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Abstract—This work examines reflection of a light from a semi-
infinite medium which is modified with an ordered monolayer of
spherical nanoparticles placed on or under its surface. We derive
analytical expressions for the electric fields within and outside such
structures and verify them with help of strict numerical simulations.
We show that nanoparticles layer acts as an imaginary zero-thickness
surface having complicated non-Fresnel reflection coefficients with
wavelength dependent phase shift. It is shown that such monolayers
may reduce reflection relative to reflection from a pure substrate
surface. We derive and analyse a zero-reflection condition in the simple
intuitive form. It is shown that a single layer of nanocavities near the
medium-vacuum interface may increase the transparency of a dielectric
medium to values close to 100% in a wide wavelength range.

1. INTRODUCTION

At present, investigations aimed at the creation of conditionally
invisible materials and media having complete or almost complete
transmission of incident radiation in a given spectral range are widely
performed. These investigations are stimulated by the possibility of the
controlled creation and use of nanoobjects whose application makes
it possible to vary the optical properties of natural materials in a
sufficiently wide range by modifying the existing antireflection coatings
or appropriately tuning the refractive index of the medium as a whole.

Higher light transmission of a dielectric medium is usually
achieved by depositing thin-film single- or multilayer interference
coatings. This approach is applicable for a sufficiently wide spectral

Received 25 March 2011, Accepted 4 May 2011, Scheduled 3 June 2011
Corresponding author: Alexander S. Shalin (shalin a@rambler.ru).

† Also with Ul’yanovsk State University, 42 L. Tolstogo street, Ul’yanovsk, Russia.



46 Shalin

range; however, it has substantial limitations related to necessity of
depositing a great number of films of various materials with a strictly
specified thickness [1] and optical properties [2, 3]. It is determined
by the fundamental principle of interference minimum requiring two
interfering waves to be phase-shifted by π relative to each other. These
factors limit the transparency to at most 99.8%–99.9% [1]. A larger
part of presently employed antireflection coatings has not so high
transparency and exhibits dichroism as well [4]. In the infrared and
microwave ranges, ferroelectrics and semiconductors have a sufficiently
high refractive index, which hinders creation of antireflection coatings
for them. Hence, a search for alternative antireflection methods
capable of obtaining higher transmission in the visible spectral range
becomes a necessity.

Last years a new type of antireflection coatings is being intensively
developed [5–11]. It appears to be discrete nanostructured layers
placed on or under the surface of a medium to be made antireflected.
In [12], it is shown that the reflective capability of the substrate with
a “nap” of the SiO2 and TiO2 nanotubes deposited on it may be
reduced down to 0.05% at certain wavelengths. A similar effect was
also observed in arrays of carbon nanotubes [13] and is related to light
“trapping” in a sparse chaotic nanostructured material. The possibility
of the achievement of the absolute transparency of medium at a given
wavelength owing to the deposition of an ordered layer of spherical
nanoclusters was theoretically predicted in [14, 15]. Yanagishita et
al. [16] experimentally investigated the reduction of the reflection
by ordered nanocrystals using the example of the layer of polymer
nanocones on the surface of a lens.

A monolayer of spherical clusters was described theoretically by
direct solving Maxwell’s equations in spherical coordinates [17, 18].
Although the solution obtained by Mie [19] refers to diffraction
from a single sphere, it can be generalized to any number of
interacting particles using 3j symbols and Clebsch-Gordan coefficients,
which allow one to take into account multiple coherent light
scattering by nanoclusters in the structures in question [17]. This
approach is however not always appropriate. Indeed, as shown
earlier [17, 18, 20, 21] the interaction between particles is long-ranged
and requires taking into account a rather large number of elements
that influence each other. The problem can thus be treated in
this approach only numerically, which requires a long computation
time. Similar difficulties are encountered in other methods that
directly solve Maxwell’s equations, such as the finite element method
(FEM) [22–24], finite-difference time-domain (FDTD) method [25, 26],
small perturbation method (SPM) [27]. Moreover, taking into account
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the interaction between a layer of nanoparticles and the substrate
adds considerable complexity to the computation process or requires
a number of approximations, e.g., averaging of the refractive indices
of the substrate and environment [28], which can be done by different
procedures, or the introduction of an imaginary nanostructured layer,
a reflection of the real layer [18].

A recently proposed theoretical approach [15, 20, 29] allows
one to find a relatively simple analytical solution to the problem
of light scattering by a system of nanoclusters in the long-
wavelength approximation. The theory relies on an integral-equation
formalism [17, 30–32], does not require Maxwell boundary conditions
for evaluating the interaction parameters of nanoparticles in the layer
and, as will be shown below, makes it possible to directly take into
account the mutual polarization of the medium and nanostructured
layer. Note that the ability to find an analytical solution is essential
for inverse optical problems, where the resultant optical properties
are given a priori, whereas the underlying geometric and material
parameters of the system are unknown. In this context, we propose
to use the above-mentioned integral-equation method and to refine the
results by electrodynamic finite element simulations in the COMSOL
Multiphysics environment [33].

