, n + 1
(43)

Hence, we get an explicit form of the Equation (33) for the component
Φbz = f(Φex , Φey).

In the same manner, we obtain the explicit forms for the
components Φby and Φbx on the volumetric primary cells Vj = ∂H|y=j

and Vi = ∂H|x=i. The components Ψ̃dz , Ψ̃dy and Ψ̃dx can be easily
computed on the dual cells Ṽk, Ṽj and Ṽi or simply deduced by
permutation and translation.

Finally, we obtain a set of six equations that governs the behavior
of the hypervolumetric space-time object H.

4. FROM THE FLEXIBLE FDTD SCHEME OF THE
ELEMENT-ORIENTED MODEL TO THE STANDARD
S-FDTD METHOD

In this section, we show that we can derive, under some assumptions,
the standard S-FDTD method from the flexible FDTD scheme of the
Element-Oriented Model. Let us consider the following assumptions:
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Figure 5. Definitions of the normalized ψ functions.

(i) we assume that the dual mesh is orthogonal and regular. All
intervals in the directions x, y, z, t, are equals to ∆x, ∆y, ∆z and
∆t respectively.

(ii) we assume that the normalized functions ψ are constants and
equal to unity in their cells where they are defined as shown in
Figure 5. Therefore, all functions ϕey defined in Equations (37)–
(41) become:

ϕ
ey

L1 = ϕ
ey

L2 = ϕ
ey

L3 = ϕ
ey

L4 = ∆y∆t/4
All functions ϕex

1 : 8 defined in Equation (42) become: ϕex
1 : 8 =

∆x∆t/4. All functions ϕbz
1 : 8 defined in Equation (43) become:

ϕbz
1 : 8 = ∆x∆y/4.

(iii) We assume that the field Ey remains uniform over the intervals
]i− 1

2 , i + 1
2 ], ]i + 1

2 , i + 3
2 ]. Thus,

Ey|i+ 1
2

= Ey|i and Ey|i+ 3
2

= Ey|i+1

(iv) A linear approximation leads us to write:

Ey|ni,j+ 1
2
,k =

(
Ey|n+ 1

2
i,j+1,k + Ey|n−

1
2

i,j,k

)
/2

Ey|ni,j+ 1
2
,k =

(
Ey|n+ 1

2
i,j,k + Ey|n−

1
2

i,j+1,k

)
/2

(44)

Equation (39) becomes:

Φey

L =
∆y∆t

4
·
[
Ey|n+ 1

2
i,j+1,k + Ey|n+ 1

2
i,j,k + Ey|n−

1
2

i,j,k + Ey|n−
1
2

i,j+1,k

]

= ∆y∆t · Ey|ni,j+ 1
2
,k (45)

With the same assumptions on the right face of the volumetric
cell Vk, the Equation (41) becomes:

Φey

R−L = ∆y∆t ·
[
Ey|ni+1,j+ 1

2
,k − Ey|ni,j+ 1

2
,k

]
(46)



208 Magrez and Ziyyat

(v) Assuming that Ex is uniform over the intervals ]j − 1
2 , j + 1

2 ],
]j + 1

2 , j + 3
2 ] and using a linear approximation, the Equation (42)

becomes:

Φex
B−T = ∆x∆t ·

[
Ex|ni+ 1

2
,j+1,k − Ex|ni+ 1

2
,j,k

]
(47)

(vi) We consider Bz uniform over the intervals ]n − 1, n], ]n, n + 1].
Equation (43) becomes:

Φbz
Bk−F = ∆x∆y ·

[
Bz|n+ 1

2

i+ 1
2
,j+ 1

2
,k
− Bz|n−

1
2

i+ 1
2
,j+ 1

2
,k

]
(48)

Equation (33) for the component Φbz becomes:

Bz|n+ 1
2

i+ 1
2
,j+ 1

2
,k
·∆x∆y = Bz|n−

1
2

i+ 1
2
,j+ 1

2
,k
·∆x∆y

−
(

Ey|ni+1,j+ 1
2
,k − Ey|ni,j+ 1

2
,k

)
·∆y∆t

+
(
Ex|ni+1

2
,j+1,k−Ex|ni+1

2
,j,k

)
·∆x∆t (49)

Thus,

Bz|n+ 1
2

i+ 1
2
,j+ 1

2
,k
− Bz|n−

1
2

i+ 1
2
,j+ 1

2
,k

∆t
=

Ex|ni+ 1
2
,j+1,k − Ex|ni+ 1

2
,j,k

∆y

−
Ey|ni+1,j+ 1

2
,k−Ey|ni,j+ 1

2
,k

∆x
(50)

