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Abstract—In this paper, a two-dimensional (2D) diffraction
tomographic algorithm based on the first order Born approximation
is proposed for the imaging of hidden targets behind the wall. The
spectral expansion of the three layered background medium Green’s
function is employed to derive a linear relationship between the
spatial Fourier transforms of the image and the received scattered
field. Then the image can be efficiently reconstructed with inverse
Fast Fourier Transform (IFFT). The linearization of the inversion
scheme and the easy implementation of the algorithm with FFT/IFFT
make the diffraction tomographic algorithm suitable in through-the-
wall radar imaging (TWRI) applications concerning the diagnostics of
large probed domain and allow real-time processing. Numerical and
experimental results are provided to show the effectiveness and high
efficiency of the proposed diffraction tomographic algorithm for TWRI.

1. INTRODUCTION

The capability of electromagnetic (EM) wave to penetrate through
building walls has made through-the-wall radar imaging (TWRI) of
increasing importance in a wide range of both civilian and military
applications. Search-and-rescue workers, urban-warfare specialists,
and counter-terrorism agents often encounter situations where they
need to detect, locate, and identify the hidden targets behind the
visually opaque building walls. TWRI provides an efficient means
for meeting these needs when the entering of a room or a building
is considered to be hazardous or impossible [1–6].

Through-the-wall radar images the targets behind the wall by
transmitting ultrawideband EM waves and processing the reflected
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signal from the wall and the targets. Previously, several effective
TWRI algorithms that take into account the wave reflection, bending,
and delay effects due to the presence of the wall have been proposed
in [1, 2, 7–11]. These algorithms can be generally grouped into two
main categories. The first category is the noncoherent approach
based on the trilateration technique [7]. The noncoherent approach
is mainly used for target localization and is difficult to deal with
multi-target scenarios. The second category is the coherent algorithms
which are generally based on the coherent processing of the received
data [1, 2, 8–11]. Coherent algorithms can provide high range and
azimuth resolution imaging result of the targets and are extensively
studied in recent years. The beamforming algorithm based on the
delay-and-sum (DS) of the received signal for TWRI is proposed
in [8]. The effects of EM wave propagation through dielectric walls,
such as refraction and propagation delay, were incorporated into the
beamformer through ray tracing technique. In order to build an
accurate EM model for TWRI, the Contrast Source Inversion (CSI)
method is employed in [10]. CSI does not make any assumption of
the TWRI problem thus very high resolution image can be achieved.
However, this is a nonlinear optimization algorithm and needs to
be solved iteratively thus is very time consuming. Linear inverse
scattering algorithms based on the first order Born approximation,
which compensate for the wall effect through the efficiently exact or
approximate evaluation of the layered medium Green’s function, were
proposed in [1, 9]. Linear inverse scattering TWRI algorithms show a
good improvement over CSI in the view of computation speed. For
multistatic radar systems, subspace method based on time reversal
multiple signal classification (TR-MUSIC) is proposed to detect and
localize targets behind the wall in [11].