This work focuses on the interference interaction of an ordered
monolayer of spherical nanoparticles with the substrate. The
expressions obtained for the fields within and outside the system are
used to examine the conditions under which its reflectance decreases.
We derive and analyze the condition for the complete elimination of
reflection from a medium (zero-reflection condition), which determines
the geometric and material parameters of the nanoparticle monolayer
necessary for suppressing the reflection, and demonstrate that near-
zero reflection is possible for a wide wavelength range.

2. CONSTITUTIVE EQUATIONS

Let us consider the structure shown on Fig. 1, and consisting of
spherical nanoparticles and a substrate. The layer and substrate are
infinite in the xy plane. To assess the electromagnetic response of the
system, we use the integral-equation formalism [15, 17, 20, 21] that was
applied earlier to study a variety of nanostructured arrays. Here we
restrict consideration to a linear approximation: the polarizations of a
medium and particles are linear functions of field strength.

In this approach, the field at each point of space can be written
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Figure 1. Geometry of the system. A wave with wave vector ~k0 is
incident from vacuum on a surface, Σ, covered with an ordered layer
of nanoparticles.

in the form:
~E(~r, t)

= ~EI(~r, t) +
∫

V

{
~∇× ~∇×

~P (~r ′, t−R/c)
R

}
dV ′

+
3
4π

N∑

j=1

∫

Vj

{
~∇× ~∇×

(
εj (~r ′j)−1
εj (~r ′j)+2

~E ′
jeff (~r ′j , t−R′

j/c)
R′

j

)}
dV ′

j , (1)

where ~EI(~r, t) = ~E0I exp(i~k0~r − iωt) is the wave at a point of
observation with radius vector ~r the first integral represents the
response of the substrate, whose polarization ~P is proportional to the
amplitude of the incident field; R = |~r − ~r ′| is the distance from an
integration point (radius vector ~r ′) in the medium to the point of
observation; V is the volume of the medium; c is the speed of light in
vacuum; and (t−R/c) represents the time delay of the corresponding
quantity. The second integral (more precisely, the sum of integrals)
represents the field of the layer of N spherical nanoparticles, which
have a complex relative dielectric permittivity εj(~r) and volume Vj ,
Rj = |~r − ~r ′j | and ~r ′j is the radius vector of an integration point
inside the jth nanoparticle. The effective field ~E ′

jeff in (1) differs
from the incident plane wave ~EI and has the form of a wave acting
on each point in the jth nanoparticle, with allowance for the fields
reemitted by the nanoparticles and substrate. As shown earlier [30, 34],
~E ′

jeff comprises two contributions: external, due to the environment
(the other particles of the monolayer and the substrate), and internal,
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which determines the interatomic interaction in the nanoparticle and
the permittivity of the particles’ material. Taking into account the
internal field leads to separation of (1) into local and nonlocal parts,
as described in detail elsewhere [30]. The former part reduces to the
Lorentz-Lorenz formula, which relates the permittivity of a particle
to the polarizability and concentration of its constituent atoms. The
boundary problem is thus reduced to solving nonlocal equations,
namely, to finding the fields ~Ejeff that act on the nanoparticles from
the environment.

For simplicity, consider a layer of identical homogeneous
nanoclusters (ε = εj , a = aj (j = 1, . . . , N)) using the long-wavelength
approximation, which can be represented by the conditions

k0a, k0aRe(n), k0a Im (n) ¿ 1 (2)

where ~k0 is the wave vector of the incident wave, and a, n =
√

ε are
the radius and refractive index of the spherical clusters, respectively.
With these conditions met, ~EI and ~Ejeff can be considered constant
throughout a given cluster and equal to those in its centre.

Placing the point of observation and the origin in the centre of the
ith particle, we write the nonlocal part of Equation (1) in the form

~Eieff

= ~EI(0, t) +
3
4π

ε− 1
ε + 2

N∑

j=1,
j 6=i

∫

Vj

{
~∇×~∇×

~Ejeff (~r ′j , t− |~r ′j | /c)
|~r ′j |

}
dV ′

j

+
(
Ĝ ~Em

)
(t−|~∆|/c)

. (3)

The second term in the right-hand side of Equation (3) represents
the superposition of the fields produced by the nanoparticles in the
centre of the ith particle. The third term represents the total field
(with allowance for the contribution from the monolayer) reflected
from the substrate surface, where Ĝ is the reflection coefficient; ~Em

is the effective field incident on the substrate; and (t− |~∆|/c) is the
time delay by |~∆|/c, equal to the time it takes the wave to travel from
the plane defined by the centers of the nanoparticles to the substrate
surface, and ~∆ = (0, 0,−a). Taking into account the self-polarization
of the layer through the reflection of its field from the substrate surface
is of key importance because neglecting this effect leads to considerable
deviations from the exact solution; ~Em can be found from the nonlocal
part of Equation (1), by writing it for a point of observation on the
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substrate surface:

