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Abstract—We present a three-dimensional finite difference time
domain (FDTD) method on graphics processing unit (GPU) for
plasmonics applications. For the simulation of plasmonics devices,
the Lorentz-Drude (LD) dispersive model is incorporated into Maxwell
equations, while the auxiliary differential equation (ADE) technique is
applied to the LD model. Our numerical experiments based on typical
domain sizes as well as plasmonics environment demonstrate that our
implementation of the FDTD method on GPU offers significant speed
up as compared to the traditional CPU implementations.

1. INTRODUCTION

A number of numerical methods have been developed for the
simulation of electromagnetic applications in both frequency and time
domain [1, 2]. Frequency domain methods such as finite element
method (FEM) [3], method of moments (MoM) [4] are steady state
techniques and are efficient for narrowband applications. Time
domain methods such as FDTD [5], alternating direction implicit finite
difference time domain (ADI-FDTD) [6], locally one dimensional finite
difference time domain (LOD-FDTD) [7] are transient techniques and
are efficient for wideband applications. In this paper, our focus is on
the FDTD method. This method has attracted much attention due to
its simplicity, accuracy, robustness, and its capability both in treating
non-linear behavior naturally and providing real-time visualization
response. In addition, this method has been applied to many areas
such as electromagnetics, elastodynamics, photonics, RF/microwaves,
biosensors, plasmonics and nanotechnology [8–13, 31].
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However, with all these flexibilities and capabilities, the FDTD
method requires very long simulation time for structures that require
large number of fine meshes. In addition to various parallel processing
techniques, two hardware accelerator approaches have been proposed
recently to enhance the simulation speed: i) field programmable gate
arrays (FPGAs) [14], ii) graphics processing unit (GPU) [15]. GPU,
as compared to the FPGA, is garnering more traction due to its
lower cost and its prevalent availability in mainstream computers.
With easy access to this resource, it is relatively easy to test and
implement different numerical techniques on the GPUs. The initial
implementation of GPU for numerical computation was tedious and
time-consuming, primarily because the initial design of GPU was
only for graphics applications. In 2006 the CUDA technology was
introduced by Nvidia, which lowered the learning curve to program
and utilize the GPUs. This new concept supports FDTD type of
algorithms which have natural characteristics of parallelization to run
faster and accurately. Since then, GPU-accelerated FDTD method
has been applied to different applications. In [16], the two-dimensional
FDTD method is implemented on GPU for dispersive media using
single pole Debye model with piecewise linear recursive convolution
(PLRC) method for microwave applications. In [17], the three-
dimensional FDTD method is implemented on GPU for low and mid
frequency acoustics applications. In [18], two-dimensional FDTD using
Drude model is implemented on GPU for double negative (DNG)
materials. Optimization of the FDTD method for computation on
heterogeneous and GPU clusters is presented in [19]. Similar to the
FDTD method, GPU has also been used for the implementation of the
finite difference frequency domain (FDFD) method for electromagnetic
scattering applications [20].

In this paper, the FDTD method is implemented on GPU for
plasmonics applications. According to our knowledge, this is the
first paper on GPU for plasmonics applications using LD model.
Plasmonics is an emerging area and deals with electromagnetic wave
propagation at the interface of metal and dielectric. A number of
plasmonics structures have been simulated and fabricated [21–23].
Because of dispersive nature of numerous metals at optical frequencies
Lorentz-Drude (LD) dispersive model is incorporated into Maxwell’s
equations. The ADE approach is applied to LD model to make
consistent with the FDTD method. As an example a nanosphere is
studied. Numerical results obtained by using central processing unit
(CPU) are compared with those obtained by GPU.

In addition to GPU, we developed the same algorithm on Matlab
and C++, which we execute as an comparison on modern CPU. We
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then run representative numerical experiments for each version and
compare the performance throughput across all the implementations.
We also run additional tests to compare the accuracy of the CPU
vs GPU implementations so as to ensure that accuracy is not
compromised. These developed codes are based on the FDTD method
and can be utilized for the development of plasmonics applications.

