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DISPERSION AND LOSSES IN SURFACE WAVEGUIDES
CONTAINING DOUBLE NEGATIVE OR CHIRAL META-
MATERIALS
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Abstract—In this article the influence of both dispersion and losses
on waveguides with metamaterials is investigated. The analysis is
focused on surface waveguides (planar interfaces and grounded slabs)
containing either double-negative (DNG) or chiral metamaterials. The
main goal is to show how the combined effect of material dispersion
and losses with the structural dispersion affect the solutions of the
modal equations. It is shown that this interplay is essential to obtain
a correct modal analysis of these waveguides. Namely, the overall
behavior can qualitatively change — so that it is not possible to state
that the corresponding lossy case — even when a very small amount
of losses is introduced — can be interpreted as a small perturbation of
the lossless case.

1. INTRODUCTION

The response of a given medium to an applied electromagnetic field is
not instantaneous. In fact, any material medium is made of electrons
and nuclei that have a finite mass and hence the corresponding inertia
should be accounted for in the constitutive relations. Furthermore,
that response cannot vanish instantaneously when the applied field
is removed: the medium takes a finite time to relax back to its initial
quiescent state. These facts are elegantly conveyed, at the macroscopic
level, through the Kramers-Kronig relations — a direct consequence of
the principle of causality: the response cannot precede the stimulus [1].
In fact, the Kramers-Kronig dispersion relations state the intimate
connection between dispersion (refraction) and losses (absorption).

In this article we will always denote by ε = ε′ + i ε′′ ∈ C
and µ = µ′ + i µ′′ ∈ C the relative permittivity and permeability,
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respectively. Accordingly, the index of refraction n = n′ + i n′′ ∈ C
obeys the relation n2 = εµ so that, in particular,

2n′n′′ = ε′µ′′ + ε′′µ′. (1)

Due to entropy and as we are only considering passive media, then
ε′′ > 0, µ′′ > 0 and n′′ > 0. A DNG (double-negative) medium
corresponds to the situation where ε′ < 0 and µ′ < 0; for a SNG
(single negative) medium ε′µ′ < 0. On the other hand, a NIR (negative
index of refraction) medium corresponds to n′ < 0. Hence, for a DNG
medium, the right hand side of (1) is negative whereas, for a NIR
medium, the left hand side of (1) is negative. But then, according
to (1), a DNG medium is necessarily a NIR medium; the converse,
however, is not true [2].

It has been shown that the CW (continuous-wave) portions of a
modulated pulse (i.e., excluding its leading and trailing edges) do obey
the NIR features associated with a time-harmonic analysis [3].

In waveguides containing metamaterials with negative parameters
it is expected that the material dispersion should be playing an
important role. Although it may be reasonable to present dispersion
diagrams for waveguides containing weakly dispersive DPS (double
positive) media without taking into account the material dispersion,
the same cannot be applicable to waveguides containing DNG media
instead. Also, it should be investigated into what extent is it accurate
to restrict the analysis to lossless dispersive models as in [4], i.e.,
disregarding losses. In fact, according to the Kramers-Kronig relations,
if there is dispersion with negligible losses in some frequency region,
there is absorption in some other region (including, eventually, the
same region). Although a lossless dispersive model can be considered
as a limit of a lossy and causal one, we should not forget something that
is fundamental for guided wave propagation: the modal equation of a
waveguide results from the application of the appropriate boundary
conditions imposed by the structure that constitutes its geometry.
Accordingly, the interplay between the dispersion model (that is used
for the metamaterial with negative parameters) and the structural
dispersion (that results from the boundary conditions) cannot be
neglected. It is not at all obvious, actually, what may result from
that interplay. Moreover, if losses are introduced in the constitutive
relations, it is not possible to predict — without solving the whole
problem — into what frequency region (or regions) those losses will
have a significant impact on the dispersion diagram for the waveguide
under analysis. These problems give rise to new aspects that should
be properly examined — in spite of the fact that, for unbounded wave
propagation in bulk media, they may not be so relevant after all.
However, these new aspects have not received, as far as the authors are
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aware, any specific attention from researchers until now [5–13], despite
the fact that the topic of guided wave propagation in the presence of
metamaterials has been the subject of a significant number of papers
— see, e.g., [4] and references therein. Furthermore, for waveguides
containing anisotropic or bianisotropic media with negative parameters
(i.e., containing indefinite media) a similar reasoning applies. With
this paper we intend to prompt a discussion on the relevance of these
new features. However, only the simplest waveguides will be analyzed
herein — namely, planar interfaces and grounded slabs. Also, only two
types of media will be examined: DNG and chiral media. Nevertheless,
we intend to show that even these simple examples are enough to
provide a new assessment of the influence that small losses can bring
to the overall dispersive behavior of modes in waveguides containing
metamaterials.