This formulation represents the discretization of the Faraday’s
law −∂tB = ∇ × E by the conventional Yee-FDTD algorithm
established on dual Yee-cells. The discrete derivative operator dr

in a direction r is well:

dr · f =
f(r + ∆r)− f(r)

∆r

(vii) Assuming that the permittivity ε and the permeability µ are
constants on every line c or c̃ of any volumetric cell V or Ṽ, we
can write for any direction r = x, y, z at any point pt:

Br|(pt) = µ(pt) · H̃r

∣∣∣
(pt)

; D̃r

∣∣∣
(pt)

= ε(pt) · Er|(pt)

The operators [∗ε] and [∗µ] become:

[∗ε] = [ε]3; [∗µ] = [µ]3
where [ε]3 and [µ]3 are three order diagonal matrixes.



Progress In Electromagnetics Research B, Vol. 36, 2012 209

Equation (50) becomes:

µ(i+ 1
2
,j+ 1

2
,k)

Hz|n+ 1
2

i+ 1
2
,j+ 1

2
,k
− Hz|n−

1
2

i+ 1
2
,j+ 1

2
,k

∆t

=
Ex|ni+ 1

2
,j+1,k − Ex|ni+ 1

2
,j,k

∆y
−

Ey|ni+1,j+ 1
2
,k − Ey|ni,j+ 1

2
,k

∆x
(51)

Equation (34) (in the case of Q = 0) for the component Dz

becomes:

Dz|n+1
i,j,k+ 1

2

− Dz|ni,j,k+ 1
2

∆t
=

Hy|n+ 1
2

i+ 1
2
,j,k+ 1

2

− Hy|n+ 1
2

i− 1
2
,j,k+ 1

2

∆x

−
Hx|n+ 1

2

i,j+ 1
2
,k+ 1

2

−Hx|n+ 1
2

i,j− 1
2
,k+ 1

2

∆y
(52)

In the same manner, we find all remaining equations for the
components Hx, Hy, Dx and Dy as previously mentioned.

Finally, the demonstration of the passage from the Element-
Oriented Model to the standard S-FDTD is complete.

5. FROM THE FLEXIBLE FDTD SCHEME OF THE
ELEMENT-ORIENTED MODEL TO THE
NONSTANDARD NS-FDTD METHOD

To show the passage from the Element-Oriented Model to the
nonstandard NS-FDTD, we maintain all previous assumptions in
Section 4 except the assumption (ii). Therefore, we propose to consider
the ψ functions dependent on the directions of the cells where they are

Figure 6. Definitions of the normalized ψ functions for Nλ = 10.
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Figure 7. Definitions of the normalized ψ functions at the limit for
Nλ = 2.

defined:

ψer(r, t) = cos(krr) cos(ωt) for − ∆r

2
≤ r ≤ ∆r

2
; −∆t

2
≤ t ≤ ∆t

2
These ψ functions are dependent on the mesh density Nλ as shown in
Figures 6 and 7. In the end, for a very fine mesh (Nλ → +∞). All ψ
functions will be equal to unity (ψ → 1). Hence, this formulation will
be identical to the standard S-FDTD method. The flux of Ey on the
left face of the primary spatial temporal cell will be:

Φey

L =
∮

Ω
Ey · ψey(x, y, z, t)dΩ

=

∆y/2∫

−∆y/2

∆t/2∫

−∆t/2

En
y(i,j+1

2 ,k)
ψey(x, y, z, t)dydt

= En
y(i,j+1

2 ,k)

[
2
ky

sin
(

ky
∆y

2

)
2
ω

sin
(

ω
∆t

2

)]
(53)

By computing and grouping fluxes:

Φey

R = En
y(i+1,j+1

2 ,k)

[
2
ky

sin
(

ky
∆y

2

)
2
ω

sin
(

ω
∆t

2

)]

Φex
T = En

x(i+1
2 ,j+1,k)

[
2
kx

sin
(

kx
∆x

2

)
2
ω

sin
(

ω
∆t

2

)]

Φex
B = En

x(i+1
2 ,j,k)

[
2
kx

sin
(

kx
∆x

2

)
2
ω

sin
(

ω
∆t

2

)]

Φbz
F = B

n− 1
2

z(i+1
2 ,j+1

2 ,k)

[
2
kx

sin
(

kx
∆x

2

)
2
ky

sin
(

ky
∆y

2

)]

Φbz
Bk = B

n+ 1
2

z(i+1
2 ,j+1

2 ,k)

[
2
kx

sin
(

kx
∆x

2

)
2
ky

sin
(

ky
∆y

2

)]