~Em = ~EI

(
~∆, t

)

+
3
4π

ε− 1
ε + 2

N∑

j=1

∫

Vj





~∇× ~∇×
~Ejeff

(
~r ′j , t−

∣∣∣~∆−~r ′j
∣∣∣
/

c
)

∣∣∣~∆−~r ′j
∣∣∣



dV ′

j . (4)

Equations (3) and (4) constitute a self-consistent system of
integral equations, whose solution is the effective electric field in
the monolayer. Unfortunately, the reflection coefficient Ĝ is rather
difficult to calculate in general form [35]. In particular, the standard
procedure based on the extinction theorem in integral form [30]
cannot be used to perform the integration over the medium in (1)
because the field produced by the nanoparticles in the surface layer
of the substrate is inhomogeneous. The solution can then be found
using the above-mentioned coupled dipole method, which requires
purely computational means. On the other hand, as we showed
previously [29] the reflection coefficient Ĝ of an inhomogeneous field
can be approximated by a tensor constructed from the Fresnel
reflection coefficients for a plane wave. In the optical region, this
approximation is applicable when the characteristic values of the
geometric parameters of the metalayer (lattice period and particle size)
do not exceed a few tens of nanometres at a moderate absorption
coefficient of the particles, which corresponds to conditions (2). The
Ĝ tensor then has the form

Ĝ =




r⊥ sin2 ϕ− r|| cos2 ϕ − (
r⊥ + r||

)
sinϕ cosϕ 0

− (
r⊥ + r||

)
sinϕ cosϕ r⊥ cos2 ϕ− r|| sin2 ϕ 0

0 0 r||


 ,

where r⊥, r|| are the Fresnel reflection coefficients for the electric vector
components normal and parallel to the plane of incidence [30] and ϕ
is the angle between the plane of incidence and the x axis.

3. OPTICAL FIELDS IN THE NANOSTRUCTURED
LAYER

Consider the field produced by the jth nanoparticle in vacuum at a
point of observation with radius vector ~R outside the nanoparticle.
In the long-wavelength approximation, the integral representing the
field strength in (1) can be calculated easily by the Ewald-Oseen
method [30], as done in previous studies [20, 21, 36]. As a result, we
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obtain the relation

~Ej sca

(
~R
)

= αpf̂j (R) ~Ejeff , αp = a3 ε− 1
ε + 2

, (5)

where the f̂j(R) tensor has the following components for the external
field polarizations parallel and normal to ~R:

fP
j (R) = exp (ik0R)

(
2

R3
− 2ik0

R2

)
,

fS
j (R) = exp (ik0R)

(
− 1

R3
+

ik0

R2
+

k2
0

R

)
,

(6)

According to Equations (5) and (6), the field scattered by a
nanoparticle strictly corresponds to that created by a dipole of
polarizability αp located in the centre of the particle [30, 34]. Clearly,
if the particle is surrounded not by vacuum but by the medium with
dielectric permittivity ε̃m, the permittivity ε in (5) is relative rather
than absolute, and k0 must be replaced by k = k0

√
ε̃m.

Let us use the principle of parallel translational symmetry [37, 38],
according to which an electric field (an external wave or the wave
reflected from the substrate surface) incident on a layer of nanoparticles
meets the condition

~Einc (~rj) = ~Einc (0) exp (i~q~rj) , (7)

Here, ~rj is the radius vector of the centre of the jth nanoparticle,
and the components of the ~q vector are (qx, qy, 0), where qx = k0x =
k0 sin θI cosϕ and qy = k0y = k0 sin θI sinϕ (θI is the angle of
incidence). Therefore, since all the clusters are identical, the field
amplitudes are ~Ejeff = ~Eieff = ~Eeff and the phase shift is given by (7).
With Equations (5)–(7), the integrals in (3) and (4) can be converted
to lattice sums:

3
4π

ε− 1
ε + 2

N∑

j=1

∫

Vj

{
~∇× ~∇×

~Eeff (~r ′j , t−R ′
j/c)

R ′
j

}
dV ′

j

= αp
~Eeff

N∑

j=1

f̂j (|~r − ~rj |) exp (i~q~rj). (8)

Therefore, the system of integral Equations (3) and (4) reduces to
the following linear algebraic equation for the field acting on a cluster:

