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Abstract—A 3D shape reconstruction algorithm for multiple PEC
objects immersed in air is presented. The Hamilton-Jacobi PDE
is solved in the entire computational domain with employing the
marching cubes method to retrieve the unknown objects. The method
of moment surface integral equation is used as the forward solver. An
appropriate form of the deformation velocity, based on the forward and
adjoint fields, is implemented to minimize the mismatch between the
measurements and simulated scattered fields from the evolving objects.
The inversion algorithm demonstrated good shape reconstruction
results even when using limited view data or noisy corrupted data
with SNR of 5 dB.

1. INTRODUCTION

The shape reconstruction of unknown objects is one of the basic classes
of the general inverse scattering techniques. To reduce the degree of
the non-linearity of the problem, the constitutive parameters of the
target objects are assumed to be a priori known in this work. The
inversion algorithm tries to find the number of the unknown target
objects, their shapes and locations. This information can be retrieved
by considering the way that electromagnetic waves are scattered
from the unknown objects. This subject is of interest in a variety
of applications including nondestructive testing, remote sensing,
biomedical applications, medical imaging, and defects detection [1–24].
In this section, we are summarizing several published work related to
the inverse scattering of two- and three-dimensional targets, the adjoint
fields technique, limitations of related methods, etc.
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For example, an iterative three-dimensional (3D) algorithm was
applied for detecting breast tumors upon using time-domain microwave
data [1]; a nonlinear multisource strategy was presented for the
quantitative imaging of two-dimensional (2D) scatterers [2]; and a 2D
sliced tomographic reconstruction algorithm was used for imaging 3D
strong scatterers validated using experimental data [3].

Shape reconstruction algorithms can be combined with other
inverse scattering and stochastic techniques for retrieving both the
dielectric properties and the shape of the scattering objects [13, 14].
The linear sampling method was employed for characterizing the
support of the targets, followed by using the optimized contrast
source extended Born inversion for quantitative characterization of
the targets [14]. In the case of perfectly electric conducting (PEC)
targets, the inverse scattering problem can be casted as a shape
reconstruction problem. Several papers in the literature presented 3D
shape reconstructions of dielectric and conducting objects [6, 15–24].
The shape reconstruction of a 3D PEC object using a boundary integral
formulation was presented in [15].

The linear sampling is a well-known qualitative technique for
reconstructing the shape of scattering objects upon solving a linear
integral equation of the first kind; however large amounts of data
were required for its successful implementation [13, 14]. The linear
sampling method was improved in [16] to reconstruct the shape of 3D
targets embedded in a non-accessible region. The algorithm presented
in [16] reduced the inherent complexity of the measurement setup and
improved the reconstruction of buried targets.

The distorted Born iterative method (DBIM) and the stabilized
biconjugate-gradient fast Fourier Transform (BCGS-FFT) were
employed for retrieving the profile of 3D dielectric objects using
experimental measurement data [17]. The Direct Fourier Interpolation
(DFI) and the Filtered Backpropagation (FBP) algorithms were
extended in [18] for pixel by pixel reconstruction of the dielectric
properties. As known, these methods are restricted to weak scattering
objects.

The reconstruction of 3D complex permittivity using the
combination of a modified Gauss-Newton method and an efficient
forward solver based on the fast Fourier transform method
was presented in [19]. The shape reconstruction of simple
conducting patches was demonstrated upon applying the Non Uniform
Rational Basis Spline (NURBS) geometric modeling and a genetic
algorithm [20]. The work in [21] presented a technique for shape
reconstruction of 3D perfect electric conducting (PEC) objects upon
adopting a distributional formulation for the unknowns of the problem.
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Experimental data were used for 3D reconstruction in Electric
Capacitance Tomography (ECT) [22]. The finite element was used as
the forward solver on a 32 electrode ECT system. A two step approach
for reconstruction the shape of 2D PEC objects using a single view and
single frequency data was presented in [23].

Note that our previous work in [6] was for reconstructing the
shape of 3D dielectric objects with lossy electrical properties to
simulate malignant tumors immersed in fatty breast tissue. That
work was a parameter based technique that employed the spherical
harmonics coefficients as the unknown shape parameters. A brute force
calculation of the gradient was implemented using the finite difference
scheme with respect to each spherical harmonic coefficient [6]. For
better capturing of the irregular tumor shape, the order of the
spherical harmonic expansion was increased leading to an increase
in the computational time. The current work is not a parameter
based optimization, as was the case in [6], but it is an implicit shape
reconstruction method based on the level set technique that solves the
Hamilton Jacobi equation with respect to the space and time [25–27].