Although successful imaging results can been achieved by the
aforementioned TWRI algorithms, all these algorithms are based on
pixel-by-pixel reconstruction of the image, making them still not
applicable for real time processing. The imaging time increases
significantly with the increasing of number of pixels of the image. In
TWRI applications, a long data processing time should be avoided
in order to achieve a real time tracking of the targets behind the
wall. TWRI algorithms must be computationally efficient, so that
the location of the targets can be determined in a few seconds
with a portable computer. Linearized inversion schemes based
on diffraction tomography (DT) require much less computational
resources and are particularly well suited for on-site application due
to the easy implementation of the algorithm with Fast/inverse Fast
Fourier Transform (FFT/IFFT). DT was first proposed by Wolf in [12]
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and is now widely used in various forms for such applications as
medical imaging, optical imaging, geophysical tomography and radar
imaging [15–20]. The principle of DT is based on the derivation
of a linear relation between the spatial Fourier transform of the
contrast function and the scattered field for weak scatterers [13–
17]. A generalized DT algorithm for multi-frequency multi-monostatic
Ground Penetrating Radar (GPR) measurement configuration was first
proposed by Deming and Devaney in [13]. By employing first order
Born approximation, the contrast function is estimated analytically
by inverting a set of coupled equations using the regularized pseudo-
inverse operator. Novel DT algorithms that take into account
the air-ground interface for two/three-dimensional (2D/3D) buried
targets imaging under lossy earth were proposed by Cui and Chew
in [15, 16]. Most of the related works on DT were originally focused
on freespace synthetic aperture radar (SAR) imaging [19, 20] and later
on subsurface imaging. However, many practical applications, both
military and commercial, are in the scenarios with target hidden behind
an inaccessible obstacle, such as in through wall target detection and
localization. Therefore, it is beneficial to carry out the study and
develop DT algorithm for TWRI. In this paper, a 2D DT algorithm
based on the first order Born approximation is proposed for TWRI.
The spectral expansion of the three layered background medium
Green’s function is employed to derive a linear relation between
the spatial Fourier transforms of the image and the scattered field.
Then the image can be efficiently reconstructed with IFFT. The
linearization of the inversion scheme and employment of FFT/IFFT
in the imaging formula make the DT TWRI algorithm suitable for on-
site applications. Numerical and experimental results are provided to
show the effectiveness and high efficiency of the proposed DT TWRI
algorithm.

The organization of the remainder of the paper is listed as follows.
In Section 2, the formulation of the 2D DT algorithm for the imaging
of targets behind the wall is presented. In Section 3, numerical
and experimental results are provided to show the effectiveness and
efficiency of the proposed DT algorithm for TWRI. Finally, some
concluding remarks are drawn in Section 4.

2. DIFFRACTION TOMOGRAHPIC TWRI

Figure 1 shows a typical scenario of TWRI using the monostatic
synthetic aperture radar (SAR). In this paper we consider the 2D
problem where both the wall and target are assumed to be infinitely
long and invariance along the y-axis. As is shown in Figure 1,
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Figure 1. Measurement configuration of TWI.

the background medium consists of three regions: Region I and III
are freespace and Region II is the wall whose relative permittivity,
conductivity and thickness are denoted as εb, σb and d, respectively.
The targets are located in an inaccessible investigated region denoted
as Dinv behind the wall in Region III. The transceiver moves along a
scan line parallel to the wall in x direction at a standoff distance zR in
Region I. The working frequency of the transmitter and receiver ranges
from fmin to fmax.

Assume that the electric current is a 2D point source, which is
equivalent to a three-dimensional (3D) line source directed in the y
direction. In this case only the y component of the electric field
is nonzero and the subscript y will be omitted in the following
formulations. Then the scattered electric field from targets observed
at the receiver location can be written as

Es (ρR, k) = k2

∫

Dinv

G (ρR, ρ, k) Et (ρ, ρT , k)O (ρ)dρ (1)

where k is the wavenumber in the free space, ρT , ρR, and ρ are the
position vectors of the transmitter, receiver and target, respectively,
ρT = x̂xT + ẑzT , ρR = x̂xR + ẑzR, and ρ = x̂x + ẑz. G(ρR, ρ, k) is the
Green’s function for the background layered medium, Et(ρ, ρT , k) is
the total electrical field inside the target. O(ρ) is the contrast function
of the target defined as

O (ρ) = ε̃r (ρ)− 1 (2)
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where ε̃r is the relative permittivity of the target. The total field inside
the target is also a function of the contrast function of the target,
making (1) become a complicated nonlinear equation which requires
a long computation time and memory resources. In order to linearize
the integral equation the first order Born approximation is employed.
Under the first Born approximation, the total field inside the target
can be approximated by the incident electric field

Et (ρ, ρT , k) ∼= Einc (ρ, ρT , k) = ikη0G (ρ, ρT , k) (3)

where η0 is the wave impedance in the freespace η0 = 120π.
Substituting (3) into (1), the received scattered field can be written
as

Es (ρR, k) = iη0k
3

∫

Dinv

G (ρR, ρ, k) G (ρ, ρT , k)O (ρ) dρ (4)

The Green’s function for the three layered background medium shown
in Figure 1 can be expressed in the spectral form as the following
Sommerfeld-like integral [18]

