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Abstract—The estimation of d- and q-axis parameters is highly
desirable, because they are fundamental parameters to many vector
control algorithms in the d-q reference frame for fast and accurate
responses. Using the finite element method (FEM) for the
determination of the interior permanent magnet synchronous motor
(IPM) reactance provides an accurate means of determining the field
distribution. However, this method might be time consuming. The
magnetic circuit modelling approach has been successfully used to
model a variety of electrical machine such as IPM motors. This paper
deals with the inverse problem methodology for the identification of
d- and q-axis synchronous reactance of an IPM motor. The proposed
method uses a measured electromotive force (EMF) to compute the
objective function. The machine parameters identified by the proposed
approach are compared to experimental results.

1. INTRODUCTION

The interior permanent magnet synchronous motors (IPMSM) are
widely used in automotive and other servo drives due to their superior
advantages and positive features, such as high efficiency, high torque
density, high power factor, high power density, and wide speed range
operation. However, the precise knowledge of parameters is of critical
importance for correct performance prediction and design optimization
of permanent magnet motors [1–3]. The reactance parameters of
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PMSM are most essential to the performance analysis and optimization
design of the motor [4–7]. As for the PMSM speed adjustment, the
exact calculated reactance parameters is a key issue for implementing
the control algorithm and predicting the steady state and transient
characteristics of PMSM [2].

A great deal of techniques have been developed for estimating the
synchronous machine parameters and determining their characteristics.
Some of them are based on standstill tests, while others are based
on frequency tests [5, 8, 9]. However, for PMSM there are no open
and short circuit states unlike electrical excited motors, since the
excitation of permanent magnet materials is affected at all the time.
With a different magnetic force and field saturation the reactance and
the inductance parameters are also different [1, 3, 4, 10]. Thus, any
parameter estimation method should also consider the influence of the
PM motor.

However, while numerical techniques, like finite-element analysis
provide an accurate means of determining the field distributions taking
into account the saturation [3, 8, 9] they are somewhat time-consuming
and do not provide as much insight as analytical solutions into the
influence of the design parameters on the machine behaviour.

The magnetic equivalent circuit (MEC) modelling approach has
been successfully used to model a variety of electrical machines, such
as interior permanent magnet synchronous motor by using information
on torque, flux, magnetic motive force (MMF), and electromotive
force (EMF) [1, 9, 11]. The improved MEC is different from the finite
element method (FEM) in two aspects. Firstly, the number of elements
developed for the MEC method is much less than that required by the
FEM. Secondly, in the MEC, the flux can pass through an element only
in the specified direction, whereas in the FEM there is no restriction
on the direction of flux trough any element.

Inverse problem, arise in several domains of science and
technology like medical imaging, electromagnetic scattering, system
identification [12–15]. The main difficulty in taking inverse problems
is due to its intrinsic ill-posed nature [14, 15] where arbitrarily small
changes in data may lead up to arbitrarily large changes in the solution.
The parameter identification inverse problem is of important practical
problem in many science fields and is usually treated as an optimization
problem, where the objective function to be examined gives the
mismatch between the measured values and the simulated results in
a Euclidean norm (least-squares method) or in any other appropriate
norm [14, 16, 17]. Like in numerical treatment of inverse problems,
data errors are inevitable, and the so-called regularization methods are
to be used for stabilizing procedures for successfully dealing with ill-
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posed problems. Actually, the effectiveness of a regularization method
depends strongly on the choice of a good regularization parameter [15].
However, a trial-and-error approach is used to find a reasonably good
parameter. In this paper, an identification approach based on inverse
problem methodology is proposed and applied to a laboratory interior
permanent magnet synchronous motor used in [10]. The magnetic
circuit model of the IPM motor is used as the direct model. In order
to estimate the d- and q-axis synchronous reactance, the open circuit
EMF is used to compute the objective function. The simulation results
compared to laboratory tests of [10] verify the proposed method.