2. MODAL ANALYSIS USING A CAUSAL DISPERSIVE
MODEL

General chiral media can be characterized, in the frequency domain,
by the constitutive relations [14]

D = ε0ε·E + i
√

ε0µ0 χ ·H, (2)

B = µ0µ·H− i
√

ε0µ0 χT·E, (3)

where χ = χI + N (I is the unit dyadic), χ = tr{χ}/3 and ε, µ,
N are symmetric dyadics. Guided electromagnetic wave propagation
of the form exp[i(kzz − ω t)], where kz = βz + iαz is the longitudinal
wave number, will be analyzed. The effective propagation constant
is keff = kz/k0, with k0 = ω/c, where keff = neff + i`eff : neff is
the effective refractive index; `eff is the effective leakage parameter.
Two different geometries are studied: (i) an interface, where medium
1 (x > 0) is isotropic DPS (Figure 1(a)); (ii) a grounded dielectric slab
waveguide, where medium 1 (x > d) is also isotropic DPS (Figure 1(b)).

x

z
y

x

zy

d

ε  , µ1 1 ε  , µ1 1

(a) (b)

ε, µ, χε, µ, χε, µ, χ

ε, µ, χε, µ, χε, µ, χ

Figure 1. Structures under study: (a) Metamaterial-isotropic
interface; (b) Metamaterial grounded slab.
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Medium 2 is generally described by (2), (3). We have adopted the
following Lorentz model to describe chiral media [15]

gε (ω) = ε∞ +
(εs − ε∞) ω2

0e

ω2
0e − ω2 − 2iω2

0eξeω
, (4)

gµ (ω) = µ∞ +
(µs − µ∞) ω2

0m

ω2
0m − ω2 − 2iω2

0mξmω
, (5)

gχ (ω) =
τω2

0ω

ω2
0 − ω2 − 2iω0ξω

. (6)

In Table 1 we list the various types of chiral and achiral media
that are going to be considered in this paper.

Table 1. Media analyzed in this paper.

Chiral

Isotropic

ε = gε(ω)I

µ = gµ(ω)I

χ = gχ(ω)I

Uniaxial

ε = εt(x̂x̂ + ŷŷ) + εzz ẑẑ, εzz = gε(ω)

µ = µt(x̂x̂ + ŷŷ) + µzz ẑẑ, µzz = gµ(ω)

χ = χzz ẑẑ, χzz = gχ(ω)

Anisotropic

ε = εxxx̂x̂ + εyyŷŷ + εzz ẑẑ

µ = µxxx̂x̂ + µyyŷŷ + µzz ẑẑ

χ = χxxx̂x̂ + χyyŷŷ + χzz ẑẑ

DNG

ε = gε(ω)I, <{gε(ω)} < 0

µ = gµ(ω)I, <{gµ(ω)} < 0

χ = 0

For the specific case of uniaxial chiral media, a single orientation
for the chiral inclusions — as shown in Figure 2 — is required.

x

y
zε, µ, χε, µ, χε, µ, χ

Figure 2. Helix orientation for the uniaxial chiral case.