G (ρR, ρ, k)=
i

4π

∫ ∞

−∞
dkxT (kx)

exp (ikx (xR−x)+ik1z (zR−z))
k1z

(5)

where T is the transmission coefficient for the wall

T (kx) =

(
1−R2

12

)
exp (ik2zd− ik1zd)

1−R2
12 exp (i2k2zd)

(6)

k1z (kx) =
√

k2 − k2
x, k2z (kx)=

√
k2

2−k2
x, R12 =

k1z−k2z

k1z+k2z
(7)

and where k2 is the wavenumber in the wall.
It is noticed that the transmission coefficient in (6) only deals with

a single layer homogeneous wall thus the DT algorithm in existing form
is still not applicable to cinder block or reinforcement walls.

Substituting (5) into (4), one easily obtains

Es (ρR, k) = − iη0k
3

16π2

∫

Dinv

O(ρ) dρ

∫ ∫
dkxdk′xF (kx)F

(
k′x

)

· exp
(
i
(
kxxR + k′xxT

)
+ i

(
k1zzR + k′1zzT

)

−i
(
kx + k′x

)
x− i

(
k1z + k′1z

)
z
)

(8)

where k′1z(k
′
x) =

√
k2 − k′2x , k′2z(k

′
x) =

√
k2

2 − k′2x , the function F (kx)
is given by

F (kx) =

(
1−R2

12

)
exp (ik2zd− ik1zd)(

1−R2
12 exp (i2k2zd)

)
k1z

(9)
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For the monostatic radar system, it is noting that xR = xT , zR = zT ,
then (8) can be further written as

Es (ρR, k) = − iη0k
3

16π2

∫

Dinv

O(ρ) dρ

∫ ∫
dkxdk′xF (kx)F

(
k′x

)

· exp
(
i
(
kx + k′x

)
xR + i

(
k1z + k′1z

)
zR − i

(
kx + k′x

)
x

−i
(
k1z + k′1z

)
z
)

(10)

Let the spatial Fourier transform of the scattered field be Ẽs(kx, k),
then we have

Ẽs (kx, k) =
∫

Es (xR, k) exp (−ikxxR) dxR (11a)

Es (xR, k) =
1
2π

∫
Ẽs (kx, k) exp (ikxx) dkx (11b)

Let k′′x = kx + k′x, from (10) and (11b) one can derive that

Ẽs

(
k′′x, k

)
= − iη0k

3

8π

∫

Dinv

O(ρ) dρ

∫
dkxF (kx) F

(
k′′x − kx

)

· exp
(−ik′′xx

)
exp

(
i
(
k1z (kx) + k1z

(
k′′x − kx

))
zR

)

· exp
(−i

(
k1z (kx) + k1z

(
k′′x − kx

))
z
)

(12)

When the target is in the far field of the radar, as z → ∞ the inner
Fourier integral in (12) can be efficiently evaluated with stationary
phase method [14]. Similar to the derivation for the asymptotic
evaluation of the Fourier integral in the appendix in [14], let Φ(kx) =
k1z(kx) + k1z(k′′x − kx), then the stationary point is given by

∂Φ(kx)
∂kx

= − kx

k1z
+

k′′x − kx

k1z (k′′x − kx)
= 0 (13)

It can be derived from the above equation that the stationary point
is presented at kx = k′′x

2 . It is interested to notice that the stationary
point corresponds to the exploding reflection model [21]. Using the
Taylor series expansion the phase item can be written as

Φ (kx) ∼= Φ(kx0) +
1
2
Φ′′ (kx0) (kx − kx0)

2 (14)

where kx0 is the stationary phase point and

Φ′′ (kx) = −k2

(
1

k3
1z (kx)

+
1

k3
1z (k′′x − kx)

)
(15)
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By using the stationary phase formula in [11, 18], the inner integral
in (12) can be asymptotically evaluated to yield the following
expression

Ẽs (kx, k) = − iη0k
3

8π

∫

Dinv

dρ exp (−ikxx)O (ρ)