2. MAGNETIC CIRCUIT MODEL OF IPM MOTOR

In order to assess the validity of the inverse problem parameter
estimation, an IPM motor with tangential magnet poles is considered in
this paper. Fig. 1 shows a one pole pitch cross sectional view of a 6-pole
IPM motor. In this configuration the buried magnets are magnetized
along their shorter dimensions along the d-axis. For simplicity it is
assumed that there is no magnetic saturation in either the stator or the
rotor steel [10]. The equivalent magnetic circuit is shown in Fig. 2. By
definition, φg/2 is the air gap flux through one half of the air-gap cross
sectional area, φr/2 is the flux source of the one half of the magnet.
2Rg is the reluctance of one-half of the air gap with compensation for
slotting, 2Rm0 is the reluctance of one half of a magnet, Rm1 is the
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Figure 1. IPM synchronous motor structure.
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Figure 2. Magnetic circuit model of IPM synchronous motor.

reluctance modelling the flux linkage.
The value of these reluctance can be calculated by applying

Ampere’s law as shown beneath

Rg =
Kcg

µ0Ag
(1)

Rm0 =
lm

µ0µrecAm
(2)

Rm1 =
4d

µ0l(h1 + h2)
(3)

where Ag and Am are the cross-sectional areas per pole of the air gap
and magnet respectively, Kc is the cater coefficient, g, lm and l are the
air gap length, the magnet length in the direction of magnetization
and the stack length respectively. d, h1 and h2 are width of the flux
barrier, and the heights, µ0 and µrec are the permeability of the free
space and the relative recoil permeability of the magnet.

Rr and Rs are the reluctance of the rotor and stator back
irons. These reluctance are ignored here under the assumption of no
saturation.

The air gap flux φg is related to the remnant flux φr by

φg =
1

1 + β(1 + 2η + 4λ)
φr (4)

where β = Rg/Rm0 is the reluctance ratio. η = Rm0/Rm1 and
λ = Rm0/Rmm are the leakage flux ratios.

The leakage flux consists of two components

φmt = φmm + φml (5)
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φmm is the flux leakage of the bridge between pole pieces given by

φmm =
2βλ

1 + β(1 + 2η + 4λ)
φr (6)

φml is the leakage flux flowing in a circular direction through the air
flux barriers under the bridge given by

φml =
βη

1 + β(1 + 2η + 4λ)
φr (7)

By summing the air gap and the total leakage flux the magnet flux is
given by

φm =
1 + β(2η + 4λ)

1 + β(1 + 2η + 4λ)
φr (8)

Thus, the average air gap flux density and the corresponding magnet
flux density are determined as

Bg =
Cφ

1 + β(1 + 2η + 4λ)
Br (9)

Bm =
1 + β(2η + 4λ)

1 + β(1 + 2η + 4λ)
Br (10)

where Cφ = Am/Ag is the flux concentration factor, Br is the remnant
magnetization.

The amplitude of the fundamental component of the air gap flux
due to the magnet acting alone is

BM1 =
4
π

Bg sin
(απ

2

)
(11)

where α is the pole arc to pole-pitch ratio.
The fundamental open-circuit flux per pole can be determined as

φM1 =
Dl

p
BM1 (12)

where D is the stator bore diameter, l is stack length and p is the
number of pole pairs.

The d- and q-axis synchronous reactance can be given as

Xd =
6µ0Dlf

p2g′′d
(KW1Nph)2 + Xσ (13)

Xq =
6µ0Dlf

p2g′′q
(KW1Nph)2 + Xσ (14)

where µ0 is the permeability of the free space, f the frequency, KW1

and Nph are the fundamental harmonic winding factor and the number
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of series turns per phase respectively, and Xσ is the armature leakage
reactance given by Eq. (A1) in Appendix.

g′′d is the effective air gap length in the direct-axis allowing for the
magnet and g′′q is the effective air gap length in the quadrature axis
respectively, they are given by

g′′d =
Kcg

K1ad − (K1Kαd/1 + β(1 + 2η + 4λ))
(15)

g′′q =
Kcg

K1aq
(16)

K1, K1ad, K1aq and Kαd are given in the appendix.
For a practical winding with Nph series turns per phase and

a winding factor KW1, the open-circuit EMF per phase can be
determined as

Eq =
2π√

2
KW1NphφM1f (17)

3. INVERSE PROBLEM PARAMETER ESTIMATION

Parameter estimation is commonly accepted as a fundamental step for
the system identification process. The concept includes systems where
it may not be possible to write mathematical equations that accurately
describe the processes of interest. In general, in a system identification
problem or an inverse problem, the fundamental properties are to
be determined from the observed behaviour of the system [15, 16].
The objective of this study is to investigate and develop a system
identification model based on the inverse problem theory, to determine
the permanent magnet synchronous motor parameters such as the d-
and q-axis synchronous reactance. The knowledge of the flux linkage
is enough for the complete characterization of the machine and can be
used for the machine control development.