~Eeff = ~EI(0)+αp
~Eeff Âp+Ĝ

[
~EI(0) exp

(
2i~k0

~∆
)
+

(
αp

~Eeff Ĉ−
p

(
2~∆

))]
, (9)
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where the term in square brackets is equal to (~Em)(t−|~∆|/c) given that
the wave reflected from the substrate lags the wave incident on the
layer both in the path from the plane defined by the centers of the
nanoparticles to the substrate surface and after the reflection, in the
path from the substrate surface to that plane. In (9), we use the
following designations:

Âp =
N∑

j=1,
j 6=i

f̂j (|~rj |) exp (i~q~rj), (10)

is the lattice sum determining the field produced at the ith particle by
the other particles in the layer and

Ĉ−
p

(
2~∆

)
=




N∑

j=1

f̂j

(∣∣∣~∆− ~rj

∣∣∣
)

exp (i~q~rj)




(t−|~∆|/c)

(11)

is the lattice sum describing the field emitted by the layer towards the
substrate (the superscript “−” denotes that the wave propagates in
the negative direction relative to the z axis). The calculated lattice
sums of the form (10) and (11) are given in the Appendix.

Solving Equation (9) for the effective field acting on a nanoparticle
in the monolayer, we obtain

~Eeff (0) =
1 + Ĝ exp

(
2i~k0

~∆
)

1− αpÂp − Ĝ
(
αpĈ

−
p

(
2~∆

)) ~EI(0). (12)

The effective-polarizability approach allows one to deal with the
external field strength without considering the parameters of the
structure. From the relation

~dp = αp
~Eeff = α̂peff

~EI , (13)

where ~dp is the dipole moment of a nanocluster, we obtain the following
formula for the effective polarizability of the nanoparticle:

α̂peff = αp

1 + Ĝ exp
(
2i~k0

~∆
)

1− αpÂp − Ĝ
(
αpĈ

−
p

(
2~∆

)) . (14)
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4. REFLECTED WAVE FIELD IN THE WAVE ZONE.
EFFECT OF A MONOLAYER OF PARTICLES ON
REFLECTANCE

At a point of observation with radius vector ~p, the wave reflected from
a monolayer-substrate system has the form

~Erefl (~p) =
{

Ĝ exp
[
i~k0

~∆ + i~kR
0

(
−~∆ + ~p

)]

+α̂peff

[
ĜĈ−

p

(
2~∆− ~p

)
+ Ĉ+

p (~p)
]}

~EI , (15)

where the use of −~p in Ĉ−
p (2~∆− ~p) allows us to avoid dividing the

wave path into two parts (in the −z direction from the layer to the
substrate surface and then in the opposite direction from the substrate
to point ~p) and to replace it with the total distance plotted in the z

direction, and ~kR
0 = (k0x, k0y,−k0z) is the wave vector of the reflected

wave.
It follows from (15) that the reflected wave amplitude is the sum

of three quantities. One of them, the first term in (15), represents
Fresnel reflection from a pure substrate without nanoparticles. The
other two terms are due to the polarization of the nanospheres,
which interact electrodynamically with one another and with the
substrate: αpeff Ĉ+

p (~p) ~EI represents the emission from the monolayer in
the reflected wave direction (+z direction) and αpeff ĜĈ−

p (2~∆− ~p) ~EI

represents the emission from the monolayer to the substrate reflected
from its surface. Since the phase factors of these terms depend
significantly on the geometry and material parameters of the monolayer
substrate system, interference of the corresponding waves at the point
of observation may raise or reduce the reflection coefficient relative to
the Fresnel coefficient.

In certain cases, expression (15) can be substantially simplified.
We have shown in [29] that, for the considered system, the following
condition is well satisfied in the optical range (see Appendix):∣∣∣Ĉ01

p (~r)
∣∣∣

∣∣∣Ĉ00
p (~r)

∣∣∣
<< 1, (16)

In this situation, only the first nonevanescent harmonic can be
retained in the decomposition of the field scattered by a nanoparticle
layer. The above inequality holds when the characteristic geometric
parameters of a metalayer (lattice period, particle dimension) have
values of about several tens of nanometers. As it is seen from the
Appendix and studies [14, 29], it is necessary to take into account
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nonzero decaying harmonics in lattice sum Ĉ±
p only in the case of large

values of lattice constants, small radii of particles, or large wavelengths.
So, we can express lattice sum (11) as follows (see Appendix):

Ĉ±
p (~r) = Cn exp

(
∓i~k0~r

)
, Cn =

~EI∣∣∣ ~EI

∣∣∣
· 2πik2

0

|~a1 × ~a2| k0z
, (17)

where k0z is the z component of the wave-vector, ~a1, ~a2 are the
vectors of the lattice constants of the layer. With allowance for (17),
expression (15) can readily be modified into the form

r̂ =
~Erefl (0)
~EI (0)