·
√

2π

izΦ′′
(

kx
2

)F 2

(
kx

2

)
exp

(
i2k1z

(
kx

2

)
zR

)

exp
(
−i

(
2k1z

(
kx

2

))
z

)
(16)

Then the relation between the spatial Fourier transforms of the
scattered field and the contrast function can be simply derived
from (16) and (17) as

Ẽs (kx, k) = − iη0k
3

8π

√
2π

iΦ′′
(

kx
2

)F 2

(
kx

2

)
exp

(
izR

√
4k2 − k2

x

)

Õ
(
kx,

√
4k2 − k2

x

)
(17)

where the 2D spatial Fourier transform of O(ρ)/
√

z is given by

Õ (kx, kz) =
∫

Dinv

O(ρ)√
z

exp (−ikxx− ikzz) dρ (18)

Then the image can be efficiently reconstructed from its inverse Fourier
transform with the following imaging formula

O (x, z) =
∫

i
√

2z

η0

√
π3k3

dk

∫
dkxẼs (kx, k) exp (ikxx)

√
iΦ′′

(
kx

2

)

·F−2

(
kx

2

)
exp

(
iz

√
4k2 − k2

x − izR

√
4k2 − k2

x

)
(19)

The above DT algorithm for TWRI can be efficiently implemented
in the following steps:
1) Perform FFT to compute the spatial Fourier transform of the

received scattered field Ẽs(kx, k) from (11a);

2) Compute the multiplication of Ẽs(kx, k) with
√

iΦ′′(kx
2 )F−2(kx

2 )

then multiply it with the exponential factor exp(iz
√

4k2 − k2
x −

izR

√
4k2 − k2

x);
3) Apply IFFT at each down range pixel to evaluate the inner

integral;
4) Summation over all frequencies to calculate the outer integral.
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Figure 2. Simulation geometry of a human behind the wall.

3. NUMERICAL AND EXPERIMENTAL RESULTS

In order to show the efficiency and effectiveness of the proposed DT
algorithm for TWRI, some numerical and experimental results are
presented in this section.

We first present a numerical result for the imaging of a
human behind a single layer homogenous wall. The measurement
configuration of the radar system is shown in Figure 2. The radar
system scans the region of interest along a line parallel to the wall
in the y direction at a distance of 0.3m from the front wall. The
length of the synthetic aperture is 2 m with an inter-element spacing
0.05m. The dielectric constant, conductivity and thickness of the wall
are εr = 6, σ = 0.01 S/m and d = 0.2m. The measurement data was
generated using XFDTDr, a commercial full wave electromagnetic
simulator based on Finite Difference Time Domain (FDTD) method
from Remcom Inc. The dimension of the HiFi male human model
is 0.57 m × 0.324m × 1.88m and made up of 2.9mm cubical mesh
cells, 23 different tissue types with realistic dielectric and conductivity
parameters. The front and side views of the human are shown at the
top and bottom of the right side of Figure 2. The operating frequency
of the radar ranges from 1GHz–3 GHz with a step of 36 MHz. The
investigation domain is a 2m × 2m square region and divided into
160× 160 pixels.

Figure 3 is the imaging result of the human using the proposed
DT TWRI algorithm. The approximate true region of the human is
indicated with a white dashed ellipsoid which is 1.5 m behind the front
boundary of the wall. From this figure we find that the human is
clearly identified and is well located at the correct location. Through
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the proper incorporation of the layered medium Green’s function the
wall effect has been well compensated and a high quality focused image
of the target can be achieved by the proposed DT TWRI algorithm.
For the convenience of comparison the imaging result using the DS
beamforming algorithm in [8] is also presented in Figure 4, where the
approximate true region of the human is also indicated with a white
dashed ellipsoid. From Figures 3 and 4 it is clear that both the two
algorithms are successful in imaging of the target without distortion or
displacement of the target. It takes about only 0.647 s to reconstruct
the image in Figure 3 using the proposed DT TWRI algorithm on a
four-core P4 2.6 G desktop computer. However, it takes about 34.79 s
to form the same size image in Figure 4 using the DS beamforming
algorithm on the same computer. A significant acceleration, over a
factor of 53, can be achieved using the proposed DT algorithm for
TWRI.