3.1. Problem Formulation

Permanent magnet synchronous motors can be treated uniformly
within the framework of the widely used two-axis theory. The analysis
of a PM motor is usually based upon the constant parameters of the
two-axis model of the motor. In general these parameters are not
constant, but vary in dependence of load conditions and the level
saturation flux paths in the motor [3, 5]. Setting X1 = Xd, X2 = Xq,
X3 = φM1 and substituting KW1Nph from Eq. (13) and Eq. (14) into
Eq. (17) yields

Eq(X1, X2, X3) =
π√
3t1

pfX3

√
X1 −X2 (18)
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where t1 is a constant given by

t1 = µ0Dfl

(
1
g′′d
− 1

g′′q

)
(19)

The parameter identification is typically defined for identifying
the continuous vector X, given a set of continuous experimental data
U . To solve it, a parameter identification problem is often converted
to the minimization of a continuous problem

Min f(X) (20)

where f is the reconstruction error or the objective function to be
minimized.

The inverse problem can be therefore formulated as follows

Minimize F (X) =

(
EC

q

E0
− 1

)2

(21)

Subject to Eq(X1, X2, X3) = π√
3t1

pfX3

√
X1 −X2

0.21 ≤ X1 ≤ 0.30
0.45 ≤ X2 ≤ 0.60

0.0008 ≤ X3 ≤ 0.0020

(22)

where EC
q and E0 are the computed and the measured open-circuit

EMF per phase, and X = [Xd Xq φM1] is the vector parameter.

3.2. Regularization

The concept of well-posed and ill-posed problems goes back to
Hadamard who essentially defined a problem to be ill-posed if the
solution is not unique or if it is not a continuous function of the
data [18]. Hence, it is necessary to incorporate further information
about the desired solution in order to stabilize the problem and
to single out a useful and stable solution. This is the purpose
of regularization, and the Tikhonov’s regularization technique is an
effective tool for ill-posed problems solution and the analysis of ill-
conditioned linear systems [14, 15]. The Tikhonov regularization
method introduces a regularization term Fr representing roughly, the
least-squared difference between the initial guessed X0 and the current
calculated one.

F ∗ = (1− λ)F + λFr (23)

where λ > 0, is the regularization parameter.
The Tikhonov regularization term is given by

Fr =
∑

i

(Xk
i −X0

i )2 (24)
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where X0
i and Xk

i are the initial and the current set of parameters
respectively.

The optimal choice of the regularization parameter realizes
the perfect trade-off between the complexity of the solution and
its ability to reliably reproduce the experimental data. Several
numerical methods have been proposed to choose the optimal
regularization parameter for Tikhonov regularization such as the L-
curve method [15, 19].

4. RESULTS AND DISCUSSION

In order to assess the proposed estimation parameter method based
on inverse problem theory, numerical analysis was performed on IPM
motor.

Table 1 shows the main specifications of the IPM motor.
The inverse algorithm is implemented by using “Fmincon” from
MATLABr’s OPTIMIZATION TOOLBOX: this local solver finds
a local minimum of a constrained multivariable function by means
of sequential quadratic programming (SQP) algorithm. The method
uses numerical or, if available analytical gradients. In the cases under
study the gradients are calculated analytically. An Fmincon iteration

Table 1. Specifications of the IPM motor.

Parameters Symbols Values

Stator bore radius r1 47.5mm

Air gap length g 1.00mm

Bridge width t 1.5mm

Flux barrier width D 4.00mm

Flux barrier height h1 15.904mm

Flux barrier height h2 8.885mm

Magnet width Wm 27.7mm

Magnet thickness lm 8.10mm

Ramanent flux density Br 1.05T

Saturation flux density Bs 1.88T

Recoil permeability µrec 1.05

Pole pairs p 3

Frequency f 360Hz

Rated current I 19A

Series turns per phase Nph 30

Winding factor Kw1 0.644
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consists of three main stages: updating of the Hessian matrix of the
Lagrangian function, quadratic programming problem solution, and
line search and merit function. Since the SQP method is very effective
when starting from an initial points close to the feasible region, the
optimization process was started from a reasonable initial guess X(0) =
[0.24 0.53 0.001] where the objective function is F (0) = 0.00209386.
In many cases the optimal regularization parameter from Tikhonov
regularization is determined by the L-curve method, which is a plot of
the solution norm versus the corresponding residual norm for all valid
regularization.

In literature it is shown by numerical examples that typical
suitable value, of λ are in the range of λ < 1. As seen from Table 2, λ
was varied manually in order to asses its influence on the reconstructed
results. The inverse design converged after 7 iterations to satisfy the
stopping criterion by which the function value changes are less than the
specified tolerance. The optimal deign is X(7) = [0.246 0.528 0.0015]
for a parameter regularization λ = 10−12. Table 3 displays the
objective function versus the iterations. The parameter estimation
results obtained with the analytical model and inverse problem model
are presented in Table 4.