We have assumed, in Table 1, that εt and µt do not depend
on frequency. We have adopted, for our numerical calculations,
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the following set of parameters: τ = 1.05 × 10−11 s, ξe = ξm =
2.65× 10−3/ω0, ξ = 2.7 × 10−3, ω0m = ω0 = 3.662 × 1010 rads−1,
ω0e = 3.66×1010 rads−1. We have considered εs = 1.95+i 7δi, µs = µt,
ε∞ = 1.38 + i 7δi, µ∞ = 0.75 + i 1.5δi, δi = 10−3 for the isotropic
chiral case and εs = 1.95 + i 7.5δu, µs = µt + i2.5δu, ε∞ = 1.38 + i 7δu,
µ∞ = 0.75+i 2.5δu, δu = 10−2 for the uniaxial chiral case. The lossless
case is obtained by setting ξe,m = δi,u = 0. With these parameters,
DNG/SNG/DPS regions are obtained in the 6–9 GHz frequency band,
as shown in Figure 3.
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Figure 3. Dispersion curves for the real and imaginary parts of ε, µ
and χ for medium 2: (a) Isotropic case; (b) Uniaxial case.

To distinguish among the several cases under study we have
introduced the following simplified classification for the metamaterial:
(i) DPS, if ε′, µ′ > 0; (ii) SNG, if ε′ < 0, µ′ > 0; (iii) DNG if
ε′, µ′ < 0 (Figure 3). Also, the results are obtained for left-handed
chiral helices and, for the uniaxial case (Figure 3(b)), we have adopted
εt = 1.2+ i 5δi,u and µt = 1. Furthermore, we have considered that the
thickness of the grounded slabguides is d = c/(4fc) with fc = 6GHz
since it allows to obtain representative modal results. Defining a loss
coefficient such that

ρ = max
{
ε′′

/
ε′, µ′′

/
µ′, χ′′

/
χ′

}
, (7)

it can be seen, from Figure 3, that ρ ≤ 10% for frequency regions
far from ε′ ≈ 0 and µ′ ≈ 0. This cannot be considered as a
small perturbation, but can however be considered as realistic (see
for comparison the results in [17–19]). Also, [17] shows that, for chiral
materials, at frequencies close to the resonance, losses can be much
higher. Furthermore, [18] and [19] show that we can expect high levels
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of losses when trying to obtain media with ε′ < 0 and/or µ′ < 0, by
adding metallic inclusions.

The modal equations for the chiral-isotropic interface and the
grounded chiroslabguide can be written as

η11η22 − η12η21 = 0. (8)

The derivation of the modal equations are detailed in Appendix A,
where the expressions for ηij (i, j = 1, 2) are presented for the media
considered in Table 1. At this point, one should note that, for an
interface between two isotropic media, unrealistic results are obtained
whenever losses are neglected: in this case, (8) reduces to

αa = αb = α →
∣∣∣∣ TE → α1

µ1
+

α

µ
= 0;

∣∣∣∣TM → α1

ε1
+

α

ε
= 0 . (9)

According to this last equation a lossless DPS-DPS interface does
not support any propagating modes. However, surface polaritons are
possible at a DPS-DNG interface. Namely, for the TE case, we get

kz = ±
√

εµµ2
1 − ε1µ1µ2

µ2
1 − µ2

. (10)

But then, when losses are not taken into account, this last equation
leads to the following unrealistic result:

εµµ2
1 > ε1µ1µ2 → lim

µ→−µ1

kz = ±∞. (11)

This resonance is embedded in the modal equation, and is not a result
of resonances of the constitutive parameters, it occurs at a frequency
where the constitutive parameters have finite values as it can be seen in
Figure 3. However, when losses are taken into account, one has µ2

1 6= µ2

even for <{µ1} = −<{µ} and the resonance in (11) does not exist, see
Figures 4(b) and 5(b) for the TE and TM modes, respectively.