2. FORMULATIONS

At optical frequencies numerous metals show dispersive nature.
In order to model them accurately, different dispersive models
have been incorporated into Maxwell equations [13, 16–28]. Most
of the available dispersive models are in frequency domain, so
as to make them consistent with time domain methods different
approaches such as recursive convolution (RC), piecewise linear
recursive convolution (PLRC), z-transform and auxiliary differential
equation (ADE) [13, 18, 24–26] are used. PLRC and ADE are most
commonly used approaches due to their accuracy and efficiency. PLRC
is an integral approach and numerical convolution is needed for its
implementation, whereas the ADE is a differential approach. In this
paper, we use the Lorentz-Drude dispersive model and to further
simplify it, ADE approach is used. The Lorentz-Drude model is written
as

εr(ω) = ε∞ +
ω2

pD

j2ω2 + jΓDω
+

∆εLω2
pL

j2ω2 + jωΓL + ω2
L

(1)

In Equation (1), the second term denotes Drude model, while the
third term denotes Lorentz model. In this formulation, we use only
single pole for Lorentz model and is enough for the required accuracy.
However, more number of poles can be used at the cost of simulation
time.

Maxwell’s equations in frequency domain can be written as

∇×H = jωε0εr(ω)E (2)
∇× E = −jωµ0µrB (3)

After putting Lorentz-Drude model into Equation (2), it becomes

∇×H = jωε0

(
ε∞ +

ω2
pD

j2ω2 + jΓDω
+

∆εLω2
pL

j2ω2 + jωΓL + ω2
L

)
E (4)

The Drude part in Equation (4) is written as

jωε0

ω2
pD

j2ω2 + jΓDω
E = JD (5)
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The Lorentz part in Equation (4) is written as

∆εLω2
pL

j2ω2 + jωΓL + ω2
L

E = PL (6)

After putting (5) and (6) into Equation (4) we get

∇×H = ε0ε∞
∂E

∂t
+ JD +

ε0∂PL

∂t
(7)

Whereas ADE approach is applied on Equations (5) and (6) to make
them compatible with time domain Maxwell’s equations. As an
example equations of the electric and magnetic fields for the FDTD
method in x-direction are written as
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Drude model
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Lorentz model
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3. GPU IMPLEMENTATION

The current generation of graphics processing unit (GPU) has
hundreds of processing cores. These processing cores are grouped
into multiprocessors. Each multiprocessor contains 8 to 32 processing
cores. For example, Nvidia Tesla C2050 has 14 multiprocessors of 32
processing cores each. In other words, this GPU has 448 processing
cores. In order for a GPU to be utilized efficiently, thousands of
processing threads have to be executed. A huge number of threads are
needed to mitigate the effect of threads being stalled due to memory
access latency.

These threads are created and organized at two levels. For each
multiprocessor, a block of threads, ranging from 1 to 1024, is created
and executed. It will make sense to have more threads than the number
of processing cores in the multiprocessor, so that each processing core
has at least 1 thread to execute and another thread to switch to when
the current thread is stalled. At the next level, a number of such blocks
are created to execute on all the multiprocessors. Similarly, it will be
advantageous to have more blocks than the number of multiprocessor.

The other factor that affects the utilization of the GPU is related
to memory access. A graphics processing unit is packaged on a
board with its own memory, known as device memory. For example,
Nvidia Tesla C2050 has 3 gigabyte of device memory. The provision
of device memory allows the GPU to do computations without the
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CPU intervention. However, in order to maximize the memory access
throughput, it is important to maximize coalescing. Coalescing is
a mechanism to reduce the number of memory access transactions.
For example, if a warp of 32 threads requested for a sequential set
of memory locations, this request can be coalesced into one memory
access transaction.

A small section, 64 kilobyte on Nvidia Tesla C2050, of the device
memory can be classified as constant memory. The constraint for
constant memory is that it only allows read access. However, the
advantage is that there is a 8 kilobyte cache on Nvidia Tesla C2050
per multiprocessor to reduce the memory access latency.

On the GPU, there is 48 kilobyte of on-chip memory per
multiprocessor on the Nvidia Tesla C2050. This memory is known as
the shared memory. As mentioned earlier, there is a block of threads
that is executed on each multiprocessor. However, each thread has
its own memory space which is not accessible from another thread.
Therefore, in order to solve this problem, the shared memory is used
to allow the threads to access a common pool of memory on each
multiprocessor. Since the shared memory is on the same chip as the
GPU, it is as fast as the register.