=
R̂l + R̂12 exp

{
2i

(
~k0

~∆
)}

1− R̂21R̂l exp
{

2i
(
~k0

~∆
)} , (18)

which corresponds to the Airy reflection coefficient for a film located
on the surface of an underlying medium. Here,

R̂l =
αpCn

1− αpÂp

(19)

is the tensor of the non-Fresnel reflection coefficients of the metalayer.
In a similar manner, we can obtain the system’s transmission coefficient
that describes the total field transmitted into the substrate:

t̂ =
~Etran

(
~∆

)

~EI (0)
=

T̂12T̂l exp
{

i
(
~k0

~∆
)}

1− R̂21R̂l exp
{

2i
(
~k0

~∆
)} , (20)

where the tensor of the non-Fresnel transmission coefficients of the
metalayer has the form

T̂l = 1 +
αpCn

1− αpÂp

. (21)

Tensors (19) and (21) have similar forms, because the metalayer
field is symmetric with respect to the plane where the layer is located
(see Appendix).

Thus, the monolayer of the nanoparticles is an imaginary interface
between two media, which passes through the centers of the clusters
and has complicated reflection and transmission coefficients. In other
words, the system under consideration can be represented as a film
with the thickness ∆ (the distance from the surface of the matrix
medium to the imaginary interface) that is located on the surface
of the semi-infinite substrate. It is worth noting that the layer of
nanoparticles (or an ordered aggregate of several layers) was treated
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in some papers (see f. e. [39]) as a finite-thickness film with a
certain effective refractive index different from the refractive index
of the matrix medium, as in the Maxwell-Garnett effective medium
theory [40]. However, in view of the absence of the pronounced
boundaries of the layer which can be treated as the boundaries of
this film, the different thicknesses of this film were determined in
different works. This difficulty is easily understood considering the
monolayer consisting of micellar nanoobjects, which are nuclei covered
by needlelike outgrowths rather than of spherical particles. In this
case, it is unobvious whether the thickness of this heterogeneous film
should be defined as the diameter of the nucleus or micellar needles
should be included into the film. One of the variants of the definition
of the thickness is the definition of the fictitious boundaries at which
the wave scattered by the layer becomes plane (all of the evanescent
harmonics caused by the discrete structure of the layer and by the
shape of the constituent nanoparticles are damped). Since the ratio of
the total volume of the nanoparticles to the total volume of the film
(filling factor) obviously depends on the definition of the boundaries
of the composite film, the effective refractive index is a nonlinear
function of the thickness, thus strongly affecting the resulting optical
properties of the system. In the framework of the presented formalism,
the indicated difficulties are absent, because the parameters are not
averaged. In this case, the extinction theorem is also satisfied, because
the separation of the incident wave into the reflected and transmitted
waves, whose amplitudes are determined by the tensor coefficients
given by Equations (19) and (21), occurs exactly on the plane passing
through the centers of the nanoparticles.

Taking into consideration simple form of Equations (18), (20)
it is possible to obtain corresponding formulas for “inverted” system
when nanoparticles layer is embedded into a substrate with refractive
index ñm =

√
ε̃m without any additional calculations. The reflection

coefficient of such a structure has the following form:

r̂ =
R̂12 + R̂l exp

{
2i

(
~k~∆

)}

1− R̂21R̂l exp
{

2i
(
~k~∆

)} , (22)

where ~k = ~k0ñm is the wave vector in a substrate, R̂l depends on ~k,
and transmission coefficient t̂ has the form of (20) with the following
replacement ~k0 → ~k.
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5. CONDITION OF THE TOTAL BLOOMING OF A
SUBSTRATE

The following condition under which the medium becomes absolutely
transparent due to nanolayer on its surface can be obtained from
Equations (18), (22), where the reflection coefficient is set to zero:

R̂l = −R̂12 exp
{
±2i

(
~k~∆

)}
, (23)

where the left- and right-hand sides characterize the layer of the
nanoparticles and the substrate, respectively. Phase shift 2i(~k~∆) has
sign “+”, and ~k = ~k0 if the nanolayer is on the surface of a medium;
and sign “−”, and ~k = ~k0ñm if it is imbedded into a medium. The
form of Equation (23) is well known in the optics of antireflection
coatings; this condition is formally separated into two conditions, the
first of which requires the equality of the reflection coefficients of the
film and substrate and the second, the presence of a path difference of
λ/2 (where λ is the wavelength in the surrounding medium) between
the reflected waves. ∣∣∣R̂12

∣∣∣ =
∣∣∣R̂l

∣∣∣ , (24a)

exp
{

2i
(
~k~∆

)
± i (−ρl + ρ12) + iπ

}
= −1, (24b)

where ρ12 and ρl are the arguments of R̂12 and R̂l, respectively. Since
the bloomed medium is a dielectric material with the refractive index
> 1, it is obvious that ρ12 = π.

