
Progress In Electromagnetics Research, Vol. 116, 49–63, 2011

A MEMORY EFFICIENT AND FAST SPARSE MATRIX
VECTOR PRODUCT ON A GPU

A. Dziekonski, A. Lamecki, and M. Mrozowski

WiComm Center of Excellence, Faculty of Electronics
Telecommunications and Informatics (ETI)
Gdansk University of Technology (GUT), Gdansk 80-233, Poland

Abstract—This paper proposes a new sparse matrix storage format
which allows an efficient implementation of a sparse matrix vector
product on a Fermi Graphics Processing Unit (GPU). Unlike previous
formats it has both low memory footprint and good throughput.
The new format, which we call Sliced ELLR-T has been designed
specifically for accelerating the iterative solution of a large sparse and
complex-valued system of linear equations arising in computational
electromagnetics. Numerical tests have shown that the performance
of the new implementation reaches 69 GFLOPS in complex single
precision arithmetic. Compared to the optimized six core Central
Processing Unit (CPU) (Intel Xeon 5680) this performance implies
a speedup by a factor of six. In terms of speed the new format is
as fast as the best format published so far and at the same time it
does not introduce redundant zero elements which have to be stored
to ensure fast memory access. Compared to previously published
solutions, significantly larger problems can be handled using low cost
commodity GPUs with limited amount of on-board memory.

1. INTRODUCTION

Solving electromagnetic problems involves intensive and time consum-
ing computations. In order to reduce the processing time, the computa-
tional electromagnetics community has been exploring the possibility
to use GPUs for accelerating various numerical techniques including
the Finite Difference Time Domain (FDTD) method [1–4], Alternat-
ing Direction Implicit (ADI) method [5], Transmission Line Modeling

Received 16 March 2011, Accepted 16 April 2011, Scheduled 20 April 2011
Corresponding author: Adam Dziekonski (adziek@eti.pg.gda.pl).



50 Dziekonski, Lamecki, and Mrozowski

(TLM) method [6, 7] and also for applications such as Radar Cross Sec-
tion Prediction (RCS) [8–10]. Relative little attention has been so far
given to the Finite Element Method (FEM). This method, often used
for analyzing complex resonators or waveguides or solving electromag-
netic radiation and scattering problems [11–16], produces a large sparse
system of equations. The resulting eigenvalue or a driven problem is
then frequently solved using Krylov space iterative techniques [17–19].
Such techniques involve many computations of a sparse matrix times
vector product (SpMV) [20]. Several groups have demonstrated that
SpMV operation can be executed much faster on GPUs than on multi-
core Central Processing Units (CPUs) [21–24]. The speed of the SpMV
product on a GPU is important because this operation exerts a signif-
icant impact on the overall solution time of the Krylov space solvers
especially when polynomial [17] or multilevel preconditioners with the
Jacobi smoother [25] are used. One of the factors that affects the ef-
ficiency of the matrix-vector product is the way the sparse matrix is
stored in the GPU memory [21]. For matrices with irregular non-zero
entry patterns the best results on a GPU are obtained using variants
of the storage scheme known as Ellpack [21]. The Ellpack format can
be modified in order to best exploit the computational features of a
particular GPU architecture [22–24].

Unfortunately, the Ellpack format has a serious drawback, namely
it stores a matrix row by row with each row containing an identical
number of elements. If a row contains fewer non-zero elements, it
is padded with zeros. For matrices in which the number of non-
zeros per row varies significantly this implies storing a large number
of redundant elements. This becomes a problem for computations
involving commodity GPUs which carry a very limited amount of fast
memory (typically up to 1.5 GB). The problem of finding a memory
efficient matrix storage format which is also suited for fast execution
of SpMV on GPUs is even more pronounced in computational
electromagentics where one often deals with complex matrices.

