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Abstract—An X-band active radial-waveguide pulsed power amplifier
(PA) with high power and high power added efficiency (PAE) is
designed, fabricated, and measured in this paper. A bandwidth
of 1000 MHz with peak power level of 53.2 dBm at the frequency
9.85GHz, under the condition of 4 kHz pulse repeat frequency (PRF)
and 10% of duty cycle, has been obtained by five-way radial waveguide
power combiner. Key features of this combined device are its maximum
PAE (> 43.6%) and combining efficiency (> 92.8%). From 9.5 to
10.5GHz, the pulsed solid-state power amplifier (PSSPA) can provide
a minimum output power level 51.4 dBm, which operates on the repeat
frequency 4 kHz, duty cycle 10%. The gain varied between 41.4 and
43.1 dB at the desired frequency range, with only less than ±0.9-dB
gain variation, which displayed a flat gain ripple. The PAE of the active
combiner fluctuated between 36.5% and 43.6% as frequency varied from
9.5 to 10.5GHz.

1. INTRODUCTION

High power amplifiers (HPAs) are crucial in the design of modern
Radar and wireless communication systems and, in particular,
transmitter hardware. Power amplifiers (PAs) can generally be made
to have high performance characteristics at low microwave frequencies,
however, they are still limited in power and are difficult to design
at higher microwave and millimeter-wave frequencies, forcing systems
designers to use vacuum-tube devices. However, solid-state power
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amplifiers (SSPAs) have many advantages over microwave tubes,
including availability, reliability, graceful degradation and ease of
maintenance [1–3]. Additionally, solid-state amplifiers are also capable
of operating by low-voltage power supplies, suppressing need for high
voltage modulators and eliminating possible X-ray emission [4, 5].
Therefore, this has motivated research activities in the area of spatial
power combining or multiple solid-state amplifiers [6]. Many circuit-
level combining approaches, such as corporate combining, suffer from
increased loss (and, hence, reduced combining efficiency) as the number
of devices increases. On the contrary, loss is relatively independent of
the number of devices in a well-designed spatial combiner. As a result,
the spatial power combining technique is favored in certain high-power
applications requiring a large number of amplifiers [7].

The radial waveguide structure is widely used in array antennas,
but little attention has been given to power divider/combiner [8–10].
In [10], the authors designed and implemented a broadband radial
waveguide passive spatial combiner, and the electromagnetic modeling
of this structure was developed. Until now, however, the active high-
power combining system based on this structure has not been reported.

In this article, a high-power and high-efficiency PSSPA using
radial waveguide divider-combiner circuit at X-band is designed,
fabricated and measured. Using five high-power PA modules, the
combined PSSPA produced 208.9W peak power output and 43.6%
maximal PAE at the frequency 9.85 GHz, under the condition of 4 kHz
PRF and 10% of duty cycle. Within the band of interest (from 9.5 to
10.5GHz), the gain varied between 41.4 and 43.1 dB, with less than
±0.9-dB gain variation.

2. CIRCUIT DESIGN

The designed PSSPA with high power and high PAE consists of a
driving-stage HPA module, a five-way radial waveguide power divider,
five combining-stage HPA modules, a five-way radial waveguide power
combiner, and bias circuit. Therein, the HPA modules with high PAE
and radial-waveguide power divider/combiner with low loss are very
necessary to achieve the high-performance combining PSSPA, which
will be illustrated below in details.

2.1. Operating Principle of the Combining Power Amplifier

According to the radial waveguide spatial power-combining idea, the
general scheme of PSSPA with high power output is shown in Figure 1.
The input RF (radio frequency) small signal is fed into the input
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Figure 1. Schematic diagram of the SSPA using radial-waveguide
structure.

port of the driving-stage HPA module, which consists of three-stage
cascade PA units, i.e., PA1, PA2, and PA3. A variable attenuator
is followed after the driving module, whose main functionality is to
tune the gain overall, so as to drive accurately the following the
combining amplifier. To prevent the reflected high-power level from
the divider/combiner into the PA modules, the low-loss and high-
isolation microwave isolators (less than 0.2 dB and more than 25 dB
in our design, respectively) are added to the input ports of each
combining-stage PSSPA module, respectively. Finally, the amplified
five-way pulsed power signals pour into the radial waveguide combiner
synchronously by an equal-amplitude and in-phase means, offering a
desired maximal power output.