The adjoint field technique is also implemented here for calculating
the deformation velocity needed in the level set algorithm. In our
work in [24], the shape reconstruction of 3D lossy objects immersed
in lossy medium was presented based on updating the re-location of
each surface node. The adjoint scheme was employed to calculate the
steepest descent gradient direction which was required for the updating
process. As known, the advantage of using the adjoint field technique
is reducing the computations using the forward solver. The forward
solver is called only two times per each frequency and source, compared
with the brute force calculation of the gradient with respect to each
shape parameter in [6]. However, in [24] the number of unknown
objects was needed to be known a priori, which was a limitation
compared with the current work using the level set technique.

The main contribution of the current work is the implementation
of the robust shape reconstruction level set technique for 3D PEC
objects. The previous work in [6] and [24] handled single 3D dielectric
objects; however, the current work simultaneously handles multiple
3D PEC objects with no a priori information about their numbers
or shapes. The authors also reported results using the level set
technique when the TE versus the TM polarization was employed in
the measurements [28].

The objective of the current work is to reconstruct the shape of
multiple 3D perfectly conducting objects using the level set method.
Plane waves are employed for illuminating the unknown objects with
collecting the scattered fields in the far zone. The measurements data
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are synthetic in this work. The electric field surface integral equation
(EFIE) is solved using the Method of Moments (MoM) based on Rao-
Wilton-Glisson (RWG) basis functions [29–32].

2. FORMULATION

In the level set framework, the moving surface is implicitly represented
as the zero level of a three-dimensional function Φ(·). At each time t,
the interface Γ(·) is expressed as [33, 34]:

Γ(t) = {(x, y, z) |Φ(x, y, z, t) = 0} (1)

Calculating the derivative of (1) with respect to the evolving time leads
to the following PDE known as the Hamilton-Jacobi Equation [33]:

∂

∂t
Φ(x, y, z, t) + F (r̄) ‖∇Φ(x, y, z, t)‖ = 0 (2a)

Φ0 = Φ(x, y, z, t = 0) (2b)

where F (·) is an appropriate form of the deformation velocity pointing
in the normal direction to the evolving surfaces and r = (x, y, z) is the
position vector at any point in the computational domain. The symbol
Φ(·) represents the level set function with Φ0 denotes the initial level
set function. The PDE in (2) is solved numerically using the higher
order finite difference schemes elaborated in [33].

2.1. Initialization of the Level Set Function Φ0

The level set function Φ0 in (2b) is initialized to the signed
distance function corresponding to the arbitrary initial guess of the
unknown objects. The signed distance function at any point in the
computational domain is defined as the distance to the closest point
on the surface. If that point is outside the surface, then the signed
function is positive otherwise, it is negative [34]. The signed distance
function offers the advantage of avoiding steep gradients and/or rapidly
changing shape features [34]. If the initial guess is chosen to be a sphere
with radius of rc centered at (xc, yc, zc), the initialization process for
any pixel (xi, yj , zk) in the computational grid is straightforward given
by:

Φ0(xi, yj , zk) =
√

(xi − xc)2 + (yj − yc)2 + (zk − zc)2 − rc (3)

Since we have employed the full-band level set scheme, the level
set function is not required to be reinitialized to the signed distance
function, during the inversion algorithm.
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2.2. Deformation Velocity F (·)
In order to solve the inverse scattering problem, a non-linear
optimization approach is used to update the surface of the evolving
objects. The goal of the algorithm is to minimize the cost function
in (4), i.e., the mismatch between the measurements fields and the
simulated scattered fields from the evolving objects. The normalized
cost function is defined as:

Normalized Cost

=

N inc∑
i=1

Nmeas
i∑

m=1

∥∥∥P̄ sc(θinc
i , φinc

i , θsc
i,m, φsc

i,m)− P̄ sc
meas(θ

inc
i , φinc

i , θsc
i,m, φsc

i,m)
∥∥∥

2

N inc∑
i=1

Nmeas
i∑

m=1

∥∥∥P̄ sc
meas(θinc

i , φinc
i , θsc

i,m, φsc
i,m)

∥∥∥
2

(4)

The symbol N inc represents the number of incident waves, Nmeas
i is the

number of measurements for the ith incidence (θinc
i , φinc

i ) direction, and
(θmeas

i,m , φmeas
i,m ) is the mth scattering direction due to the ith incident

plane wave, using the standard spherical coordinate system. The
scattered electric field patterns P̄ sc(·) are defined as [32]:

P̄ sc(θinc
i , φinc

i , θsc
i,m, φsc

i,m) = roe
jkr0Ēsc(θinc

i , φinc
i , θsc

i,m, φsc
i,m) (5)

where Ēsc(·) represents the scattered electric field and P̄ sc(·) represents
the scattering far field pattern. The distance r0 is chosen to be 50λ
which is adequately far from the targets and k is the wave number.
For no particular reason, the field pattern is used here instead of the
electric field. To achieve convergence, the cost function Cost should
be decreasing with respect to the evolving time as follows:

dCost

dt
= 2Re
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m=1

(
P̄ sc(θinc

i , φinc
i , θsc

i,m, φsc
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−P̄ sc
meas(θ

inc
i , φinc

i , θsc
i,m, φsc

i,m)
)∗

· d
dt

P̄ sc(θinc
i , φinc

i , θsc
i,m, φsc

i,m)
}

< 0 (6)

The asterisk in (6) denotes the complex conjugate, P̄ sc(·) represents
the simulated field pattern and P̄ sc

meas(·) represents the corresponding
measurement of the field pattern. The functional derivative of the
electric field pattern with respect to the evolution time t relates the
variation rate of the electric far-field pattern due to a small variation
of the object’s surface. Using the reciprocity theorem leads to the
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following expression for the functional derivative of the electric field
pattern [35]:

d

dt

(
ê′ · P̄ sc(θinc

i , φinc
i , θsc

i,m, φsc
i,m)

)

=
−jωµ0

8π

∫

S+

∇+ · (H̄ × Ē′)F (r̄)ds

=
−jωµ0

8π

∫

S+

∇+ · (H̄ ′ × Ē)F (r̄)ds (7)

The unit vector ê′ specifies the polarization of the plane wave
corresponding to the adjoint problem; see the schematic description
of the adjoint field problem in Figure 1(a). The plus superscript
in (7) means that the considered quantity is replaced by its limit
approaching the PEC surface from the outside. The fields Ē and
H̄ in (7) represent the electric and magnetic fields, on the surface of
the evolving objects, corresponding to the forward scattering problem,
respectively, while the fields Ē′ and H̄ ′ represent the fields of the
adjoint problem. As known, the adjoint fields are the solution of the
scattering problem when a plane wave illuminates the objects in the
direction of (θsc

i,m + π, φsc
i,m). For consistency, the amplitudes and the

polarization of the adjoint incident waves are determined by the vector

Incident waves
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Figure 1. (a) Schematic of the adjoint field problem where the target
is illuminated using the back propagation waves. The amplitude of this
excitation is equal to the complex conjugate of the difference between
the scattered fields and the measured fields at the receiver. As a result,
the electric surface current density J̄ ′ is excited on the surface of the
PEC object. (b) Marching cubes algorithm using four cubes (as an
example).
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(P̄ sc(θinc, φinc, θsc, φsc)− P̄ sc
meas(θ

inc, φinc, θsc, φsc))∗.
According to (7), in order to make a decreasing cost function with

negative derivative with respect to the evolving time, the deformation
velocity F (·) is chosen as [35]:

F (r̄) = −αRe


−j

N inc∑

i=1

Nmeas
i∑

m=1

∇+ · (H̄(r̄)× Ē′(r̄)
)

 (8a)

where α represents a positive normalization factor which does not affect
the inversion algorithm. According to the Courant-Friedrichs-Lewy
condition (CFL), the chosen time-step is inversely proportional to the
maximum value of the deformation velocity [35]. Also, the update of
the level set function at each pixel in the computational domain is not
affected by the value of α. The electric and magnetic fields in (8a) are
calculated using their limits approaching the surface from the outside
as: (r̄ → S+). The term ∇+ · (H̄(r̄) × Ē′(r̄)) in (8a) is calculated as
follows:

∇+ ·(H̄×Ē′) = Ē′ ·∇×H̄−H̄ ·∇×Ē′ = jωε0Ē ·Ē′+jωµ0H̄ ·H̄ ′ (8b)

Assume that n̂ denotes the normal unit vector to the objects’ surfaces.
Upon using the boundary conditions, n̂ × E|S+ = 0 and n̂ · Ē|S+ =
∇s·J̄
−jωε0

, n̂×H|S+ = J̄ and n̂ ·H̄|S+ = 0 where S+ indicates approaching
the surfaces from the outside, (8a) can be rewritten as [24]:

F (r̄) = −αRe




N inc∑

i=1

Nmeas
i∑

m=1

(
ωµ0J̄ .J̄ ′ − (∇s · J̄)(∇s · J̄ ′)

ωε0

)
 (9)