Comparing the obtained results via the inverse problem approach

Table 2. Optimization process.

λ Iteration Xd (Ω) Xq (Ω) φM1 (Wb) Objective Function

10−1 8 0.2459 0.5301 0.0015 1.35675e− 9

10−2 8 0.2453 0.5301 0.0015 5.03268e− 9

10−3 8 0.2452 0.5301 0.0015 1.08008e− 9

10−4 7 0.2460 0.5280 0.0015 4.31063e− 10

10−5 7 0.2460 0.5280 0.0015 6.41672e− 11

10−6 7 0.2460 0.5280 0.0015 2.67069e− 11

10−7 7 0.2460 0.5280 0.0015 2.29531e− 11

10−8 7 0.2460 0.5280 0.0015 2.25775e− 11

10−9 7 0.2460 0.5280 0.0015 2.25400e− 11

10−10 7 0.2460 0.5280 0.0015 2.25363e− 11

10−11 7 0.2460 0.5280 0.0015 2.25359e− 11

10−12 7 0.2460 0.5280 0.0015 2.25358e− 11

10−13 7 0.2460 0.5280 0.0015 2.25358e− 11

10−14 7 0.2460 0.5280 0.0015 2.25359e− 11

10−15 7 0.2460 0.5280 0.0015 2.25359e− 11

10−16 7 0.2460 0.5280 0.0015 2.25359e− 11

10−17 7 0.2460 0.5280 0.0015 2.25359e− 11
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Table 3. Evolution of the objective function versus iterations.

Iteration Objective Function

0 0.00209386

1 6.48234e− 5

2 5.59311e− 5

3 3.19436e− 5

4 3.51569e− 9

5 1.49117e− 10

6 1.49023e− 10

7 2.25358e− 11

Table 4. Comparison of parameter estimation results.

Parameter
Analytical

model

Error

(%)

Inverse

problem

model

Error

(%)

Test

[10]

Xd(Ω) 0.2684 2.24 0.2460 0 0.246

Xq(Ω) 0.5460 1.1 0.5280 0.7 0.535

φM1(Wb) 0.0015 / 0.0015 / /

(a) (b)
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Figure 3. Flux density in the motor in typical operating conditions.
(a) Equipotential lines. (b) Flux density map.

to those of test [10], Table 4 clearly shows the superiority in terms of
solution quality of the proposed inverse method. A 2D FEM analysis
is carried out by using the MATLABr’s PDE TOOLBOX software
to evaluate the results for a case study motor in typical operating
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Figure 4. Radial and tangential component waveforms of the air-gap
flux density.

conditions.
Figure 3(a) shows the distribution of the equipotential lines while

Fig. 3(b) shows the distribution of the flux density in a PM motor. The
radial and tangential component waveforms of the air-gap flux density
with rotor position are shown in Fig. 4.

5. CONCLUSION

The method presented in this paper works very well in estimating
the machine parameters of an interior permanent magnet synchronous
motor. Based on the magnetic circuit as the direct model, the results
indicate that the proposed approach was successfully used to estimates
the d- and q-axis synchronous reactance and the open-circuit flux. It
has the potential for high accuracy and robustness to measurements
data using for computational cost.

APPENDIX A.

The leakage reactance Xσ of the armature windings of a.c. machines
consists of the slot, the end-connection differential and tooth-top
leakage reactance given by [20]

Xσ = 4πµ0f
N2

phLi

pq1

[
λσs +

l1e

Li
λσe + λσd + λσt

]
(A1)

where q1 is the number of slot per pole per phase, l1e is the length
of a single end connection, Xσs, Xσe, Xσd and Xσt are the slot, end
connection differential and tooth-top leakage permeance.
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For a semi-closed oval slot as shown in Fig. A1, the specific slot
leakage permeance is given by

λσs = 0.1424+
h11

3b12
kt+

h12

b12
+0.5 arcsin

(√
1− (b14/b12)2

)
+

h14

b14
(A2)

where

kt =
3(4t2 − t4(3− 4 ln t)− 1)

4(t2 − 1)2(t− 1)
, t =

b11

b12
(A3)

The end connection leakage permeance for almost all windings is given
as

λσe ≈ 0.3q1 (A4)
The specific permeance of the differential leakage flux is

λσd =
3q1D1inK2

w1τd1

2π pgKcKsat
(A5)

where τd1 is the differential leakage factor, D1in is the inner diameter of
the stator, KC and Ksat are the Carter’s coefficient and the saturation
factor respectively.