2.2. Design of the HPA Modules

Based on the combing principle of the proposed SSPA in Section 2.1,
two examples of cascade HPA for X-band based on hybrid MIC were
designed, fabricated and measured, including the driving-stage and
combining-stage PA modules. Firstly, some important considerations
of the PA were taken and evaluated. Secondly, a three-stage
cascade HPA and five two-stage cascade HPA modules for the pulse
operation were designed and implemented, respectively. To obtain
good characteristics, these PA units had been designed and evaluated
separately before they were integrated together.

For a HPA design, especially at the microwave frequency band,
there are some important factors considered, including the HPA devices
and PCB grounding, DC blocking circuits, damping self-oscillation,
and so on. At the initial stage of prototyping, the major constraints
faced were insufficient power gain, low output power at P1 dB and
oscillation. The reasons are provided and discussed in [11–22]. For the
operating mode, class AB is selected in HPA modules. In our design,
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the substrate used is the Rogers RT/Duroid 5880 with a thickness of
0.508mm, dielectric loss tangent of 0.0009, and relative permittivity,
εr of 2.2.

In the driving-stage design, the X-band HPA module consists of
three amplification units, including MMIC HPA1, HPA2, and HPA3.
The HPA2 is cascaded after the MMIC HPA1, and the HPA3 is
cascaded after HPA2. The HPA1 is an internally matched MMIC
amplifier that contains a three-stage amplifier, which has a typical
linear gain of 27 dB and output P1 dB of 33 dBm, while the HPA2 and
HPA3 are a power GaAs FET that is internally matched for standard
communication bands to provide optimum power and gain in a 50Ω
system. The three power devices are hermetically sealed package and
internally matched to 50 ohm at the input and output. Similarly, the
combining-stage HPA module makes up of HPA2 and HPA3, which
are same as the driving-stage module. Figure 2 shows the operational
scheme of the pulsed HPA modules. For the driving stage, the cascade
pulsed HPA is shown in Figure 2(a), which can be realized by switching
the supply voltage of the active devices. The amplified driving signal
is again fed into the input port of the five-way radial waveguide power
divider, whose output signals are then fed into each input port of five-
way combing-stage HPA modules shown in Figure 2(b), respectively.
This pulsed amplifier has a high efficiency and low noise floor level

PoP
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Figure 2. Schematic block diagram of the X-band pulsed HPA
modules. (a) Driving-stage HPA module. (b) Combining-stage HPA
module.
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Figure 3. Biasing circuit using multisections shunt stubs for
large bandwidths: A combination of λ/4 section and radial line
configuration.

Figure 4. ADS small signal model of the HPA1 at the driving-stage
module.

because of supplying bias voltage only for high level of pulse.
Based on the earlier design considerations of the HPA, the

completed cascade PA module was designed by the DC block and
bias circuit shown in Figure 3. In Figure 4, the Agilent ADS small
signal model of designed MMIC HPA1 is shown. The simulated results
validated the original DC bias idea. The optimized SSPA module was
enclosed with screws. The photographs of the fabricated HPAs are
shown in Figures 5 and 6 (Removing the top cover of the installation
housing), respectively.
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Figure 5. Photograph of the driving-stage HPA module.

Figure 6. Photograph of the combining-stage HPA module.
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Figure 7. Schematic views of five-way radial waveguide power
divider/combiner. (a) Three-dimensional view. (b) Top view. (c)
Front view.
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responses of the five-way power
divider/combiner.
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2.3. Design of a Five-way Power Divider/Combiner

Figure 7 shows the configurable views of the radial waveguide power
divider/combiner. This radial waveguide power divider consists of a
central coaxial probe in the radial waveguide and five symmetrically
located peripheral coaxial probes. The input power from central probe
port P1 is divided five ways using five equispaced identical peripheral
probes (port numbers shown in Figure 7(b) are noted P2, P3, P4, P5,
P6, respectively.). A short wall placed beyond the probe presents an
open circuit to the probe. As a result, it is possible for the divider
to divide an input power equally with no reflection loss at the input
port, and to combine five-way equal-amplitude and in-phase inputs
completely. The operation frequency and bandwidth is determined by
the probe dimensions and the electrical length between the waveguide
short wall and the center of probe array.