As known in using the MoM, the surface currents densities J̄ and J̄ ′
will be calculated upon solving a linear system of equations ZI = b,
where Z is the impedance matrix that involves all interactions between
the patches on the object’s surface at any frequency, I represents the
unknown coefficients of the surface current densities, and b represents
the fields on the surface due to the incident waves [29]. Since the
current densities are required to be calculated for any combination
of the incident and scattering directions, it is more efficient from
the computational time point of view, to first invert the impedance
matrix Z and then multiply it by the incident vector b that includes
all different incident directions. Note that the deformation velocity is
calculated at the center of patches in the triangular mesh generated
by the marching cubes algorithm. For solving the Hamilton-Jacobi
Equation (2), the deformation velocity needs to be extended to all
pixels in the computational domain. The deformation velocity at each
pixel in the domain is chosen to be the same as the velocity at the
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nearest patch center on the evolving surface. The time consumed for
extending the deformation velocity is about 2 minutes for a grid of
100 × 100 × 100 pixels. To reduce the time, fast marching method
could be used for faster extension of the deformation velocity [33].

2.3. The Marching Cubes Method

The level set method does not require any information about the
surface connectivity. However the MoM forward solver is based on the
surface triangular discretization of the evolving objects. Therefore, a
computer graphic technique known as the marching cubes method is
implemented to extract the triangular mesh from the 3D zero level
scalar function [36, 37]. It is considered the 3D extension of the
marching squares method [36].

The marching cubes method is basically a divide and conquers
method. It was proposed by Lorensen and Cline [36]. The idea is based
on dividing the computational domain into cubes and determining
how the zero level surface intersects these cubes. At each time, eight
neighbor pixels are taken to form a cube, and then the algorithm
determines the triangle(s) needed to represent the part of the surface
passing through this cube [36]. For each cube, an 8-bit index
representing 256 possible configurations is assigned and stored. If the
value of the level set function Φ(xi, yj , zk) at arbitrary pixel of the
cube is less than a threshold (e.g., zero) it indicates that this pixel is
inside the surface and a bit value is set to one. Otherwise that pixel
is located outside the evolving surface and a bit value is set to zero.
The final binary value of a cube looked up in an existing table in order
to determine the corresponding configuration. The triangular mesh
intersects any edge of the cube with one point inside and the other one
outside the surface [36].

The 256 possible configurations (corresponding to the 8-bit index
of the cube) could be reduced to 15 unique configurations using
reflections and symmetrical rotations [36]. In Figure 1(b), the part
of a generated triangular mesh using 4 cubes, as an example, is
demonstrated. The pixels P8, P9 and P15 marked with the blue circles
are located inside the evolving surface where the level set function is
negative at these pixels. In order to ensure the topological consistency
of the produced mesh, we have employed the version of the marching
cubes method proposed by Nielson and Huang [37], which uses only
the rotational properties of the cubes, that reduces the lookup table
to 23 unique cases. The original marching square method may cause
the generation of holes on the surface of the evolving objects [37].
A Laplacian smoothing scheme is employed here in order to improve
the quality of the generated mesh, using the marching cubes method,
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without modifying the mesh topology. The Laplacian scheme relocates
the vertex position (x, y, z), at its average nodes [38].

(x, y, z) =
1

Nadj




Nadj∑

i=1

(
xadj

i , yadj
i , zadj

i

)

 (10)

The symbol Nadj represents the number of adjacent vertices to the
vertex (x, y, z), including the same vertex. The symbol (xadj

i , yadj
i , zadj

i )
represents the coordinates of the adjacent vertices.

In the actual implementation of the marching cubes algorithm, the
resolution of the computational domain is chosen to be 100×100×100
pixels. The dimensions of each cube, used in marching cubes algorithm,
are five or six times larger than that of the pixel size. As the frequency
hops to a higher one, the size of the cubes decreases to maintain the
accuracy of the MoM-based solver.

2.4. The Level Set Algorithm

The proposed 3D level set algorithm is summarized as follows:
1. Initialize the level set function to the signed distance function. In

this work, the initial guess is chosen to be a sphere (3).
2. Generate the triangular mesh representing the evolving surface

using the marching cubes method.
3. Calculate the deformation velocity F (·) using (9) and the cost

function using (4).
4. Extend the deformation velocity to the entire computational

domain.
5. Update the Hamilton-Jacobi Equation (2) after a certain number

of iterations (10 iterations in this work). The 10 iterations scheme
is empirical. We tested many other values and observed that if
less number of iterations was used, the computational time of the
algorithm was larger with no considerable improvement in the final
results. On the other hand, when larger number of iterations was
used, the reconstruction results were not good in some cases.