In this paper we propose a new memory efficient and fast storage
format which is well suited for implementing sparse matrix times vector
multiplications on the CUDA (Compute Unified Device Architecture)
developed by NVIDIA. We also show how to tune the SpMV operation
for the latest NVIDIa’s Fermi family of GPUs by using a configurable
cache and concurrent kernel execution. We demonstrate the efficiency
of the new format and the SpMV operation on a number of complex
valued sparse matrices obtained from FEM discretization of a dielectric
antenna problem. Not only does the new approach remarkably reduce
redundant zero-padding but it also allows one to achieve a performance
of SpMV which is on a par with best results reported so far.



Progress In Electromagnetics Research, Vol. 116, 2011 51

2. PROGRAMMING GPUS

We shall briefly recall a few concepts that are essential for
understanding the efficiency of GPU computations [26, 27]. GPUs
have many processors that execute in parallel the same code, called
kernel, on different data. In the CUDA architecture [28], processors on
a GPU are gathered into multiprocessors†. Kernels are called from
a CPU. A thread is the smallest unit of parallelization in kernels.
Threads are gathered into blocks of threads, which share memory on
a single multiprocessor. Blocks are gathered into grids of blocks that
logically are executed in parallel during a kernel’s execution. Threads
may access a few kinds of GPU memory: global memory (big latency,
read-write), shared memory (on-chip, low latency, limited to 16 kB per
block), texture memory (low latency, read-only), and registers (low
latency). To obtain a high efficiency of code execution, it is important
to pay attention to the following rules:

• guarantee coalesced access to global memory
• if coalesced access to global memory is impossible - use texture

memory instead
• use shared memory as much as possible
• replace global memory accesses with shared memory accesses (if

possible)
• minimize transfer between GPU and CPU

Fermi, which is the code name for the latest generation of CUDA
architecture [29], adds features that can be exploited for increasing
performance. In particular, the Fermi architecture:

• supports configurable cache, can be allocated 16 kB for shared
memory and 48 kB of L1 extra cache; or 48 kB for can be allocated
for shared memory and 16 kB of L1 extra cache

• allows concurrent kernel execution (up to 16 different GPU
functions executed in parallel)

• performs double precision computations remarkably faster than
previous generations of GPUs

3. COMPRESSION STORAGES FOR EFFICIENT SPMV

As explained in the introduction the format in which the matrix is
stored affects both the performance of SpMV operation and the amount
† 8 processors = 1 multiprocessor for the CUDA architecture, 32 processors = 1
multiprocessor for the Fermi architecture.



52 Dziekonski, Lamecki, and Mrozowski

of memory used. The second factor that affects speed is a judicious
use of various features of the CUDA architecture.

In this section we shall discuss the features of a few matrix storage
formats that can be used in the SpMV product and present their pros
and cons in context of GPU computing.

3.1. CRS

In a CRS (Compressed Row Storage) format, a sparse matrix is
compressed into three vectors: a vector of non-zero entries, a vector of
column indices of non-zero entries, a vector of column indices of the
first non-zero entry in a row [17].

This format is used in the Intel MKL (Math Kernel Library) and
it is efficient for sparse matrix times vector operation implemented
on CPUs with multiple cores. While GPU implementations of SpMV
based on CRS [21, 30] perform better than MKL, due to the lack of
coalesced access to global memory they show worse throughput than
SpMV based on Ellpack-like formats. Nevertheless, from the memory
point of view, this format is very efficient because no zero-padding is
needed. The number of bytes required for storage in the CRS format
for double precision and complex valued matrices is:

CRS = (2×NNZ × 8 Bytes + (NNZ + N)× 4Bytes) (1)

where: NNZ — length of vector of non-zero entries, N — number of
rows.