In fact, for this simple case the resonance frequency has been
analytically identified and it is shown that it does not exist in the
presence of losses. For more complex cases, the solutions of the modal
equations cannot be derived analytically, and only by solving the
modal equations numerically can one find the frequencies where the
resonances occur. To further illustrate the effect of taking losses into
account, we present, in Figure 6, the effect of the chirality parameter
on the effective propagation constant of a lossy isotropic chiral-air
interface and compare it with the results obtained in [16] for the lossless
case. Given that, our objective is to focus on the effect of losses, the
results presented in Figure 6, do not take into account the dispersion
model given by (4)–(6), since no dispersion model was used in [16]. A
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Figure 4. Dispersion diagram for the TE mode at an isotropic-air
interface: (a) Lossless case; (b) Lossy case.
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Figure 5. Dispersion diagram for the TM mode at an isotropic-air
interface: (a) Lossless case; (b) Lossy case.

comparison between the results in Figure 6 and the results in [16], and
the results in Figures 4 and 5 allow us to conclude that only accounting
for losses physically meaningful results are obtained. Furthermore, the
power flow along z, for the lossless DPS-DNG interface, is given by

Pz =
1
4
|A|2

[
<

{
k∗z
µ∗1

}
1

<{α1} + <
{

k∗z
µ∗

}
1

<{α}
]

. (12)
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Figure 6. Effect of the chirality parameter χ on an isotropic chiral-
air interface: (a) neff ; (b) `eff . The results were obtained using the
parameters as in [16].
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By taking the limit, we get∣∣∣∣∣
lim

µ→−µ1

α1 = kz

lim
µ→−µ1

α = kz
⇒ lim

µ→−µ1

Pz =
1
4
|A|2
µ1

[<{kz}
<{α1} −

<{kz}
<{α}

]
= 0. (13)

In fact, a mode having kz = ∞ with zero power flow along z means
that the structure would be able to slow down a wave until full stop.
However, as shown in Figures 4 to 7, this behaviour is not realistic as
it corresponds to a resonance in the modal equation that arises, if and
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only if, losses are not accounted for. It is then clear that, when losses
are not taken into account, the aforementioned results — resonances
in kz and null power flow — do arise as a consequence of the modal
equation, and not of the dispersion model resonances (they occur far
from the resonances of ε and µ). Note that, in Figure 7, for the
frequency band under analysis, the power flow was obtained for proper
surface modes only. Therefore, the endpoints of the lines correspond to
the limits where the modal solutions transit to the improper sheet. As
can be seen in the dispersion diagrams, surface polaritons were found to
propagate at an isotropic-air interface. Furthermore, as derived in (11),
the solutions of the modal equation present an unrealistic resonance
when µ → −µ1, for TE modes (ε → −ε1 for TM modes), for the
lossless case (Figures 4(a) and 5(a)). Moreover, as obtained in (13),
the power flow along the interface heads toward zero for the same limits
(Figure 7). Therefore, only accounting for losses physically acceptable
results are obtained. Proper leaky modes (i.e., leaky modes that satisfy
the radiation condition) can then be found to propagate at the interface
(Figures 4(b) and 5(b)). Moreover, the frequency bands where proper
or improper solutions occur are not correctly defined when losses are
not taken into account. One should also note that, only when losses
are taken into account, the correct sign of neff can be selected: in
the DNG frequency band, the sign for the TE (TM) mode is negative
(positive).

3. FURTHER NUMERICAL RESULTS AND
DISCUSSION

In this section, further numerical results will be presented and dis-
cussed regarding chiral-air interfaces and chiral grounded slabguides.
The Lorentz dispersion model, described in Section 2, is considered
whenever losses are accounted for.