(54)



Progress In Electromagnetics Research B, Vol. 36, 2012 211

we obtain:

µ(i+ 1
2
,j+ 1

2)

H
n+ 1

2
z(i+1

2 ,j+1
2 ,k)

−H
n− 1

2
z(i+1

2 ,j+1
2 ,k)

2
ω sin

(
ω∆t

2

)

=
En

x(i+1
2 ,j+1,k)

− En
x(i+1

2 ,j,k)
2
ky

sin
(
ky

∆y
2

) −
En

y(i+1,j+1
2 ,k)

− En
y(i,j+1

2 ,k)
2
kx

sin
(
kx

∆x
2

) (55)

It is clear that the discrete derivative operator has an unconventional
form:

dxf(x) =
f(x + h)− f(x)

φ(h)
where φ(h) → h when h → 0 (56)

The same procedure can be applied to the other components
to formulate completely this scheme. This formulation is well
known as the nonstandard finite-difference time-domain method NS-
FDTD [16, 21, 34]. The main rules to construct a nonstandard scheme
are [16]:
• The order of derivative discretizations should be the same as the

corresponding order derivatives in differential equations.
• The discrete form of the derivative must have a denominator in

general a non-trivial function of the step discretization.

dy

dt
→ yk+1 − ψ(h)yk

Φ(h)

where Φ(h) = h +O(h2) and ψ(h) = 1 +O(h)

• Nonlinear terms must be in general replaced by non-local
representation: x2 → xk+1xk.

• The special conditions related to differential equations and/or
their solutions are maintained for discrete formulations and/or
their solutions, such as, for example, the time invariance t → −t.
In this section, we have shown the passage from the Element-

Oriented Model to the standard S-FDTD method.

6. A NEW NONSTANDARD FINITE-DIFFERENCE
TIME-DOMAIN SCHEME

The main purpose from this section is to show the capability of the
Element-Oriented Model to generate new schemes. In fact, we propose
a new nonstandard NS-FDTD more accurate than the standard S-
FDTD and the known nonstandard NS-FDTD methods. To formulate
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this new scheme, we will consider the same assumptions in Section 5.
But, unlike the assumption (vi) in Section 4, we take the field Bz

variable on the interval ]n, n + 1]. We also take Dz variable on the
interval ]n + 1

2 , n + 3
2 ].

Bz(t) = Bz|n+ 1
2 · ψbz(t); t ∈ ]n, n + 1]

Dz(t) = Dz|n+1 · ψdz(t); t ∈ ]n + 1/2, n + 3/2]

where:
ψbz(t) = cos (ω(t− (n + 1/2)∆t)) ; t ∈ ]n, n + 1]
ψdz(t) = cos (ω(t− (n + 1)∆t)) ; t ∈ ]n + 1/2, n + 3/2]

Near the instant t = n+ 1
2 , we take Bz|n+ 1

2 equal to its temporal mean
value:

Bz|n+ 1
2 =

〈
Bz|n+ 1

2

〉
=

1
τ∆t

(n+ 1
2
+ τ

2
)∆t∫

(n+ 1
2
− τ

2
)∆t

Bz|n+ 1
2 · ψb

z(t)dt

where τ ∈ [0,+1].
In the same manner, near the instant t = n + 1, Dz|n+1 becomes:

Dz|n+1 =
〈

Dz|n+1
〉

=
1

τ∆t

(n+1+ τ
2
)∆t∫

(n+1− τ
2
)∆t

Dz|n+1 · ψd
z (t)dt

Thus, 〈
Bz|n+ 1

2

〉
= Bz|n+ 1

2 · 2
ωτ∆t · sin

(
ωτ∆t

2

)
〈

Dz|n+1
〉

= Dz|n+1 · 2
ωτ∆t · sin

(
ωτ∆t

2

)

We can see that B
n+ 1

2
z and Dn+1

z are corrected by the same function
ϕc(∆t, τ):

ϕc(∆t, τ) =
2

ωτ∆t
· sin

(
ωτ∆t

2

)

where:

lim
τ ·∆t→0

ϕc(∆t, τ) = 1 and ϕc(∆t, τ) Â 0 ∀τ ∈]− 1, +1]

This function ϕc(∆t, τ) is illustrated on the Figure 8 for some temporal
steps.
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Figure 8. Graphs of the function ϕc(∆t, τ) for τ ∈] − 1/2, 1/2] and
for the temporal steps: ∆t = T/2 (the limit of Shanon’s theorem),
∆t = T/4, ∆t = T/10 and ∆t = T/20.

