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Abstract—Based on the Helmholtz integral equation and series
expansion theory, a high order integral small perturbation method
(HISPM) for studying electromagnetic wave scattering from the finite
conducting rough surface with tapered transverse electric (TE) wave
incidence is presented. The high order scattering coefficients are
obtained by the series expansion, the validity and accuracy of HISPM is
verified through numerical evaluation with classical small perturbation
method (CSPM) and the method of moments (MOM) By comparing
with CSPM for the infinite rough surface case with plane wave
incidence, the presented HISPM can greatly reduce the edge diffraction
effect. HISPM also shows advantages in the memory requirement and
computational time, especially in calculating scattering coefficients
with low grazing angle incidence. Numerical examples are given to
show that with the increasing of the length of the rough surface,
the memory requirements and the computation time of HISPM are
dramatically reduced compared to those of MOM.

1. INTRODUCTION

Electromagnetic (EM) waves scattering from the randomly rough
surface has been an important research subject over the past several
decades owing to its important applications in many domains, such
as remote sensing, oceanography, communications, material science,
electromagnetics and applied optics, etc. As a whole, methods in
studying the rough surface scattering can be categorized into two
groups: (1) approximate and analytical methods, and (2) numerical
methods. The approximate methods mainly includes: the small-
perturbation method (SPM) [1–4] for small-scale roughness rough
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surface, the Kirchhoff or tangent plane approximation (KA) [5–7] for
large-scale roughness surface, the physical optics (PO) method, the
two-scale method (TSM) [8] that combing the SPM and the KA,
employing the SPM on nearly flat facets with a small-scale roughness,
and then averaging the scattering contributions on the tilted large-scale
roughness component that can be analyzed by the KA. In recent years,
some other approximate methods, such as the phase perturbation
method (PPM) [9], the rayleigh method [10], the extended boundary
condition method [11], small-slope approximation (SSA), and the
unified perturbation method (UPM), etc, are also presented for rough
surface scattering. In the other hand, some numerical approaches, such
as the method of moments (MOM) [12–15], the finite difference time
domain (FDTD) method [16–18], the finite element method (FEM)
[19], the fast multipole method (FMM) [20], the forward-backward
method (FBM) [21] and the SMCG/PBTG method [22], etc. have
been applied to the problem of EM scattering from rough surface.

This paper is devoted to the scattering from the slightly rough
surface, where both the rms height h and correlation length l are
smaller than the incident wavelength. As we have already known,
the SPM has been proved to be a very effective method for such a
problem, many very valuable works have been done during the past
few decades. The small-perturbation theory was firstly presented by
Rice [1] for researching the reflection of electromagnetic waves from
the surface that is slightly rough. Then, the SPM based on Rayleigh
approximation is given by Beckmann et al. [7], the diagram method
was presented by Bass and Fuks [23] in studying the perturbation
method for rough surface scattering. Thorsos and Jackson [24]
examined the validity of perturbation approximation for acoustic
scattering from one-dimensional perfectly conducting rough surface
by comparing with results obtained by solving an integral equation,
it is noticeable that, the tapered plane wave was firstly applied in
the scattering calculation. Soto-Crespo et al. studied the validity of
small perturbation method derived from the Rayleigh hypothesis and
extinction theorem respectively in [25], in which they compared results
of SPM with those obtained by using the Kirchhoff approximation,
as well as the exact numerical method. The range of validity of
perturbation theory was also discussed by Kim and Stoddart [26].

Based on the extension of the diagram method, Ishimaru et al.
discussed the first-order modified perturbation theory with the help
of rough surface Green’s function in [27], where scattering from one-
dimensional rough surfaces with a Dirichlet boundary condition is
studied. And in [27], Ishimaru et al. obtained the coherent Green’s
function from the smoothed Dyson’s equation using a spatial Fourier
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transform, and obtained the mutual coherence function for the Green’s
function by the first-order iteration of the smoothing approximation
applied to the Bethe-Salpeter equation. Guérin and Sentenac applied
the second-order perturbation theory in investigating scattering from
heterogeneous rough surfaces [28]. Later, the effects of multiple
scattering due to the surface roughness are incorporated systematically
into the solutions of Ishimaru et al. [27] by Brelet and Bourlier [29],
applying an effective surface impedance for a one-dimensional perfectly
conducting Gaussian rough surface, to compare the resultant bistatic
scattering coefficients with the first- and second-order conventional
small perturbation method.