Now we will look at the code segments that are used to update
Hx and Ex fields as an example. At the same time, we will elaborate
on how memory coalescing, constant memory and shared memory
are used collectively to improve the overall performance of the GPU
implementation. Figure 1, shows the flow chart of the method, which
consists of three parts: pre-processing, GPU kernel execution and post-
processing. Pre-processing, post-processing and the conditional check
are executed on the CPU, while the kernels are on the GPU.

Each thread updates the Hx equation on a unique (i, j + 1
2 , k+ 1

2)
location. There is a loop in this thread to iterate through the range of
k values without varying the i and j values.

According to Equation (8), in order to update Hx (i, j + 1
2 , k+ 1

2),
there is one variable that is reused in the loop, another variable that
is shared between two neighboring threads and two constants that are
invariant when updating Hx for all the i, j and k values. These two
constants are stored in the constant memory and the constant memory
cache is used to reduce the memory latency.

The first two dependencies are Ey (i, j + 1
2 , k) and Ey (i, j + 1

2 , k+
1). Since each thread is iterating through the range of k values,
Ey (i, j + 1

2 , k + 1) is also used in the next iteration. Therefore, it
is beneficial to save the value in the register to be used in the next
iteration.
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Initialize constants 
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Figure 1. Flow chart of GPU implementation.

Figure 2. Left diagram shows the memory access pattern when
accessing Ez (i, j, k + 1

2) and right diagram shows the memory access
pattern when accessing Ez(i, j + 1, k + 1

2).
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The other two dependencies are Ez (i, j, k + 1
2) and Ez (i, j +

1, k + 1
2). Assuming that there is a block of 128 threads and accessing

Ez (i, j, k + 1
2) and Ez (i, j + 1, k + 1

2) as shown in Figure 2, it is clear
that neighboring threads are sharing the memory access. For example,
thread 0 and 32, as highlighted in the figure, are accessing the same
Ez. Therefore, shared memory should be used to share the memory
access between neighboring threads.

Also shown in Figure 2, the warp of 32 threads are accessing
contiguous memory locations. Therefore, the memory access request
is coalesced into one memory access transaction and this reduces the
memory access latency. Figure 3 shows the code segment for updating
the Hx field component.

 1 :   __global__ void updateHx(double *hx, double *ey,
 2 :                                double *ez, int *material) 
 3 :  { 
 4 : double prevEy, currEy; 
 5 : extern __shared__ double s_Ez[]; 
 
 7 : // Compute the increment and offset 
 
 9 : prevEy = ey[index]; 
10 : 
11 : for (k=0; k<kEnd; k++) 
12 : { 
13 : currEy = ey[index+zIncr]; 
14 : 
15 : s_Ez[sIndex] = ez[index]; 
 16 : 
17 : if (index < 32) 
18 :        s_Ez[sIndex+sIncr] = ez[index+yIncr];
19 : 
20 : __syncthreads(); 
21 : 
22 : hx[index] += c_chz[material[index]] * 
23 :                       (currEy – prevEy) – 
24 : c_chy[material[index]] *
25 :                       (s_Ez[sIndex+offset] – 
26 :                        s_Ez[sIndex]); 
27 : 
28 : index += zIncr; 
29 : prevEy = currEy; 
30 : 
31 : __syncthreads(); 
32 : } 
33 :   } 

 6 :

8 :

Figure 3. Code segment for updating Hx field component.
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On line 1, the “ global ” keyword is used to describe a function,
also known as a kernel that is executed on the graphics processing unit.

On line 5, the “ shared ” keyword is used to declare a variable
in shared memory. The “extern” keyword is used to indicate that the
size is specified at run-time when this function is executed.