Equation (52) becomes:

µ(i+ 1
2
,j+ 1

2)

H
n+ 1

2
z(i+1

2 ,j+1
2 ,k)

· ϕc(∆t, τ)−H
n− 1

2
z(i+1

2 ,j+1
2 ,k)

2
ω sin

(
ω∆t

2

)

=
En

x(i+1
2 ,j+1,k)

− En
x(i+1

2 ,j,k)
2
ky

sin
(
ky

∆y
2

) −
En

y(i+1,j+1
2 ,k)

− En
y(i,j+1

2 ,k)
2
kx

sin
(
kx

∆x
2

) (57)

The new nonstandard temporal derivative operator is formulated as:

dt · f(t) =
f(t + ∆t) · ϕc(∆t, τ)− f(t)

φ(∆t)
(58)

where: lim
τ ·∆t→0

ϕc(∆t, τ) = 1 and lim
∆t→0

φ(∆t) = ∆t.

This algorithm uses the new temporal derivative operator dt in
Equation (58) and the spatial derivative operator dx in Equation (56).

Only these two operators dt and dx are sufficient to prove that
the new nonstandard scheme generalizes both the standard and the
nonstandard FDTD methods.
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Figure 9. Geometry of the test problem. A transverse magnetic (TM)
plane wave is incident upon a perfectly conducting circular cylinder.
The computational domain is terminated by the perfectly matched
layer (PML) absorbing boundary condition implemented as special
object.

7. NUMERICAL EXAMPLES

A known severe test of any algorithm is Mie scattering [16]. In the
Mie regime, the feature size of the scatterer is comparable to the
wavelength. An infinite plane wave is incident from the left upon
a perfectly conducting circular cylinder (Figure 9). In this case of
cylindrical scatterers, the exact solution is given analytically by the
Mie series. Using this analytic solution we are able to compute exact
errors of any algorithm. The total electric field is calculated with the
three methods (The standard S-FDTD, the nonstandard NS-FDTD
and the new nonstandard NS-FDTD methods) and is compared with
the analytic solution.

The exact analytical solution to the problem is given by [36]:

Ez = E0

+∞∑
n=−∞

j−n

[
Jn(k0ρ)− Jn(k0a)

H
(2)
n (k0a)

H(2)
n (k0ρ)

]
e−jnθ (59)

where Ez is the total electric field, E0 is the amplitude of the plane
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wave, k0 is the propagation constant in free space, ρ is the radial
distance from the center of the cylinder to the observation point, θ is
the corresponding angle measured from the positive x-axis, Jn is the

Figure 10. Comparison between the total electric field Ez calculated
using the exact analytical solution and the electric field computed using
the three numerical methods along the line observation (y = 0) for
Nλ = 10 and a = λ/2.

Figure 11. Numerical errors based on the L1 and L2 norms as a
function of mesh density Nλ.
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Bessel function of the first kind, and H
(2)
n is the Hankel function of the

second kind.
Figure 10 shows the distribution of the total electric field Ez

computed by the three numerical methods and compared with the
exact solution.

Figure 11 shows the numerical errors based on the L1 and L2

norms. This proves that the new NS-FDTD deduced from the Element-
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Figure 12. Comparison of computing times between the S-FDTD,
the NS-FDTD methods and the proposed new NS-FDTD scheme.

Figure 13. A photonic wave guide with three ports.
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Oriented Model is more accurate than the standard and nonstandard
FDTD methods with about the same computational cost as shown on
the Figure 12.

In other hand, since our model is oriented object, we reuse
the same program to develop several applications benefiting from
the instantiation and the inheritance concepts. To illustrate the
importance of this Element-Oriented Model, we present here another
example of a photonic waveguide with three ports. This application
is simply developed by instantiating some cylinders from the cylinder
object of the previous problem. Figure 13 shows a simulation of this
waveguide.

8. CONCLUSION

Based on a topological approach, we formulated a new Element-
Oriented Model that conserves many physical informations. On dual
staggered grids, we developed this model to obtain a flexible Finite-
Difference Time-Domain using a general approximating function. We
demonstrated that this scheme generalizes both the standard S-FDTD
and the nonstandard NS-FDTD methods. Moreover, to confirm
the productivity of this model, we presented a new nonstandard
scheme. Its accuracy was proven by a numerical problem of a plane
wave striking a perfectly conducting circular cylinder. Furthermore,
the importance of this Element-Oriented Model was elucidated by
instantiation of a cylinder object to produce a simulation of a photonic
waveguide. We are persuaded that the Element-Oriented Model can
also generate other new schemes. In future work, we will present a
second new nonstandard NS-FDTD algorithm which is more accurate.
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