3.2. ELL-R

To ensure coalesced memory access while executing SpMV on a GPU
Ellpack (ELL) format was proposed in [21]. In the ELL format, each
row of a compressed matrix is stored in two vectors: a vector of non-
zero entries and vector of column indices of non-zero entries (both
with some extra zeros). This format allows one to achieve better
performance on a GPU than on a CPU, but introduces significant
redundancy in terms of memory‡, since rows are zero-padded in order
to have the length of the longest non-zero entry row (Nmax). In a GPU
implementation of the SpMV product based on the ELL-R format, one
thread works on one row. However, the performance of SpMV can be
even further improved by adding an extra vector which provides the
information about the number of non-zeros in each row. This modified
format is called ELL-R and enhances the performance since only non-
zeros are involved in computations [22]. For better performance on a
‡ Redundancy understood as the percentage of extra elements required for storing the
matrix in a sparse format.



Progress In Electromagnetics Research, Vol. 116, 2011 53

GPU the number of rows (N) has to be a divisor of the block size,
otherwise there is no coalesced access to global memory. The only way
to fulfill this condition is to add some extra rows with zero elements
(N ′). From the above description it is evident that from the memory
point of view, the ELL-R format is less effective than CRS. The number
of bytes required for storage in the ELL-R format for double precision
and complex valued matrices is:

ELL-R = (2×(Nmax×N ′)×8Bytes+(Nmax×N ′+N)×4Bytes) (2)

where: Nmax — number non-zero entries in the longest row.

3.3. Sliced ELLPACK

To eliminate the redundancy inherent in the ELL format, Monakov
et al. [23] proposed slicing the matrix prior to compression. In this
format, called Sliced ELL, there is a specific preprocessing applied
in which a sparse matrix is first divided into submatrices (slices)
consisting of S adjacent rows (S = 1, . . . , N) and each slice is then
stored in the ELL format. As a result, the number of extra zeros is
determined by the distances between the shortest and the longest rows
in slices, rather than in a whole matrix.

3.4. ELLR-T

The best performance in terms of GFLOPS in SpMV operation on a
GPU has so far been reported for a storage format presented in [24].
The format is called ELLR-T and it is an extension of ELL-R in which
a preprocessing needs to be applied [24]. In this preprocessing non-
zero elements and their column indices are permuted and zero-padding
occurs and each row is a multiple of 16. Thanks to this modification,
coalesced and aligned access to global memory occurs. In contrast
to ELL-R, many threads (T = 1, 2, 4, 8, 16, 32) operate on a single
row while executing the SpMV operation§. Both in Sliced ELL and
ELLR-T there are many threads working on a single row, but there are
completely different addressing schemes that result from the different
preprocessings.

Specific addressing and thread parallelism combined with usage
of shared memory yields on average 80% and 15% performance
improvement over ELL-R and Sliced ELL, respectively. Unfortunately,
in ELLR-T there is a similar problem with zero-padding as in ELL-R.
The total memory that needs to be stored in ELLR-T depends on T

§ For the previous NVIDIA architecture, the best performance was achieved for T =
1, 2, 4, 8 [24]. However, for the Fermi architecture where blocks may contain more threads
(up to 1024), better performance is achieved also for T = 16, 32.



54 Dziekonski, Lamecki, and Mrozowski

(the number of threads which operate on a single row), but all in all
this amount does not differ from ELL-R a lot.

3.5. Sliced ELLR-T

The format that is proposed in this paper takes advantage of the above
mentioned formats. In fact it is a modification of the Sliced ELL
and ELLR-T formats. As in Sliced ELL-R, the matrix is divided into
slices with S rows each. Additionally, as in ELLR-T, many threads
(T = 1, 2, 4, 8, 16, 32) operate on single row while executing SpMV‖.
For each slice permutation of non-zero entries and zero-padding occurs
in order to achieve rows that are a multiple of 16. As a result coalesced
and aligned access to global memory occurs in slices. Since the new
format combines the features of ELLR-T and Sliced ELL we shall call
it Sliced ELLR-T (Fig. 1). It is evident that this format should enable
one to achieve sufficient performance due to the coalesced access to
global memory, multiple treads working on a single row, and shared
memory’s being used in execution.

At the same time, thanks to cutting the matrix into slices,
this format significantly reduces the amount of memory required for
storage.