Figure 2 shows the reflection spectra of the system under
consideration obtained by exact electrodynamic finite element
computations [33]. We used about 105 mesh elements in our geometry
(Fig. 1) to achieve the precision 10−3% while calculating reflection and
transmission spectra. The refractive index of the substrate was chosen
so as to meet condition (23) at wavelengths of 550 (Fig. 2(a)) and
460 nm (Fig. 2(b)), and the parameters of the monolayer were set a
priori. The material of the nanoparticles in Fig. 2(a) is a hypothetical
medium with a refractive index n = 1.8, and that in Fig. 2(b) is silicon,
with the known dispersion of its optical constants [41].

Note that in Fig. 2 the reflectance does not become zero at the
minima (but the minimum reflectance is several hundred times lower
than the reflectance of an uncoated substrate surface), and the minima
are slightly shifted from the intended 550 and 460 nm, which is due to
the discrepancy between the analytical solution (which was used to
derive condition (23)) and the exact solution [29]. Therefore, in the
case of large (a ≥ 20 nm [29]) nanoparticles, the refractive index of



Progress In Electromagnetics Research B, Vol. 31, 2011 57

450 500 550 600 650 700 750

0.1

0.2

0.3

0.4

0.5

0.6

500 600 700 800

0.01

0.02

0.03

0.04

0.05

500 600 700 800

0.01

0.02

0.03

0.04

0.05

0.06

0.07

500 600 700 800

0.02

0.04

0.06

0.08

%ℜ %ℜ

%ℜ %ℜ

 , nmλ , nmλ

 , nmλ, nmλ 
(a) (b)

(c) (d)

Figure 2. Reflection (<) spectra of a system comprising a monolayer
of spherical nanoparticles and a substrate: (a) a = 15 nm, n =
1.8, ñm = 1.03 + 0.11i; (b) a = 20 nm, n = n(ω) (silicon), ñm =
1.23 + 0.33i; y-axis polarized wave is incident on the system along
the normal to its surface (θI = 0). The particles are arranged in the
form of a square lattice with periods |a1,2| = 3a. (c) and (d) are
given to illustrate the effect of lattice form on the reflection spectra,
parameters of particles and substrate are the same as on Fig. 2(a) and
lattice constants: (c) |a1| = 4a, |a2| = 3a; (d) |a1| = 3a, |a2| = 4a.

the substrate found from (23) must also be slightly corrected using
the exact solution. In this work, this was done by adjusting the
corresponding parameter. In particular, the analytical refractive index
of the substrate, ñm, in Fig. 2(b) is 1.1 + 0.36i, whereas the minimum
in reflectance is reached at 1.23 + 0.33i. This is because condition (2)
is not met, and the particles no longer behave as dipoles localized at
their centre, so multipole terms in the expansion of the scattered field
must be taken into account.

It should also be emphasized that reflection suppression is
significant (by more than a factor of 10) in a rather broad wavelength
range: from 460 to 800 nm in Fig. 2(a) and from 400 to 600 nm in
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Fig. 2(b). Moreover, there is no absorption in the layer in Fig. 2(a),
and the average absorptance in the visible range in Fig. 2(b) is 0.13%.

The optical response of a coating composed of nanoparticles can
be tuned by varying the internal geometric parameters. For example,
at a fixed refractive index of the substrate, changing the particle
radius by 1% shifts the minimum in reflectance by approximately
27 nm in Fig. 2(a) and 23 nm in Fig. 2(b). Reducing the particle
size shifts the minimum to shorter wavelengths, and vice versa. The
lattice constant also influences the position of the zero-reflection region:
with decreasing lattice density, it shifts to shorter wavelengths (see
Figs. 2(c), (d)). Moreover, variation of the lattice constant which
is parallel to the incident wave polarization affects spectra greater
(Fig. 2(d)). If we fix not the optical constants of the substrate
but the zero-reflection wavelength, the parameters of the monolayer
at which condition (23) is met depend on the substrate, with the
following relationship: the higher the reflectance of the substrate, the
higher must be the effective optical density of the metalayer (denser
packing, larger particles or higher optical density of the particles). This
conclusion is obvious because the wave generated by the monolayer
then has a larger amplitude and, accordingly, suppresses the stronger
reflection from the substrate through destructive interference.

It is worth noting that total antireflection takes place only for
media with refractive index close to unity. This is because of
condition (24b) which can not be satisfied if particles are on a substrate
and have radii about tens nanometers. Parameter ∆ is much smaller
then λ/4 in this case and corresponding phase shift 2(~k~∆) ¿ π. On
the other hand if nanoparticles’ layer is embedded into a substrate,
its reflectance decreases (because of decreasing particles polarizability
αp (5)), but the condition of an interference minimum of reflection,
which can be easily obtained from Equation (22) and is similar
with (24b), can be strictly fulfilled allowing us to achieve optical
blooming for strongly refractive media.