Based on the design method demonstrated clearly in [10]
and [23, 24], a five-way radial waveguide power divider/combiner was
designed. The initial dimensions of the circuit as illustrated in
Figure 7 were as follows: radial cavity diameter 2R = 60.0mm,
height p = 20.0mm, and location of the peripheral coaxial probes
r = 22.0mm from the cavity centre. The central probe dimensions
were as follows: disc diameter a = 3.0mm, disc height d = 5.3mm,
coaxial probe inner conductor diameter b = 1.3mm, outer conductor
diameter 4.2 mm, and height between the waveguide floor and the disc
c = 2.2 mm. The peripheral probe dimensions were as follows: disc
diameter e = 2.4mm, disc height h = 6.5mm, and the coaxial probe
dimensions are the same as those of coaxial probe described earlier,
that is, f = 1.3mm, g = 2.2 mm. The power divider/combiner is
terminated by commercially available type-SMA connectors.
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The designed circuit was simulated and optimized by full-
wave electromagnetic (EM) simulator HFSS. The finally obtained S
parameters are presented in Figure 8. From 9.3 to 10.5GHz, the
simulated transmission coefficient, S21, is better than −7.1 dB, and
input return loss, S11, more than 18.5 dB. The output return loss, S22,
is more than 10.5 dB from 9.73 to 10.5GHz. The isolation between
output ports, S23, is more than 6.8 dB from 9.3 to 10.5GHz. Specially,
this value is more than 8 dB from 9.3 to 9.73 GHz.

A passive spatial combiner was built by placing two identical
power-dividing circuits [see Figure 7(a)] back to back. Figure 9
shows the simulated insertion and return losses for the passive spatial
combiner. It showed that the return loss was more than 15 dB from
8.5 to 12GHz, and its insertion loss is found to be less than 0.2 from
8.5 to 11.8 GHz. According to the design results above, two identical
waveguide circuits were fabricated and assembled, and the photographs
are shown in Figure 10.

(a) (b)

Figure 10. Photographs of the five-way power divider/combiner. (a)
Top view. (b) Bottom view.

3. EXPERIMENTAL RESULTS

Based on the design concepts discussed above, each part of the power-
combined amplifier was fabricated and tuned independently. Finally,
all parts were again assembled together. To verify the validity of
the power-combined idea described in Section 2.1, the experiments on
the designed power-combined circuit were performed. The measured
results are demonstrated below.

3.1. Results of the HPA Modules

The measurements on the HPA module were divided into two types,
that is, one of driving-stage amplifier module shown in Figure 5,
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and another of combining-stage amplifier module shown in Figure 6.
Figure 11 shows the test principle of the driving-stage module. The
DC bias conditions for the first-stage HPA1 [see also Figure 2(a)]
are V d1 = 6.5 V, V g1 = −5V, while the middle-stage HPA2 and
final-stage HPA3 are biased by HF (high frequency) switch supply at
V d2 = V d3 = 10 V, V g2 = V g3 = −3 V under the condition of 4 kHz
PRF and 10% of duty cycle. The output power, Pout, and PAE as
functions of frequency are shown in Figure 12. From 9.5 to 10.5 GHz,
the pulsed output power ranges between 45.8 and 46.6 dBm, and the
PAE varies between 35.8% and 40.5%, with a 10 dBm input power.
The output power and gain as a function of input power measured at
9.9GHz are shown in Figure 13. It can be observed that the saturated
output power is as large as 46.6 dBm (45 W).

3.2. Results of the Five-way Power Divider/Combiner

According to the design principle discussed in Section 2.3, the five-
way power divider/combiner was implemented and measured, as shown
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Figure 14. Five-way divider/combiner measurement setup.
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in Figure 14. The simulated and measured results for the radial
waveguide power divider/combiner are presented in Figures 15 and
16, respectively.