Finally, an experimental study was carried out to examine the
effectiveness and performance of the DT algorithm for TWRI. An ultra-
wideband synthetic aperture through-the-wall radar system was set
up in the lab-controlled environment. A stepped-frequency continuous
wave (CW) signal, consisting of 201 frequency steps of size 12MHz,
covering the 0.7–3.1GHz band was chosen for imaging. An Agilent
vector network analyzer (VNA), model ENA 5071B, was used for signal
transmission and data collection. A dual-polarized horn antenna,
model ETS-Lindgren 3164-04, with an operational bandwidth from 0.7

Figure 3. Imaging result of the human with the proposed DT
algorithm.
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Figure 4. Imaging result of the human with DS beamforming
algorithm.

to 6 GHz, was used as the transceiver and mounted on a Field Probe
Scanner to synthesize a 57-element linear array with an inter-element
spacing of 2.2 cm. The array is positioned 1.05m in downrange from
a 0.15 m thick solid concrete block wall with a dielectric constant of
7.66. Ports 1 and 2 of the network analyzer were connected to the V-
and H-feeds of the antenna and full-polarization (VV, HH, HV and
VH) measurements were conducted under monostatic measurement
configuration. That is, the set of 201 CW frequencies is transmitted
from a single array element and the returns are received at the same
array location only. This process is then repeated for the next array
location until all 57 array locations are exhausted. The scene, shown
in Figure 5, consists of a dihedral (each face is 15.5 in high and 11 in
wide) whose center is located 1.99 m behind the wall at a cross range
of 0.285 m. Both the array and the center of the target were at the
same height. An empty scene measurement was also made and was
coherently subtracted from the target scene. The resulting datasets
were used for generating the images.

Figure 6 provides the imaging result of the dihedral using the
proposed DT TWRI algorithm. The true region of the target is
indicated with a white dashed triangle in the image. From Figure 6
we find that the target is well located at the correct location. For
comparison, the imaging result using the DS beamforming algorithm
is provided in Figure 7. Although successful imaging results can be
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Figure 5. Scene being imaged.

Figure 6. Experimental result using the proposed DT algorithm.

obtained by using both algorithms, it takes only 2.75 s to generate
the image in Figure 6 with the proposed DT algorithm while it takes
about 70.16 s to form the same size image in Figure 7 using the
DS beamforming algorithm on the same computer. The significant
acceleration of the proposed DT algorithm for TWRI is achieved due
to the following reasons:

(i) The coherent summation over all receiver locations in the linear
inverse scattering algorithms and DS beamforming algorithm
is efficiently computed with FFT in (11a), which reduces the
beamforming time in the cross range.
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Figure 7. Experimental result using DS beamforming algorithm.

(ii) The solving of the nonlinear equation in order to find the
wave propagation path with ray tracing technique in the
DS beamformer or the exact/approximate evaluation of the
layered medium Green’s function in the linear inverse scattering
algorithms is avoided.

(iii) Instead of the pixel-by-pixel reconstruction in existing TWRI
algorithms, the proposed DT algorithm reconstructs all the cross
range pixels at each down range pixel with IFFT, which is much
more efficient and less time consuming.

4. CONCLUSION

DT algorithm has been now widely used in its various forms for SAR
imaging and GPR subsurface imaging due to the easy implementation
with FFT/IFFT, which significantly reduces the computation time
in the imaging. In this paper, a 2D DT algorithm based on the
first order Born approximation is proposed for the imaging of hidden
targets behind the wall. The background medium Green’s function
is incorporated to take into account the wall effect and to avoid the
solving of a nonlinear equation required to find the wave propagation
path with ray tracing technique. The spectral expansion of the
three-layered background medium Green’s function is employed to
derive a linear relation between the spatial Fourier transforms of the
image and the scattered field. The linearization of the inversion
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scheme and easy implementation of the algorithm with FFT/IFFT
make the DT algorithm suitable for on-site applications. Numerical
and experimental results are presented to show the effectiveness and
efficiency of the proposed DT algorithm for TWRI.
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