Let us consider the optical properties of glass (ñm = 1.5) with the
introduced layer of spherical nanoinclusions. According to the above-
mentioned, the refractive index of the material of these nanoparticles
should differs from the ñm as much as possible to increase polarizability
αp; therefore, the layer consisting of nanocavities with n = 1 has the
maximum reflectivity. The use of metallic nanoparticles having the
refractive index with the real part smaller than unity would make
it possible to additionally increase reflectivity, but the absorption of
radiation in such a monolayer can reach several percent, making its
application unreasonable in this case.

Assuming that the lattice constants are equal to the minimum
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Figure 3. Transmittance of glass (ñm = 1.5) with the introduced
layer of nanocavities with the radii a = 50 nm. The lattice constants
are the same and are equal to 2a (cavities are located close to each
other) and the layer location depth is ∆ = 51 nm. The calculation was
performed by the exact electrodynamical finite element method.

value 2a corresponding to adjoining cavities, the radius of the cavities
a ≈ 50 nm necessary for the satisfaction of Equation (24a) at a
wavelength of 550 nm. In this case, to calculate the reflection and
transmission spectra of the system with these parameters, the exact
electrodynamics finite element method [22–34] is used in order to
exclude the effect of made approximation (2) and the absence of
multipole terms in the nanoparticle interaction tensor (6) (which
are significant for the considered case of touching spheres) on the
result. According to [29], for such geometrical parameters of the
nanoaggregate, the considered analytical approach can be used only
for estimating investigations. Thus, the calculation of the spectral
dependence of the transmissivity of the medium with the introduced
layer of the nanoparticles is performed strictly with an accuracy up to
0.001%, whereas the parameters necessary for the complete blooming
of the system are determined approximately in the frame of proposed
method.

As is seen in Fig. 3, the transparency of the medium is indeed
broadband in this case and the transmission of radiation exceeds 99%
in the interval of 400–750 nm. The section of the spectral dependence
of the transmissivity in which it depends slightly on the wavelength
and is close to the maximum value is also sufficiently wide (> 99.8%
in the interval of 470–600 nm). In this case, the transmission peak
= = 100% is observed at a wavelength of 527 nm rather than at
550 nm, as was assumed. This is due to the mentioned discrepancy
between the numerical and analytical results. Note that transmission
decreases rapidly in the blue region, because the reflectivity of the layer
of nanocavities, which increases with a decrease in the wavelength,
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becomes too high. In view of this circumstance, it is reasonable to use
larger cavities in optical media denser than glass, because reflectivity
increases additionally in this case.

It is worth noting that the change in the parameters of the
monolayer gives rise to the weakening of the blooming effect at Fig. 3.
In particular, when the radius of the spheres decreases to 40 nm or
increases to 60 nm, the region in which = = 99.8% is decreased by a
factor of 1.5–2 and the blooming becomes more narrowband. The
transmissivity with the use of the particles with n > ñm exhibits
a pronounced peak and, beyond the maximum, is smaller than the
corresponding value for a pure medium. This confirms that the
broadband increase in the transparency can occur only under the above
conditions imposed on the material and geometric parameters of the
nanolayer.

It is necessary to underline that the similar effect of broadband
optical antireflection of a medium by the nano-structured layer was
experimentally observed in paper [42] for the glass film coated with
the layer of parabolic nano-pillars.

6. CONCLUSIONS

We examined electrodynamic interaction between an ordered mono-
layer of spherical nanoparticles and a substrate. The results show
that, in such systems, the fields reflected from the monolayer and the
substrate surface may interfere both constructively and destructively,
raising or reducing the reflectance of the entire system. We derived
and analyzed conditions for complete elimination of reflection from
the substrate and identified the factors that influence the minimum-
reflectance wavelength. Using the proposed approach and the finite
element method, it has been shown that the semi-infinite medium can
be bloomed in a wide wavelength range by the introduction of a single
layer of nanoparticles or nanocavities. The results of this work can
be significant for the development of materials with high transparency
(“invisible” materials), the creation of blooming coatings with a qual-
ity higher than that of the existing materials, and an increase in the
transmissivity of media whose blooming by the existing methods is
difficult or impossible.

One possible application of this effect is the engineering of
antireflection coatings for existing artificial media with a refractive
index close to unity [43]. According to the general theory of
antireflection coatings [30], the refractive index of the antireflection
film should then be closer to that of vacuum, so that no natural
materials can be exploited for this purpose. The use of a loose
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structure with controlled optical characteristics, such as a monolayer of
nanoparticles, makes it possible to substantially suppress or completely
eliminate reflection from such materials, which in turn paves the way
for engineering absolutely transparent materials.

APPENDIX A.