6. Go to step 2 and repeat till convergence occurs.
The reconstruction algorithm is implemented using the FOR-

TRAN programming language.

2.5. Frequency Hopping:

In most inverse scattering techniques, calculating the scattered field
at single frequency does not provide enough information for retrieving
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the details of the unknown target [39]. Similar to previous works of
the 2D level set algorithm [25–27], the frequency hopping scheme is
employed here to avoid trapping the algorithm in local minima. In this
work, instead of using fixed pre-assigned number of iterations at each
frequency, the stagnancy of the cost function at a working frequency
is considered as the criteria for hopping to a higher frequency. This
criterion avoids the unnecessary increase in the computational time
when the cost function drops in local minima.

The hopping criterion is based on the most recent 20 samples
calculated for the cost function. If the difference between the averages
of each five successive points is less than a threshold (e.g., 1% in this
work), the working frequency hops to a higher value. Let c1 represent
the average of the cost function at 5 successive iterations, c2 represent
the average of the cost function at the following 5 successive iterations,
etc. Once the condition |ci−cj |

(ci+cj)/2 < 0.01 for i, j = 1, 2, 3, and 4
and i 6= j then the working frequency hops to a higher one. This
average adaptive hopping criterion was necessary due to the observed
oscillations in the cost function.

2.6. The MoM Forward Solver:

In this section, the accuracy of the forward solver is validated using
FEKO (3D EM simulator) [31]. The forward solver is tested to
calculate the scattered fields from two PEC objects; a sphere with
radius of 5 cm, centered at origin, and a cylinder with radius of 10 cm
and height of 20 cm, centered at (30 cm, 0, 0). The total number of

(a) (b)

Figure 2. (a) Scattered fields and (b) the induced currents by a sphere
and PEC cylinder.
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triangular meshes used to represent the surface of the objects was 2212
triangles. In incident wave at 2 GHz was used to illuminate the targets,
propagating in the +z direction. The scattered fields are calculated at
−1m < x < 1m, y = 0 and z = 0.5m. In Figure 2, the scattered fields
and the induced currents on the surface of the objects using our MoM
forward solver are compared with those obtained using FEKO. The
results show a maximum error of 4.3% between our result and FEKO
results.

It should be noted that in all results in this work the mesh used
to generate the synthetic data is much denser than that used in the
reconstruction algorithm.

3. NUMERICAL RESULTS

3.1. Reconstruction of a Torus:

In the first example, the reconstruction of a PEC torus is investigated.
Twenty six incident plane waves with theta polarization are used to
illuminate the target and 26 scattering directions per incidence are used
in the reconstruction algorithm (26×26 or 676 data). The incident and
scattering directions are uniformly distributed around the targets with
angular steps ∆θ = ∆φ = π/4, with 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, as
schematically shown in Figure 3(e). The 26 transmitter/receiver (T/R)
directions are counted as three sets at θ = π/4, π/2, and 3π/4, each
for eight azimuth angles φ = 0, π/4, π/2, 3π/4, . . . , 7π/4, in addition
to two sets at θ = 0 and θ = π. Four frequencies of f1 = 200MHz,
f2 = 500MHz, f3 = 1 GHz and f4 = 2GHz are employed in this case.
The size of the computational domain is a cube of dimension 80 cm in
all results presented in this work.

The initial guess is chosen here to be a sphere of radius 10 cm
centered at (x, y, z) = (30 cm, 0, 0). The radius of the torus (the
distance between the torus center and the tube center) is 7 cm and
the tube radius is 2 cm (marked as Target in Figure 3). The torus is
centered at the origin with its main plane parallel to the x-z plane.
In this case, the maximum number of the inversion iterations was
7500. The resolution of the computational domain is chosen to be
100×100×100 pixels. The reconstruction results at different iterations
are shown in Figures 3(a)–(d). The blue transparent mesh shows the
evolving surfaces while the solid red object shows the true one.

The results of Figure 3 show that the shape of torus starts to
be identified after about 5000 iterations (see Figure 3(c)). The final
reconstruction result is achieved after 7500 iterations which reasonably
agree with the torus (Figure 3(d)).
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(a) (b)

(c) (d)

(e)

T  /R

T  /R

T  /R

T  /R

T  /R

1 1
2 2

3 3

26 26

i i

Target
Initial

Evolving

Evolving Final

Figure 3. Reconstruction of a torus at different, (a) initial guess, (b)
after 2000 iterations at 0.2GHz, (c) after 5000 iterations at 1GHz,
(d) after 7500 iterations at 2GHz, (e) schematic of the complete view
configuration used in this example, where i = 1, 2, . . . , 26; T represents
a transmitter or an incident direction and R represents a receiver or a
scatter direction.