E
L
L
R

-T

E
L
L
R

-T

E
L
L
R

-T
E

L
L
R

-T

Figure 1. Sparse matrices divided into slices (S = 4), and each slice
stored with the ELLR-T scheme.

‖ Size of the block of threads = S ∗ T .



Progress In Electromagnetics Research, Vol. 116, 2011 55

4. PERFORMANCE TESTS

This section presents a comparison of the performance of the SpMV
operation implemented on a CPU using a CRS matrix storage format
and on a GPU for the various formats described in Section 3. The
operating system is Windows 7 64-bits and the test platforms are: the
GPU-NVIDIA’s GTX 480 (480 cores, 1.5GB memory, CUDA v3.2)
and the CPU-Xeon 5680 (6 cores). In order to obtain a fair comparison,
all GPU implementations are compared with CPU computations
involving optimized Intel MKL functions (Intel(R) Compiler Pro 11.1
build 065, Intel MKL 10.2.5). The best results when performing
SpMV on a CPU where obtained for the CRS format [31] applied
to the matrix with the RCM (Reverse Cuthill McKee) ordering [17],
all six cores enabled and hyper-threading disabled (Intel’s recommends
disabling hyper-threading when using MKL as in this particular type
of computations the threaded portions of the library execute at high
efficiencies using most of the available resources and perform identical
operations on each thread [32]). On the other hand, on a GPU we
permute rows in each matrix from the shortest to the longest one,
which not only guarantees balanced thread blocks but also minimizes
the number of redundant zero elements in each slice for the Sliced
ELLR-T format.

Our test problem is a dielectric resonator antenna (DRA), which
is fed from a rectangular cavity with an SMA connector [33]. The
test problem was discretized by the finite element method with PML
(Perfectly Matched Layer) and vector elements of up to the third order.
As a result, we obtained a sparse complex matrix A with 146517 rows
and over 21 M non-zero entries. The matrix was further divided into
nine submatrices with each submatrix Aij (i = {0, 1, 2}, j = {0, 1, 2})
corresponding to the order of the vector elements used in the evaluation
of the inner products while assembling the FEM matrix. This resulted
in test matrices arranged in the following way:

A =

(
A00 A01 A02

A10 A11 A12

A20 A21 A22

)
(3)

4.1. Results and Comments

The test problem yields 10 complex valued matrices with different
sizes and non-zero patterns. The details of these matrices are given
in Tab. 1. The last column in Tab. 1 shows the amount of memory
which is required for storing the non-zero elements only. As explained
in Section 3 extra space is needed for various storage schemes used in



56 Dziekonski, Lamecki, and Mrozowski

Table 1. Description of a test problem.

Matrix Rows nnz (complex) nnz
Rows

Double [MB]

A 146517 21697606 149.09 173.58

A00 8091 218722 27.03 1.75

A01 8091 681548 84.24 5.45

A02 8091 1391158 171.84 11.13

A10 40129 681548 16.98 5.45

A11 40129 1973198 49.17 15.79

A12 40129 3895180 97.07 31.16

A20 98297 1391158 14.15 11.13

A21 98297 3895180 39.63 31.16

A22 98297 7569914 77.01 60.56

Table 2. Comparison of amount of memory [MB] required for storage
for different formats in double precision. A — basic matrix, A00–22 —
nine submatrices from Tab. 1.

Matrix CRS ELL-R ELLR-T Sliced ELLR-T

A 217.56 783.90 785.98 226.76

A00–22 218.74 786.10 795.05 236.24

SpMV computations. A comparison of the memory required for storing
the entire complex matrix A and all the component matrices A00–22 is
given in Tab. 2. It is evident that compared to the ELLR-T (and also
ELL-R) scheme, the new Sliced ELLR-T format reduces significantly
(down to about one third) the amount of memory required for matrix
storage and it is nearly as effective as the CRS format. Assuming that
compaction of the CRS format is the reference, ELLR-T needs up to
350% more amount of the memory. With the Sliced ELLR-T format
the redundancy is only about 8%.