 1: __global__ void updateEx(double *oldEx, double *newEx,  
 2:                          double *hy, double *hz,  
 3:                          double *jx, double *oldLx, 
 4:                          double *newLx, int *material) 
 5: { 
 6:   double prevHy, currHy; 
 7:   extern __shared__ double s_Hz[]; 
 8: 
 9:   // Compute the increment and offset 
10: 
11:   prevHy = hy[index-zIncr]; 
12: 
13:   for (k=1; k<kEnd; k++) 
14:   { 
15:     currHy = hy[index]; 
16: 
17:     s_Hz[sIndex] = hz[index]; 
18: 
19:     if (index < 32) 
20:       s_Hz[sIndex-sIncr] = hz[index-yIncr]; 
21: 
22:     __syncthreads(); 
23: 
24:     newEx[index] = c_ca[material[index]] * oldEx[index] + 
25:                    c_cay[material[index]] * 
26:                     (s_Hz[sIndex] - s_Hz[sIndex-offset]) - 
27:                    c_caz[material[index]] * 
28:                     (currHy - prevHy) -  
29:                    c_cad[material[index]] * jx[index] - 
30:                    c_caL1[material[index]] * oldLx[index] + 
31:                    c_caL2[material[index]] * newLx[index]; 
32:                          
33:     jx[index] = c_alfa * jx[index] + 
34:                 c_beta * (oldEx[index] + newEx[index]);    
35:  
36:     newLx[index] = c_tau * oldLx[index] – 
37:                    c_rho * newLx[index] + 
38:                    c_eta * (oldEx[index] + newEx[index]); 
39:                     
40:     index += zIncr; 
41:     prevHy = currHy; 
42: 
43:     __syncthreads(); 
44:   } 
45: } 

Figure 4. Code segment for updating the Ex field and Lorentz-Drude
variables.
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On line 9, it loads the current Ey (i, j+ 1
2 , k) and it loads the next

Ey (i, j + 1
2 , k + 1) on line 13. It then stores the Ey (i, j + 1

2 , k + 1)
for the next iteration on line 29.

Line 11 describes a loop that iterates through the range of k values.
On line 15, each thread loads its Ez value into the shared memory.

Subsequent lines 17 and 18 checks if the thread is the first block of 32
threads, then it loads the last block of 32 Ez values into the shared
memory.

On line 20, it is the syncthreads() function. This function acts
as a barrier, waiting for all the threads in the block to reach this point
before proceeding. This is necessary because the threads are using the
Ez values in the shared memory. Therefore, it has to make sure that all
the threads have loaded the Ez values into the shared memory before
proceeding.

Lines from 22 to 26 describe the computation to update the value
of Hx. In this computation, the variable c chy and c chz are needed.
Since these variables are read-only, they are stored in the constant
memory. With the use of constant memory cache, this helps to reduce
the memory access latency.

Finally, there is another syncthreads() function on line 31. This
is to ensure that all the threads in the block have finished their
computation before proceeding. This is necessary because new values
of Ez will be loaded into the shared memory in the next iteration.
Figure 4 shows the code segment for updating Ex field component and
the Lorentz-Drude variables.

4. NUMERICAL RESULTS AND DISCUSSION

This section consists of two sub-sections, numerical results and
performance of various programming models and platforms for the
FDTD method. Section 4.1 is about the plasmonics application, and
accuracy of the method with and without GPU. While the Section 4.2
is about the performance efficiency of the GPU as compared to the
other programming models and platforms for the approach.

4.1. Numerical Results

For numerical validation and accuracy of the method with and without
GPU for plasmonics applications, gold nanospheres of different radius
are considered. Although different media around the sphere can
be used, for simplicity in our application the surrounding media
is air and a gold nanosphere with radius R is shown in Figure 5.
To truncate the free space around the nanosphere, Mur absorbing
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Figure 5. The illustration of gold nanosphere structure.

(a) (b)

Figure 6. Electric field distribution inside and outside 25 nm gold
nanosphere in free space (a) with GPU (b) without GPU.

boundary condition [29] is used. The same cell size is considered in
all the three directions, i.e., ∆x = ∆y = ∆z = 1 nm. The parameters
used for LD model are same as given in [30], i.e., ε∞ = 5.9673,
ωPD/2π = 2113.6THz, ΓD/2π = 15.92 THz, ωPL/2π = 650.07THz,
ΓL/2π = 104.86THz and ∆εL = 1.09.