3.1. Chiral-Air Interfaces

In this section numerical results for chiral isotropic/uniaxial-air
interfaces are presented. In Figure 8, we can see the dispersion
diagram of an isotropic chiral-air interface, both for the lossless case,
Figure 8(a), and for the lossy case, Figure 8(b). Once again, as for
the isotropic-air interface (Figure 5), in the lossless case, a resonant
behavior for kz is observed, for finite values of ε, µ and χ. Only for
the lossy case, a correct behavior for kz is obtained: the resonance, of
kz, does not exist, and the frequency band, were the proper solution
occurs, increases.
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In Figure 9, the dispersion diagram of a uniaxial chiral-air interface
is depicted, also for the lossless case and for the lossy case. These
results reinforce our conclusion that the frequency bands where proper
or improper solutions, of the modal equation, occur, can only be
correctly found when losses are accounted for. In fact, only for the
lossy case, can we observe a proper solution, in this frequency band.
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3.2. Grounded Chiroslabguides

In this section numerical results for isotropic/uniaxial grounded
chiroslabguides are presented. It is shown that both surface and proper
leaky modes propagate in the lossless chiroslabguide (Figure 10(a)).

Collisions between surface modes, originating proper leaky modes
are observed, as well as a resonant effect which causes kz → ∞. In
the lossy case all modes are strictly leaky, and the collisions between
modal solutions are no longer observed (Figure 10(b)). Moreover, the
resonant behavior of kz disappears, and the frequency band where
proper solutions occur changes. Finally, a modal analysis of a uniaxial
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grounded chiroslabguide is presented in Figure 11. Again, a resonant
behavior in kz is identified, which disappears in the lossy case. Note
that, similarly to the isotropic chiroslabguide, the leakage coefficient
`eff (in the lossy case) increases near the frequency where kz →∞ (in
the lossless case).

4. CONCLUDING REMARKS

We have shown that both dispersion and losses should be taken into
account to correctly address a modal analysis in surface waveguides
containing DNG or chiral metamaterials. It was shown that losses
cannot be considered as a small perturbation of the lossless case.
Indeed, only by taking losses into account, it is possible: (i) to avoid
the ambiguity related to the choice of sign for the effective refractive
index — even when the constitutive parameters of a given medium are
all positive; (ii) to overcome the fact that modal equations can lead to
solutions that exhibit a resonant behavior not directly related to the
constitutive relations of the material; (iii) to obtain accurate results
on the frequency bands where proper and improper modal solutions
actually occur.
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APPENDIX A. MODAL EQUATION

In this appendix, we derive the modal equation of the structures under
study. We start by replacing the constitutive relations into the Maxwell
equations thereby obtaining the following equation

∂

∂x
[Ey Hz Hy Ez]

T = i k0

[
C11 C12

C21 C22

]
[Ey Hz Hy Ez]

T
, (A1)

with

C11 =

[
0 Z0µzz

Y0εyy − Y0εxx
k2

z

∆xk2
0

0

]
, (A2)

C22 =

[
0 −Y0εzz

−Z0µyy + Z0µxx
k2

z

∆xk2
0

0

]
, (A3)

C12 = C21 =

[
0 −iχzz

iχyy + iχxx
k2

z

∆xk2
0

0

]
, (A4)
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Z0 = 1/Y0 =
√

µ0/ε0 and where ∆x = εxxµxx − χ2
xx. Whenever

C12 = C21 6= 0, only hybrid modes are supported by the wave guiding
structures. In fact it is still possible to rewrite (A1) as

Φ = [Ey Hy]
T → ∂2Φ

∂x2
= −R ·Φ, (A5)

where R is a 2× 2 coupling matrix given by∣∣∣∣∣∣∣∣

R11 =(µzz εyy+χzz χyy) k2
0−(µzz εxx−χzz χxx) k2

z

/
∆x

R12 = iZ0 (µzz χyy+χzz µyy) k2
0−iZ0 (µxxχzz−µzzχxx) k2

z

/
∆x

R21 =−iY0 (εzz χyy+χzz εyy) k2
0 − iY0 (εzz χxx−χzz εxx) k2

z

/
∆x

R22 =(εzz µyy+χzz χyy) k2
0−(εzz µxx−χzz χxx) k2

z

/
∆x

. (A6)