The memory economy clearly speaks in favour of the Sliced ELLR-
T format. However, it is essential to verify if it does not lead to
performance degradation. To this end, we have tested the performance
of the SpMV product using the formats described in Section 3 for each
submatrix Aij in order to verify the usefulness of the implementation
of SpMV based on the Sliced ELLR-T format. The results for single
and double precision are shown in Figs. 2 and 3. As opposed to a CPU
for which performance decreases for bigger problems, in both cases
(single and double precision) the bigger the problem, the better the
performance on a GPU. Figs. 2, 3 reveal the limitation of the ELL-



Progress In Electromagnetics Research, Vol. 116, 2011 57

10

20

30

40

50

60

70

A
0
0

A
0
1

A
0
2

A
1
0

A
1
1

A
1
2

A
2
0

A
2
1

A
2
2

G
F

L
O

P
S

 

 

Sliced ELLR T ELL R ELLR T MKL

Figure 2. Performance of SpMV in GFLOPS for complex
matrices A00–22 in single precision. (GTX 480 vs. Intel Xeon 5680).

5

10

15

20

25

30

35

40

A
0
0

A
0
1

A
0

2

A
1

0

A
1
1

A
1
2

A
2
0

A
2
1

A
2
2

G
F

L
O

P
S

 

 

Sliced ELLR T ELL R ELLR T MKL

Figure 3. Performance of SpMV in GFLOPS for complex
matrices A00–22 in double precision. (GTX 480 vs. Intel Xeon 5680).

R format in which only one thread operates on a single row. When
the number of non-zero entries per row grows, a single thread takes
a longer time to complete the computations so the performance of
SpMV drops. ELLR-T and Sliced ELLR-T formats do not suffer from
this dependance, because more threads are allowed to operate per row.
The number of concurrent threads (T ) per row is adjusted for each of
matrices A00–A22. Our tests have shown that the optimal performance
was achieved for T = 2 per row for matrices A00, A10, A20, A21

that have fewer than 40 non-zero elements per row, T = 4 for
matrices A11, A22 (more than 40 and fewer than 80 non-zero elements
per row), T = 8 for matrices A01, A12, A02 (more than 80 non-zero
elements per row).

Thanks to faster double precision available on the Fermi
architecture, the speed difference between a GPU and a CPU is
comparable for both precisions and for bigger test problems it reaches



58 Dziekonski, Lamecki, and Mrozowski

1

2

3

4

5

6

7

A
0

0

A
0

1

A
0

2

A
1

0

A
1

1

A
1

2

A
2

0

A
2

1

A
2

2

S
P

E
E

D
U

P

 

 

FLOAT (Sliced ELLR T vs. MKL) DOUBLE (Sliced ELLR T vs. MKL)

Figure 4. Comparison of speedup between a GPU (Sliced ELLR-T)
and a CPU (Intel MKL) for single and double precision. GTX 480 vs.
Intel Xeon 5680.

a factor of 6 (Fig. 4).
As mentioned in Section 2, the Fermi architecture is equipped with

configurable cache memory and allows concurrent execution of kernels.
As far as cache memory is concerned we found that allocating 16 kB
of shared memory, and 48 kB of extra L1 cache, on a GPU gives 20%
better results than the other way round (48 kB of shared memory and
16 kB of extra L1 cache).

4.1.1. Impact of Concurrent Kernels

As mentioned in Section 2, the Fermi architecture is capable of
executing of up to 16 GPU functions (kernels). To investigate the
impact of concurrent kernel execution we performed three tests using
matrix A.

It has to be pointed out that in this section we evaluate the
performance of the SpMV operation executed on the entire matrix A,
which is big enough for the concurrent kernels to have a noticeable
impact. Let us recall that the matrix is composed of all matrices used
in benchmarks presented in the previous section (see Eq. (3)). For the
CPU execution (Intel MKL, CRS) and single precision the result is
10.32 GFLOPS when all 6 cores are engaged. This result will serve
as a reference for evaluation the speedup offered by a GPU. For test
involving a GPU we have implemented the SpMV operation in three
different ways:

(i) The entire matrix A is stored in one of the storage formats suitable
f or a GPU and the SpMV product is executed using one kernel
only.