Figure 15 shows the simulated and measured transmission loss and
isolation between the adjacent output ports, which displays that the
measured response is an essential agreement with the simulated results
from 9.5 to 10.5 GHz. The measured transmission coefficient, S21, is
better than −7.5 dB at our frequency range of interest. Compared
with the simulation results, the increased insertion loss is most likely
attributed to the fabrication errors such as inaccuracies in assembling
the coaxial probes and SMA connectors. The measured isolation,
S23, is more than 8.5 dB from 9.5 to 10.5 GHz, whose result is better
than the simulated one. In Figure 16, the return losses of input and
output ports are also displayed. Obviously, the measured results are
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an essential agreement with the simulated ones from 9.5 to 10.5GHz.
Over the desired frequency band, the measured return loss at input
port, S11, is more than 10.2 dB, while the one at output port, S22, is
more than 5.3 dB. Moreover, the imbalances of the phase/amplitude
among the 5-way signal ports were also measured. For the fabricated
divider/combiner, the imbalance of amplitude is less than ±0.25 dB,
and the one of phase is less than ±3.6◦. Obviously, the designed power
divider/combiner have shown a good phase/amplitude consistency in
our interesting frequency range.

In addition, the passive power combiner assembled by placing
two identical power-dividing circuits back to back was also measured.
Figure 17 shows the simulated and measured responses over the
frequency range from 9.5 to 10.5 GHz. Once more, a good agreement
between the measured results with simulated ones was achieved. It
showed that the return loss was more than 7.2 dB, while its insertion
loss less than 0.36 dB from 9.5 to 10.5 GHz.
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3.3. Results of the Combined PSSPA

Based on the experiments performed on Section 3.1 and 3.2, the
assembled PSSPA was measured ultimately. Figure 18 shows the setup
for the power measurement. Prior to the measurements, a calibration
procedure was performed with extra care so that the RF power level at
the output port of the combiner circuit could be directly determined
based on the readings from power meter.

The power measurement results for the five-way power combiner
with Pin = 10 dBm, under the pulse condition of 4 kHz PRF and 10%
of duty cycle, are shown in Figure 19. A maximum output power of
208.9W (53.2 dBm) was observed at the frequency 9.85 GHz, with a
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corresponding gain more than 42.8 dB and PAE in excess of 43.5%.
The gain varied between 41.4–43.1 dB from 9.5 to 10.5 GHz, with only
less than ±0.9-dB gain variation, which displayed a flat gain ripple.
Within the band of interest, the minimum output power is greater than
138W (51.4 dBm), and the maximum combining efficiency is more than
92.8%. The PAE of the combiner circuit fluctuated between 36.5%
and 43.6% as frequency varied from 9.5 to 10.5 GHz. As the MMIC
HPA1 in driving-stage PA module shown in Figure 2(a) is biased by
DC supply, while the 5HPA2s and 5 HPA3s in combining-stage HPA
modules shown in Figure 2(b) are biased by HF switch supply, as
a result, the over system’s PAE is slightly better than the driving-
stage PA module’s one. By the way, the PAE of combined PA would
be improved properly, if the MMIC HPA1 at the driving-stage HPA

RF source
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HF switch
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Five-way
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Figure 18. Power-combined PSSPA measurement setup.
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module was also biased by HF switch supply.
Figure 20 shows output power versus input power for the combiner

at 9.85 GHz, under the condition of 4 kHz PRF and 10% of duty cycle.
The combining-stage HPA modules were biased by HF switch supply
at V d = 10 V, V g = −3V, and the input power sweep was focused
around the range near saturation. As a result, it was found that the
measurement of a full power sweep couldn’t be well into the linear
gain region, and the gain declined sharply as the input power level
increased.

4. CONCLUSION

A five-way radial waveguide active spatial combiner with high power
and high PAE has been demonstrated in this paper. A maximum
output power of 208.9W (pulsed peak power) was observed at
9.85GHz, with a corresponding gain more than 42.8 dB and PAE in
excess of 43.5%. The gain varied between 41.4 and 43.1 dB from 9.5 to
10.5GHz, with only lower than±0.9-dB gain variation, which displayed
good gain flatness. In addition, the PAE of the active combiner
fluctuated between 36.5% and 43.6% as frequency varied from 9.5 to
10.5GHz.

The hybrid-circuit approach also allows RF/microwave circuit
engineers the flexibility of choosing active devices based on different
technologies, thanks to the modular design of the combiner circuit,
enabling easy maintenance, variable output power level, and potential
medium-scale fabrication. It is worth mentioning that higher RF
power output is possible achieved, which can use more than five-way
waveguide combiner and higher power PA modules.
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