In addition to calculating the cost function, the surface area of
the reconstructed profile at the final iteration is calculated to be
A = 551.6 cm2 which shows only 0.2% error compared with the surface
area of the true torus. Note that the shape has evolved from a
solid sphere, initially was far from the torus, which demonstrates the
capability of the level set algorithm in retrieving both location and the
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Figure 4. Normalized cost function for reconstruction of a torus.

shape of the target.
In Figure 4, the normalized cost function of the torus is plotted

versus the number of iterations using a logarithmic scale. The first
frequency (200 MHz) is used to retrieve the location of the torus while
higher frequencies are used to retrieve the finer details of the torus.
As shown in Figure 4, the working frequency hops at the following
iterations: 3920, 4490, and 6080.

Fluctuations in the cost function are observed at higher
frequencies (1 GHz and 2 GHz) but with negligible effect on the final
reconstruction. These oscillations can be reduced upon decreasing the
time step to update the Hamilton-Jacobi Equation (2), and also upon
using a finer mesh for solving the forward scattering problem, with an
anticipated increase in the CPU time.

The reconstruction algorithm is executed using 8 processors on
Arkansas High Performance Computing Center. The details of the
parallelization technique were given in [40]. The parallelized code,
employs the standard message passing (MPI) for the inter-processor
communications. All results presented in this work used the MPI
parallelization only in the impedance matrix Z inversion part, which
is the main computational bottleneck in the algorithm. In order to
decrease the oscillations in the cost function in Figure 4, smaller the
time steps are selected in solving (2) and also finer mesh discretization
is used to solve the forward problem. This has led to an increase in
the CPU time to be ∼ 17 hours.

The Star of Arkansas supercomputer has 157 computing nodes,
each node has quad-core Xeon E5430 processors, 2 × 6 MB cache,
2.66GHz, 1333 FSB. In total, there are 1256 cores and each core
has 2GB of memory. The theoretical peak performance of Star is
13.36Tflops.



36 Hajihashemi and El-Shenawee

3.2. Reconstruction of the Two Objects

In the second example, the reconstruction algorithm is examined to
simultaneously retrieve PEC cylinder and cube using a single initial
sphere. The cylinder has a radius of 5 cm and a height of 8 cm (marked
as T1 in Figure 5) with a center at (20 cm, 0, 0). The cube has 8 cm
dimension and is centered at (0, 0, 20 cm) (marked as T2 in Figure 5).
The initial guess sphere of radius 10 cm is centered at origin. The
hopping frequencies and the incident and scattering directions are the
same as those used in the previous example. Notice that the volume
of the cylinder is V1 = π × 52 × 8 ≈ 628.3 cm3. while the volume of

(a) (b)

(c) (d)

T

T
1

2

Initial

Evolving

Final

T
2

T
1

Evolving

T
2

T
1

T
2

T
1

Figure 5. The reconstruction of a cylinder and a cube at different
stages, (a) initial guess, (b) after 2500 iterations at 0.5GHz, (c) after
4000 iterations at 1 GHz, (d) after 7500 iterations at 2GHz.
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Figure 6. Normalized cost function for reconstruction of the cylinder
and cube.

the cube is V2 = 83 = 512 cm3, i.e., the ratio between their volumes is
1.22.

After about 4000 iterations, two separated objects start to appear
(Figure 5(c)). The final reconstruction result is achieved after 7500
iterations showing a reasonable agreement with the true two objects
(Figure 5(d)). The total surface area of the reconstructed profile at
the final iteration is A = 772.9 cm2 which shows 2.5% error compared
with the total surface area of the true objects. The normalized cost
function is shown in Figure 6. The working frequency hops at the
following iterations: 2020, 2910 and 6460. The reconstruction time for
this case was about ∼ 20 hours.

3.3. Reconstruction of Four Objects

In this example, a more complex scenario is investigated for
simultaneous reconstruction of four PEC targets using a single initial
guess sphere. The four objects include a sphere, an ellipsoid, a cone and
a cube. The sphere of radius 4 cm is centered at (5 cm, 5 cm, −5 cm),
marked as T1 in Figure 7. The ellipsoid, centered at (−5 cm, −5 cm,
−5 cm), has the equatorial radii along the y and z axes as a = b = 3 cm
and the polar radius along the x-axis as c = 6 cm, marked as T2 in
Figure 7. The cone base is centered at (5 cm, 5 cm, 5 cm). The radius
and the height of the cone are 4 cm and 6 cm, respectively, marked
as T3 in Figure 7. The cube with the dimension 5 cm is centered at
(−5 cm, −5 cm, 5 cm), marked as T4 in Figure 7. The initial guess
sphere has radius 10 cm and is centered at origin. In this example
three frequencies of f1 = 1.5GHz, f2 = 2 GHz, f3 = 2.5 GHz are used.