(ii) The matrix A is stored as nine separate matrices each and the



Progress In Electromagnetics Research, Vol. 116, 2011 59

SpMV operation on the entire matrix A (y = Ax) is implemented
by launching nine concurrent kernels with each kernel operating
on one submatrix and a part of vector x = [x0, x1, x2]T , and each
kernel contributing to the final vector y = [y0, y1, y2]T :

y0 = A00x0 + A01x1 + A02x2;
y1 = A10x0 + A11x1 + A12x2;
y2 = A20x0 + A21x1 + A22x2;

(iii) The matrix A is stored as eleven separate matrices. This
arrangement was obtained by dividing submatrices A11 and A22

horizontally. The SpMV operation on the entire matrix A (y =
Ax) is implemented by launching eleven concurrent kernels with
each kernel operating on one submatrix and a part of vector
x = [x0, x1, x2]T and each kernel contributing to the final vector
y = [y0, y1, y2]T :

y0 = A00x0 + A01x1 + A02x2;
y1 = A10x0 + [A11ax1; A11bx1] + A12x2;
y2 = A20x0 + A21x1 + [A22ax2; A22bx2];

For a single kernel, the results of the SpMV operation for single
precision on a GPU were as follows: (ELL-R) — 38.38 GFLOPS,
GPU (ELLR-T) — 62.51 GFLOPS, GPU (Sliced ELLR-T) — 59.34
GFLOPS. In terms of speedup relative to a CPU we achieved for a
single kernel execution of a GPU the speedup factors of 3.72, 6.06, and
5.75 for ELL-R, ELLR-T and Sliced ELLR-T, respectively.

Tests using concurrent kernels were carried out for the most
effective formats from the performance point of view (ELLR-T and
Sliced ELLR-T). For ELLR-T we achieved 65.45 GFLOPS and 69.02
GFLOPS, for 9 and 11 kernels, respectively. For Sliced ELLR-T the
results were 62.76 GFLOPS (nine kernels) and 67.52 GFLOPS (11
kernels). These results imply that the concurrent kernels feature of
the FERMI architecture allowed us to increase the speedup of the
SpMV operation¶ for ELLR-T from 6.06 (single kernel) to 6.69 (eleven
kernels), which means the performance increase of 10.42%, and for
Sliced ELLR-T from 5.75 (single kernel) to 6.54 (eleven kernels), which
is equivalent to the performance increase of 13.78%.

The result of our tests have shown that the Sliced ELLR-T format
is superior to the ELLR-T format. Both formats have been designed to
maximize the throughput on a GPU but the memory economy offered
by the Sliced ELLR-T scheme is significant (see Tab. 2) while the
deterioration a of the SpMV performance in single and double precision
is marginal.
¶ Relative to a CPU implementation using the Intel MKL and 6 cores.



60 Dziekonski, Lamecki, and Mrozowski

5. CONCLUSIONS

In this paper we propose a new Sliced ELLR-T format to process SpMV
on a GPU. The results of the tests indicate that the Sliced ELLR-T
format is efficient from both memory and performance points of view.
We also discuss the impact of several new GPU features of the Fermi
architecture such as configurable cache and concurrent kernel execution
on sparse matrix times vector operation in complex arithmetic. The
new format and Fermi architecture allows one to achieve up to 69
GFLOPS and 36 GFLOPS on a GTX 480 in complex single and double
precision respectively. The small memory footprint of the new format
makes it especially attractive for implementing fast GPU accelerated
iterative solvers for larger sparse and complex systems of equations
which occur in the FEM analysis of electromagnetic radiation and
scattering problems.

ACKNOWLEDGMENT

This work has been supported by the Polish Ministry of Science and
Higher Education and carried out within the framework of COST IC
0603 ASSIST programme and The National Centre for Research and
Development under agreement LIDER/21/148/L-1/09/NCBiR/2010.