For calculation of lattice sums (10) and (11), we apply the technique
proposed by Ewald and successfully used in a series of studies [37, 38].
First, let us consider the case when the observation point is beyond the
layer and the layer is located in free space. Note that, if a nanoparticle
monolayer is in a medium with ñm 6= 1, the replacement ~k0 → ~k0ñm

should be made in the formulas below. Taking into account that
the function describing the dipole field is periodic and has the lattice
period, we decompose this function in the Fourier series in the vectors
of the reciprocal lattice. Since the expressions from the Appendix are
derived in the literature cited above, we directly present the result:

Ĉp (~r − ~rj) = −
∞∑

p,q=−∞

2πi

|~a1 × ~a2|
[
~kpq ×

(
~kpq × ~n0

)] exp
(
i~kpq~r

)

κpq
(A1)

where ~n0 = ~EI/
∣∣∣ ~EI

∣∣∣, κpq =

√
k2

0 −
(
~q + ~g

|
pq

)2
~g
|
pq = p~g1 + q~g2,

~kpq =





(
~q + ~g

|
pq, κpq

)
, z > 0(

~q + ~g
|
pq,−κpq

)
, z < 0

(A2)

The vectors of the reciprocal lattice are as follows:

~g1 = 2π
~a2 × ~n

|~a1 × ~a2| , ~g2 = 2π
~n× ~a1

|~a1 × ~a2| , (A3)

where ~a1 = (α, 0, 0),~a2 = (β, γ, 0) are the minimum-length translation
vectors of the direct lattice and the vector ~n = (0, 0, 1) is perpendicular
to the monolayer surface. Expression (A1) is the decomposition of the
field induced by a nanoparticle monolayer in a plane harmonic wave
(p = q = 0) and a series of exponentially decaying evanescent waves
existing when |~q + ~gpq| > k0, κpq are imaginary quantities.

Now, let us calculate lattice sum (10) for the observation points
inside the metalayer. According to the Ewald method [38], we have
the following expression at z = 0:

Âp = l̂
(
~k0

)
~n0 exp (i~q~rj) . (A4)
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Tensor l̂ is symmetric, contains zero components lxz, lyz, lzx, lzy

and has the form

lµν
(
~k0

)

= cµν −
[
2
3
ik3

0Erfc
(

ik0

2F

)
+

4F

3
√

π

(
k2

0−F 2
)
exp

(
k2

0

4F 2

)
− 2

3
ik3

0

]
δµν . (A5)

This expression includes the complementary error function
integral (Erfc), which rapidly approaches zero at large values of the
argument,

cµν =
iπ

|~a1 × ~a2|
∑
p,q

[
k2

0δ
µν − kpqνkpqµ

κpq
∆pq (1 + τ) + ηΣpq

]

+
1
2

∑
n,m

exp
(
i~k0~anm

)

a3
nm

{
Γ(1)

nm

[
δµνΓ(2)

nm + ~aµ
nm~aν

nmΓ(3)
nm

]

+Γ(4)
nm

[
−δµνanm + ~aµ

nm~aν
nmΓ(5)

nm

]
+ κ.c.

}
(A6)

where µ, ν = x, y, z,~anm = n~a1 +m~a2, anm = ‖~anm|, n, m are integers,
and

η = δµzδνz, τ = (−1)δµz

(−1)δνz

,

∆pq = Erfc
(
− ikpq

2F

)
, Σpq =

i4F√
π

exp

(
k2

pq

4F 2

)
,

Γ(1)
nm = exp (−ik0anm) Erfc

(
anmF − ik0

2F

)
,

Γ(2)
nm = −1− ik0anm + k2

0a
2
nm,

Γ(3)
nm = −k2

0 +
3ik0

anm
+

3
a2

nm

,

Γ(4)
nm =

2F√
π

exp
(
−F 2a2

nm +
k2

0

4F 2

)
,

Γ(5)
nm =

3
anm

+ 2F 2anm, F =
√

π/ |~a1 × ~a2|.

(A7)

The convergence of the sums from (A5) is determined by
parameter F measured in reciprocal-length units. This parameter
has no physical meaning and should be a real positive quantity. The
substitution of the value of F into (A7) yields the maximum values
of indices (m,n) and (p, q) that are necessary for calculation of lattice
sums with a preassigned accuracy. Taking into account that, at large



Progress In Electromagnetics Research B, Vol. 31, 2011 63

values of the argument, the equality Erfc(x) = exp(−x2)/(x
√

π) holds,
we obtain the following condition:

exp
(−πa2

nm/ |~a1 × ~a2|
) ≈ ξ, (A8)

where ξ is a small quantity determining the calculation accuracy. The
exact numerical calculation for a square lattice shows that, when
indices (m,n) and (p, q) vary from −2 to 2, the lattice sums are
calculated with an accuracy of about 10−4%, which is in a good
agreement with estimate (A8).
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