The final result at Figure 7(d) demonstrates the capability of the
algorithm in handling topological changes. The total surface area of
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Figure 7. Reconstruction of four objects at different stages, (a) initial
guess, (b) after 2000 iterations at 1.5 GHz, (c) after 3500 iterations at
2GHz, (d) after 10000 iterations at 2.5GHz.

the reconstructed objects is A = 672.4 cm2 which shows 1.9% error
compared with the total area of the actual targets. The reconstruction
time for this case was about 24 hours in this case.

The normalized cost function, in logarithmic scale, is shown in
Figure 8. The working frequency hops after 2610 and 7600 iterations.
In this example, due to the complexity of the examined case and
the location of the initial guess sphere, different frequencies are used
in the reconstruction algorithm. It should be noted that the same
frequencies of the previous examples did not produce satisfactory
results. Therefore we have used higher frequencies with smaller steps
(500MHz) in this case. The choice of working frequencies is currently
empirical and it needs more investigation. The working frequencies are
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Figure 8. Normalized cost function for reconstruction of four objects.

chosen according to the complexity of the targets. If the cost function
does not show convergence, more number of frequencies with smaller
steps should be employed.

3.4. Reconstruction Using Limited View and Noisy Data

One of the advantages of the level set technique compared with
qualitative methods, e.g., the linear sampling method, is providing
good reconstruction results when using fewer number of incident and
measurement directions. In practical applications, a complete multi-
view measurement configuration could be difficult to be available.

Therefore the first example of the torus is revisited using a limited
view of the incident and scattering directions as schematically shown
in Figures 9(c) and 9(d), instead of using a complete multi-view
measurement configuration shown in Figure 3(e). Two cases for the
are examined; in the first case there are nine incident waves and nine
measurement directions per incidence (9× 9 or 81 data) following the
scheme 0 ≤ θ ≤ π/4 and 0 ≤ φ ≤ 2π with angular steps ∆θ = ∆φ =
π/4. In this case, there are eight transmitter/receiver (T/R) directions
at θ = π/4 for eight azimuth angles φ = 0, π/4, π/2, 3π/4, . . . , 7π/4,
in addition to one set at θ = 0 (see Figure 9(c)). The second
case there are 17 incident waves and 17 measurement directions per
incidence (17× 17) or 289 data, following the scheme 0 ≤ θ ≤ π/2 and
0 ≤ φ ≤ 2π with step of ∆θ = ∆φ = π/4. In this case, there are
16 transmitter/receiver directions at θ = π/4 and π/2, each for eight
azimuth angles φ = 0, π/4, π/2, 3π/4, . . . , 7π/4, in addition to one set
at θ = 0 (see Figure 9(d)). The reconstruction results for both cases
are shown in Figures 9(a) and 9(b), respectively.

Notice that in the 26 × 26 configuration case, the incident and
scattering directions are placed uniformly all around the targets as
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Figure 9. Reconstruction of the torus using limited view data (a)
81 data (9 × 9) per frequency, (b) 289 data (17 × 17) per frequency,
(c) limited view sketch for Figure 9(a) where the incident and scatter
directions (T/R sets) are located as shown with i = 1, 2, . . . , 9, 0 ≤ θ ≤
π/4 and 0 ≤ φ ≤ 2π and (d) limited view sketch for Figure 9(b) where
the incident and scatter directions (T/R sets) are located as shown
with i = 1, 2, . . . , 17, 0 ≤ θ ≤ π/2 and 0 ≤ φ ≤ 2π.

sketched in Figure 3(e), which is not the case in the limited view 17×17
configuration of Figures 9(d)–(c).

The final reconstructed result in Figure 9(a) is observed to be
larger than the actual torus. However the result of Figure 9(b)
demonstrates very good reconstruction of the true torus, even when
there is no illumination from one side of the object. The errors
in the reconstructed surface areas are 12.2% in the 9 × 9 data case
(Figure 9(c)) and 0.008% in the 17× 17 data case (Figure 9(d)).