REFERENCES

1. Krakiwsky, S. E., L. E. Turner, and M. Okoniewski, “Acceleration
of finite difference time-domain (FDTD) using graphics processor
units (GPU),” IEEE MTT-S International Microwave Symposium
Digest 2004 , 1033–1036, June 2004.

2. Adams, S., J. Payne, and R. Boppana, “Finite difference time
domain (FDTD) simulations using graphics processors,” High
Performance Computing Modernization Program Users Group
Conference, 2007.

3. Sypek, P., A. Dziekonski, and M. Mrozowski, “How to render
FDTD computations more effective using a graphics accelerator,”
IEEE Transactions on Magnetics, Vol. 45, No. 3, 1324–1327,
March 2009.

4. Xu, K., Z. Fan, D.-Z. Ding, and R.-S. Chen, “GPU accelerated
unconditionally stable crank-nicolson FDTD method for the
analysis of three-dimensional microwave circuits,” Progress In
Electromagnetics Research, Vol. 102, 381–395, 2010.

5. Stefanski, T. P. and T. D. Drysdale, “Acceleration of the 3D



Progress In Electromagnetics Research, Vol. 116, 2011 61

ADIFDTD method using graphics processor units,” IEEE MTT-
S International Microwave Symposium Digest 2009 , 241–244,
June 2009.

6. Rossi, F. V., P. P. M. So, N. Fichtner, and P. Russer, “Massively
parallel two-dimensional TLM algorithm on graphics processing
units,” IEEE MTT-S International Microwave Symposium Digest
2008, 153–156, June 2008.

7. Rossi, F. and P. P. M. So, “Hardware accelerated symmetric
condensed node TLM procedure for NVIDIA graphics processing
units,” IEEE APSURSI Antennas and Propagation Society
International Symposium 2009 , 1–4, June 2009.

8. Tao, Y. B., H. Lin, and H. J. Bao, “From CPU to GPU:
GPU-based electromagnetic computing (GPUECO),” Progress In
Electromagnetics Research, Vol. 81, 1–19, 2008.

9. Gao, P. C., Y. B. Tao, and H. Lin, “Fast RCS prediction using
multiresolution shooting and bouncing ray method on the GPU,”
Progress In Electromagnetics Research, Vol. 107, 187–202, 2010.

10. Lezar, E. and D. B. Davidson, “GPU-accelerated method of
moments by example: Monostatic scattering,” IEEE Antennas
and Propagation Magazine, Vol. 52, 120–135, 2010.

11. Garcia-Castillo, L. E., I. Gomez-Revuelto, F. Saez de Adana,
and M. Salazar-Palma, “A finite element method for the analysis
of radiation and scattering of electromagnetic waves on complex
environments,” Computer Methods in Applied Mechanics and
Engineering , Vol. 194, Nos. 2–5, 637–655, February 2005.

12. Gomez-Revuelto, I., L. E. Garcia-Castillo, D. Pardo, and
L. Demkowicz, “A two-dimensional self-adaptive finite element
method for the analysis of open region problems in electromagnet-
ics,” IEEE Transactions on Magnetics, Vol. 43, No. 4, 1337–1340,
April 2007.

13. Lezar, E. and D. B. Davidson, “GPU-based arnoldi factorisation
for accelerating finite element eigenanalysis,” Proceedings of the
11th International Conference on Electromagnetics in Advanced
Applications — ICEAA’09 , 380–383, September 2009.

14. Jian, L. and K. T. Chau, “Design and analysis of a magnetic-
geared electronic-continuously variable transmission system using
finite element method,” Progress In Electromagnetics Research,
Vol. 107, 47–61, 2010.

15. Ping, X. W. and T. J. Cui, “The factorized sparse approximate
inverse preconditioned conjugate gradient algorithm for finite el-
ement analysis of scattering problems,” Progress In Electromag-
netics Research, Vol. 98, 15–31, 2009.