The tooth-top specific permeance is given by

λσt ≈ 5g/b14

5 + 4g/b14
(A6)

K1, K1ad, K1aq and Kαd constants of Eq. (15) and Eq. (16) are
given by

K1 = (4/π) sin(απ/2) (A7)
K1ad = α + (sinαπ)/π (A8)
K1aq = α + Ω + (sinΩπ − sinαπ)/π (A9)
Kαd = sin(απ/2)/(απ/2) (A10)



Progress In Electromagnetics Research B, Vol. 31, 2011 27

REFERENCES

1. Lovelace, E. C., T. M. Jahns, and J. H. Lang, “A saturating
lumped-parameter model for an interior PM synchronous
machine,” IEEE Trans. on Industry Applications, Vol. 38, No. 3,
645–650, May–Jun. 2002.

2. Bernal, F. F., A. G. Cerrada, and R. Faure, “Determination
of parameters in interior permanent-magnet synchronous motors
with iron losses without torque measurement,” IEEE Trans. on
Industry Applications, Vol. 37, No. 5, 1265–1272, Sep.–Oct. 2001.

3. Rezaie, J., M. Gholami, R. Firouzi, T. Alizadeh, and
K. Salashoor, “Interior permanent magnet synchronous motor
(IPMSM) adaptive genetic parameter estimation,” Proceedings of
the WCECS, Oct. 2007.

4. Meessen, K. J., P. Thelin, J. Soulard, and E. A. Lomonova,
“Inductance calculations of permanent-magnet synchronous
machines including flux change and self- and cross-saturations,”
IEEE Trans. on Magnetics, Vol. 44, No. 10, 2324–2331, Oct. 2008.

5. Gieras, J. F., E. Santini, and M. Wing, “Calculation of
synchronous reactances of small permanent-magnet alternating-
current motors: Comparison of analytical approach and finite
element method with measurements,” IEEE Trans. on Magnetics,
Vol. 34, No. 5, 3712–3720, Sep. 1998.

6. Rahman, M. A. and P. Zhou, “Determination of saturated
parameters of PM motors using loading magnetic fields,” IEEE
Trans. on Magnetics, Vol. 27, No. 5, 3947–3950, Sep. 1991.

7. Nee, H. P., L. Lefevre, P. Thelin, and J. Soulard, “Determination
of d and q reactances of permanent-magent synchronous motors
without measurements of the rotor position,” IEEE Trans. on
Industry Applications, Vol. 36, No. 5, 1330–1335, Sep.–Oct. 2000.

8. Rahman, K. M. and S. Hiti, “Identification of machine parameters
of a synchronous motor,” IEEE Trans. on Industry Applications,
Vol. 41, No. 2, 557–565, Mar.–Apr. 2005.

9. Lee, J. Y., S. H. Lee, G. H. Lee, J. P. Hong, and J. Hur,
“Determination of parameters considering magnetic nonlinearity
in an interior permanent magnet synchronous motor,” IEEE
Trans. on Magnetics, Vol. 42, No. 4, 1303–1306, Apr. 2006.

10. Hwang, C. C., S. M. Chang, C. T. Pan, and T. Y. Chang,
“Estimation of parameters of interior permanent magnet
synchronous motors,” Journal of Magnetism and Magnetic
Materials, Vol. 239, 600–603, 2002.

11. Lee, J. Y., J. W. Kim, J. H. Chang, S. U. Chung, D. H. Kang, and



28 Hadef et al.

J. P. Hong, “Determination of parameters considering magnetic
nonlinearity in solid core transverse flux linear motor for dynamic
simulation,” IEEE Trans. on Magnetics, Vol. 44, No. 6, 1566–
1569, Jun. 2008.

12. Qing, A., C. K. Lee, and L. Jen, “Electromagnetic inverse
scattering of two-dimensional perfectly conducting objects by real-
coded genetic algorithm,” IEEE Trans. Geosci. Remote Sensing,
Vol. 39, No. 3, 665–676, Mar. 2001.

13. Hoole, S. R., S. Subramanian, R. Saldanha, J. L. Coulomb,
and J. C. Sabonnadiere, “Inverse problem methodology and
finite elements in the identification of cracks, sources, materials,
and their geometry in inaccessible locations,” IEEE Trans. on
Magnetics, Vol. 27, No. 3, 3433–3443, May 1991.
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