In addition, the performance of the reconstruction algorithm using
noisy input data corresponding to two different levels of signal to noise
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ratio (SNR) is investigated. The SNR is defined as:

SNR = 20 log
(

Erms
signal

Erms
noise

)
(11)

where Erms
signal and Erms

noise represent the root-mean-square of the signal
and the noise, respectively. The same number of incident and
measurement directions is used in this example similar to the 26× 26
case in Figure 3. Two levels of noise in input data are examined here
corresponding to SNR = 10 dB and 5 dB, and the final reconstruction
results are shown in Figures 10(a) and 10(b), respectively. The results
show that the level set algorithm provided reasonable reconstruction
accuracy even with SNR = 5 dB. The errors in surface areas are 36%
when SNR = 5 dB (Figure 10(a)) and 12.6% when the SNR = 10 dB
(Figure 10(b)).

The reconstruction errors in the surface areas and cost functions
are summarized in Table 1. The error in the reconstructed surface area
using noiseless complete view data was observed to be ∼ 2.5% for the
case of the cylinder and the cube. The error was observed to be ∼ 0.2%
for the torus case when using noiseless data and complete view data.
An increased error of ∼ 36% was observed when SNR = 5 dB noisy
data even with using complete view data; however the general shape
of the torus is reconstructed and can be reasonably identified. In all
cases, the errors in the cost function were small except when the SNR
= 5 dB or even 10 dB, as anticipated.

Table 1. The surface areas errors in the reconstructed shapes.

Case

Surface area

of the

reconstructed

object (cm2)

Surface area

of the true

object (cm2)

Error in

surface

area (%)

Error in

cost

function (%)

Torus 551.6 552.7 0.2 0.0121

Two objects 772.9 792.4 2.5 0.0544

Four objects 672.4 685.3 1.9 0.1353

Torus

(81 data)
620 552.7 12.2 0.5726

Torus

(289 data)
552.6 552.7 0.008 0.013

Torus

(SNR = 5dB)
752.3 552.7 36 65.7

Torus

(SNR = 10dB)
622.5 552.7 12.6 35.6
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Figure 10. Reconstruction of the torus using noisy data. (a) SNR
= 5 dB. (b) SNR = 10 dB using the same data of Figure 3.

4. CONCLUSIONS

In this work, a three-dimensional level set technique was implemented
for retrieving the shape and the location of 3D PEC targets immersed
in air. The surface integral equation was used as the forward
solver providing relatively fast reconstruction of the unknown objects,
compared with volume integral equation methods. The marching
cube algorithm was implemented to generate the surface triangular
meshes needed for the MoM solver during the inversion process. This
algorithm required negligible time to generate the triangular meshes
when compared with other parts of the inversion algorithm, mainly
the calculations of the impedance matrix and its inversion needed to
calculate the deformation velocity.

Employing the level set framework provided simultaneous
reconstruction of multiple objects using single initial guess. The
algorithm was designed such that the working frequency hops to a
higher value when the cost function stagnated in local minima. In
addition to demonstrating the cost function as a quantitative metric,
the surface areas of the reconstructed objects were calculated. For
practical situations, the level set algorithm demonstrated satisfactory
capability when limited view data was examined, which is not the case
in other techniques such as the linear sampling method, for example.
Another realistic consideration was the demonstration of reasonable
reconstruction results when using noisy data of SNR = 10 dB and
5 dB. As anticipated, the SNR = 10 dB case provided better results
compared with the 5 dB case. The MPI parallel programming was
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employed here to achieve reduction in the required CPU time of the
algorithm (details were reported in [40]).

Regardless of the shape symmetry, and based on several examples
not presented here but presented in [41], the level set algorithm proved
capability for reconstructing non-symmetric shapes using noisy data
down to SNR = 10 dB. Although the synthetic data used in this
work were obtained using our MoM forward solver, the accuracy of
our computer code was validated with results obtained using FEKO
as shown in Figure 2. Moreover, the capability of the level set
algorithm was demonstrated in reconstructing 2D PEC targets using
experimental data as discussed in [42] and [43].

The number of the hopping frequencies used in the algorithm
is selected empirically, i.e., using numerical experiments. From our
experience in shape reconstruction, the number of needed frequencies
increases with the increase in shape complexity and noise level in the
data. Also, lower frequencies retrieved the location of the unknown
targets depending on the initial guess. In this work, the measurements
data were all synthetic; therefore there were no constraints on the
band width of the used frequency, although they were selected in the
low GHz based on the size of the considered objects. Also, due to the
simplicity of the shapes considered in this work, few frequencies were
needed. However, in our experimental work reported in [42] and [43],
the used frequency was constrained by the bandwidth of the actual
antennas (Vivaldi and/or Dielectric Resonator antennas). However,
the frequency step was decreased as needed to increase the number of
frequencies involved in the hopping scheme.
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