62 Dziekonski, Lamecki, and Mrozowski

16. Tian, J., Z. Q. Lv, X. W. Shi, L. Xu, and F. Wei, “An efficient
approach for multifrontal algorithm to solve non-positive-definite
finite element equations in electromagnetic problems,” Progress In
Electromagnetics Research, Vol. 95, 121–133, 2009.

17. Saad, Y., Iterative Methods for Sparse Linear Systems, SIAM,
2004.

18. Velamparambil, S., S. MacKinnon-Cormier, J. Perry, R. Lemos,
M. Okoniewski, and J. Leon, “GPU accelerated krylov subspace
methods for computational electromagnetics,” 38th European
Microwave Conference EuMC 2008 , 1312–1314, October 27–31,
2008.

19. Cwikla, A., M. Mrozowski, and M. Rewienski, “Finite-difference
analysis of a loaded hemispherical resonator,” IEEE Transactions
on Microwave Theory and Techniques, Vol. 51, No. 5, 1506–1511,
May 2003.

20. Yang, X., “A survey of various conjugate gradient algorithms
for iterative solution of the largest/smallest eigenvalue and
eigenvector of a symmetric matrix,” Progress In Electromagnetics
Research, Vol. 5, 567–588, 1991.

21. Bell, N. and M. Garland, “Efficient sparse matrix-vector
multiplication on CUDA,” NVIDIA Technical Report NVR-2008-
004, NVIDIA Corporation, December 2008.

22. Vazquez, F., E. M. Garzon, J. A. Martinez, and J. J. Fernandez,
“The sparse matrix vector product on GPUs,” Proceedings
of the 2009 International Conference on Computational and
Mathematical Methods in Science and Engineering, Vol. 2, 1081–
1092, July 2009.

23. Monakov, A., A. Lokhmotov, and A. Avetisyan, “Automati-
cally tuning sparse matrix-vector multiplication for GPU architec-
tures,” High Performance Embedded Architectures and Compilers,
Lecture Notes in Computer Science, Vol. 5952, 111–125, 2010.

24. Vazquez, F., G. Ortega, J. J. Fernandez, and E. M. Garzon,
“Improving the performance of the sparse matrix vector product
with GPUs,” IEEE 10th International Conference on Computer
and Information Technology (CIT), 1146–1151, 2010.

25. Dziekonski, A., A. Lamecki, and M. Mrozowski, “GPU
acceleration of multilevel solvers for analysis of microwave
components with finite element method,” IEEE Microwave and
Wireless Components Letters, Vol. 21, No. 1, January 1–3, 2011.

26. Kirk, D. B. and W. W. Hwu, Programming Massively Parallel
Processors: A Hands-on Approach, Elsevier Inc., 2010.



Progress In Electromagnetics Research, Vol. 116, 2011 63

27. Sanders, J. and E. Kandrot, CUDA by Example: An Introduction
to General-Purpose GPU Programming, Nvidia Corporation,
2011.

28. Programming Guide Version 3.2, Nvidia Corporation, 2011.
29. http://www.nvidia.com/object/fermi architecture.html.
30. CUDA CUSPARSE Library, Nvidia Corporation, 2011.
31. Lee, V. W., C. Kim, J. Chhugani, M. Deisher, D. Kim,

A. D. Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty,
P. Hammarlund, R. Singhal, and P. Dubey, “Debunking the 100 X
GPU vs. CPU myth: An evaluation of throughput computing on
CPU and GPU,” ACM SIGARCH Computer Architecture News
— ISCA’10 , Vol. 38, June 2010.

32. http://software.intel.com/en-us/articles/intel-math-kernel-
library-intel-mkl-intel-mkl-100-threading/#5.

33. Kucharski, A. and P. Slobodzian, “The application of macromod-
els to the analysis of a dielectric resonator antenna excited by a
cavity backed slot,” 38th European Microwave Conference, EuMC
2008 , 519–522, October 27–31, 2008.