The simulation was run until it reaches steady state. The electric
field distribution both inside and outside of 25 nm gold nanosphere in
free space is depicted in Figure 6. In Figure 6(a) the field is obtained
with GPU, while in Figure 6(b) is obtained with CPU. Both figs.
illustrate similar electric field distribution. Figure 7 is plotted for
electric field intensity with respect to wavelength for different radius of
nanospheres with and without GPU. With the changes in radius, there
is change in the resonance wavelength, but the simulation results with
and without GPU are in very good agreement. However, a significant
improvement in simulation efficiency is observed in GPU as shown
in Figs. 8 and 9, Tables 1 and 2. For example with domain size of
128× 128× 128 and 60000 number of simulation iterations, GPU took
10.87 minutes, while Matlab took 49.64 hours.
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Table 1. Presents the time taken (seconds) to complete the number of
simulation steps using different programming platform/language. The
domain size is 64× 64× 64.

Iterations 200 1000 5000 10000 60000

Matlab 74.94 373.49 1858.05 3729.29 22910.77

GCC-O3 5.31 26.27 132.09 262.5 1576.85

ICC-O3 5.88 28.94 143.65 286.9 1722.99

GPU 0.68 1.87 7.88 15.39 90.47

Table 2. Presents the time taken (seconds) to complete the number of
simulation steps using different programming platform/language. The
domain size is 128× 128× 128.

Iterations 200 1000 5000 10000 60000

Matlab 604.72 2950.38 14688.61 29515.71 178716.48

GCC-O3 42.74 208.22 1056.27 2068.84 12412.52

ICC-O3 47.02 230.79 1151.97 2296.57 13774

GPU 3.24 11.93 55.36 109.66 652.2

Figure 7. Electric field intensity with respect to wavelength for
different sizes of the nanosphere with and without GPU.

4.2. Various Programming Models and Platforms

For further analysis and benchmarks, we developed the FDTD code by
using different programming models and platforms, and compared their
performance with GPU. A significant improvement in performance is
observed with GPU, without affecting the accuracy of the results.
The GPU card used is an Nvidia Tesla C2050, and the computer
hardware specifications used in the numerical experiments is an Intel
Core 2 Quad 3.2GHz workstation with 4 GB RAM. The software and
compilers used are: Matlab version R2008a, GCC 4.4.3 and Intel
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Parallel Studio XE (v12.0). Two different domain sizes are tested,
i.e., 64× 64× 64 and 128× 128× 128.

Figure 8 shows the performance bar graph of GPU, GCC-O3
and ICC-O3 with respect to number of simulation iterations, while
the domain size is 64 × 64 × 64. For this performance comparison,
Matlab code is used as a reference. Figure 8 depicts that the GPU
implementation outperforms the Matlab version by as much as 253
times. The GPU outperforms the serial C++ versions by about 19
times.

Figure 8. To reveal the speedup (number of times) of the GPU and
C++ versions using different compilers as compared to the original
Matlab version. The GPU version running on Nvidia Tesla C2050
outperforms Matlab version by as much as 253 times. The domain size
is 64× 64× 64.

Figure 9. To reveal the speedup (number of times) of the GPU and
C++ versions using different compilers as compared to the original
Matlab version. The GPU version running on Nvidia Tesla C2050
outperforms Matlab version by as much as 274 times. The domain size
is 128× 128× 128.
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Figure 9 shows the performance bar graph of GPU, GCC-O3 and
ICC-O3 with respect to number of simulation time steps for larger
domain size, i.e., 128×128×128. The Matlab code is used as a reference
for this comparison. As shown in Figure 9, the GPU implementation
outperforms the Matlab version by as much as 274 times. The GPU
outperforms the serial C++ versions by about 21 times.

5. CONCLUSION

We implemented a three-dimensional FDTD method on GPU for
plasmonics applications. The method is based on Lorentz-Drude
dispersive model which is incorporated into Maxwell equations, while
the auxiliary differential equation technique is applied to the LD
model. Through extensive correctness tests that are carried out, it has
been shown evidently that our GPU implemented algorithm provides
accurate results and are similar to the conventional version without
GPU. The performance speed up that our CUDA-based FDTD method
offers is up to 274 times faster than the Matlab version on CPU.
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