Furthermore, R can be diagonalized:

Φ = M ·Ψ → ∂2Ψ
∂ x2

= −Λ ·Ψ, (A7)

where M is the modal matrix of R. The transversal wave numbers, in
medium 2, are then given by

h2
s =

1
2

(
R11 + R22 ±

√
(R11 −R22)

2 + 4R12R21

)
(A8)

and hence

s = a, b → τs =
h2

s −R11

R12
→ M =

[
1 1
τa τb

]
. (A9)

Inside the chiral medium the field components are such that{
Ey = Ψa + Ψb

Hy = Y0 (τaΨa + τbΨb)
(A10)

where∣∣∣∣
chiral-isotropic interface→ Ψs = As exp (αsx)
grounded chiroslabguide→ Ψs = As sin (hsx) + Bs cos (hsx) , (A11)

with α2
s = −h2

s. In the upper region the transversal attenuation
constant is α1, with α2

1 = k2
z − ε1 µ1 k2

0. After imposing the continuity
of the tangential components of fields E and H at z = 0 (and z = d
for the slabguide), the modal equation is obtained:

η11η22 − η12η21 = 0, (A12)
where:∣∣∣∣∣∣∣∣∣∣∣

η11 =ε1κ
(a)
r δ

(a)
µ ρ

(11)
r + iα1

(
εzzµzz − χ2

zz

)
σ

(11)
r

η12 =ε1

(
κ

(b)
r δ

(b)
µ ρ

(12)
r +κ

(a)
r δ

(a)
µ ς

(12)
r

)
+ iα1

(
εzzµzz−χ2

zz

)
σ

(12)
r

η21 = µ1κ
(a)
r

(
δ
(a)
ε ρ

(21)
r + δ

(b)
ε ς

(21)
r

)
+ iα1

(
εzzµzz − χ2

zz

)
σ

(21)
r

η22 =µ1

(
κ

(b)
r δ

(b)
ε ρ

(22)
r +κ

(a)
r δ

(a)
ε ς

(22)
r

)
+iα1

(
εzzµzz−χ2

zz

)
σ

(22)
r

, (A13)
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Table A1. Coefficients for the modal equations.

r = interface r = slab

κ
(a)
r = αa, κ

(b)
r = αb κ

(a)
r = ha, κ

(b)
r = hb

ρ
(11)
r = 1, σ

(11)
r = τa

ρ
(11)
r = cos(had)− cos(hbd)

σ
(11)
r = τa sin(had)− (iµzzτa−χzz)ha

(iµzzτb−χzz)hb
τb sin(hbd)

ρ
(12)
r = 1, ς

(12)
r = 0,

σ
(12)
r = τb

ρ
(12)
r = sin(hbd), ς

(12)
r = − sin(had),

σ
(12)
r = τa cos(had)− τb cos(hbd)

ρ
(21)
r = 1, ς

(21)
r = 0

σ
(21)
r = 1

ρ
(21)
r = − cos(had), ς

(21)
r = (iµzzτa−χzz)

(iµzzτb−χzz)
cos(hbd)

σ
(21)
r = (iµzzτa−χzz)ha

(iµzzτb−χzz)hb
sin(hbd)− sin(had)

ρ
(22)
r = 1, ς

(22)
r = 0,

σ
(12)
r = 1

ρ
(22)
r = − sin(hbd), ς

(22)
r = sin(had),

σ22
r = cos(hbd)− cos(had)

δ
(s)
µ = iτsµzz−χzz and δ

(s)
ε = iεzz +τsχzz. The modal equations either

for the interface or for the slab can then be readily derived from (A12)
using the information from Tables 1 and A1.
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