In fact, not only the Green function, but also the field can
be expanded on the unperturbed surface. In calculation of the
radar scattering coefficient, except the Green function itself, the
electromagnetic field value is also very important. Therefore, it is
naturally that the field, not only the Green function, should be
concerned directly, and this is also what we will actually do in the
following context. Furthermore, the length of the surface which we
investigate scattering from often plays an important role in determining
the width of the specular peak which is brought in by the coherent
scattering. Although the series expansion of the field is used in the
classical SPM (CSPM) [1, 2] which are very valuable, but the infinite
length rough surface is concerned, resulting in the lack of investigation
on the width of specular peak. What’s more, CSPM has the following
two drawbacks, i.e., coherent and incoherent scattering are discussed
separately, and only the low order cases are discussed. Tsang [3] and
Johnson et al. [4] extended the CSPM to the second and third order,
separately, and obtained the analytical expressions of the scattering
coefficient for the infinite length rough surface, it is very important
and luminous. Based on the previous important ideas about the SPM,
especially the Tsang’s and Johnson’s work, and considering the length
of the rough surface is infinite, in this paper, the series expansion of the
field on the finite length rough surface is applied, and the expression of
arbitrary high order scattering coefficient is presented where coherent
and incoherent scattering is considered simultaneously (in Tsang’s and
Johnson’s work, the coherent and incoherent scattering is considered
separately). As the model studied is the finite length surface, the
scattering characteristic of the specular peak can be investigated. It is
noted that, in this paper, Thorsos tapered wave is applied to avoid the
so called edge diffraction effect. It is also addressed that, in most of
the previous research about the SPM, the spectral density function
of the surface height is needed in the calculation of the analytical
scattering coefficients including the Tsang’s and Johnson’s work, etc.,
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but in our present work, only the surface height profile is required,
the treatment and the expression of the scattering coefficients may
be call as ‘semi-analytical’ (intermediate in some respects between
the analytical and the numerical methods), due to the calculating
process is a little similar with that of some numerical methods (such as
the MOM), firstly, we obtain several discretized location information,
that is, the discretized abscissa and discretized height of the rough
surface, then, basing the location information, through the integral
operation, some unknown quantities, such as the zero-order, first-order,
second-order, third-order, · · · , and till nth-order partial derivative
of the zero-order, first-order, second-order, third-order, · · · , and till
nth-order field are obtained, something like the obtained unknown
current in the MOM, next, substitute the location information and the
unknown quantities into the expression of the scattering coefficients,
also through the integral operation, the final results are obtained,
we also temporarily named this ‘semi-analytical’ high order SPM as
the ‘high order integral SPM (HISPM)’. The validity of our method
is verified by comparing with the classical SPM, as well as MOM
which is proved to be an accurate numerical method in calculating
the wave scattering coefficient from the rough surface. Considering
the fact that the permittivity and conductive lossiness of sea water
at microwave frequencies are very high, the PEC (perfect electric
conductor) model is a suitable model for EM waves scattering from
ocean surface. Therefore, our study will be useful for remote sensing
of ocean, especially when the transmitter is close to sea surface with
low wind speed above it.

The organization of this paper is as follows. In Section 2, the
integral equations based on the Green theorem and the Ewald-Oseen
extinction theorem [30] for the rough surface scattering are presented.
In Section 3, for TE case, based the series expansion of the field, the
formulation of higher-order integral SPM (HISPM) is presented, and
the normalized high order far-field scattering coefficient is obtained.
In Section 4, numerical results of HISPM, as well as comparisons with
the classical SPM and MOM and detailed discussion are given. Finally,
concluding remarks are addressed in Section 5.

2. INTEGRAL EQUATIONS FOR ROUGH SURFACE
SCATTERING

Consider an electromagnetic wave ϕi (as shown in Fig. 1) impinging
upon a one dimensional rough surface S, where the surface height
profile is denoted by z = f(x) with the spectral density function W (k).
W (k) is an inversion Fourier transform of the surface height correlation
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Figure 1. The sketch for wave scattering by a randomly rough surface.

function C(f(x)) that is, W (k) = F−1[C(f(x))]. The scattered field
is denoted by ϕs. The generation of the surface profile can be realized
by Monte Carlo simulations [14]. Let us consider the contour integral
over the surface, which is composed of the surface boundary S and the
half-circle of radius extending to infinity. Applying the Green’s second
theorem and the divergence theorem [14], the following equation is
obtained∫∫
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where n̂s is the unit normal vector on the boundary of the surface S,
n̂∞ is the unit normal vector of the surface at infinity. The second
integral term on the right-hand side of above equation denotes the
incident field at infinity, that is
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where g(r, r′) is the dyadic Green function. The wave function ϕ and
the dyadic Green function g(r, r′) satisfy the following two equations
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where r′ = (x′, z′) is the observation point location vector far away from
the rough surface. Therefore, according to the Ewald-Oseen extinction
theorem (or extended boundary condition) [30], the scattered field in
the region above the rough surface (z′ > max f(x)) and the incident
field below the rough surface (z′ < min f(x)) reduce to
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where the dyadic Green function g(r, r′) equals H
(1)
0 (r, r′), i.e., the

zeroth-order Hankel function of the first kind. The first upper equation
in (5) is called as the Helmholtz integral equation for scattered filed,
while the second one corresponds to that of incident filed.

3. THE FORMULATION OF HIGHER-ORDER
INTEGRAL SPM

When the slightly rough surface is concerned, the rms height of the
surface is far smaller than the incident wavelength [3]. The field at
the surface is related with the profile of the scattering surface, i.e.,
the EM field is function of the surface height. Therefore, according to
the series expansion theory which is valid when the variable (i.e., the
height of the profile) is small the field on the surface can be expanded
as a Taylor series about the field on the unperturbed surface (mean
plane surface)
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where ϕ|z=0 is the total field at the unperturbed surface. Scattering
field can be expressed as the sum of the zero-order, the first-order, . . . ,
and nth-order scattered field as following

ϕs = ϕs
0 + ϕs

1 + ϕs
2 + ϕs

3 · · ·+ϕs
n (7)

where ϕs
0 denotes the specular component of the scattered field, which

can be obtained by the incident field. By applying Dirichlet boundary
condition for HH polarization (TE case), under this condition, ϕi and
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ϕs denote the electric field component of the incident and scattered
electromagnetic waves, respectively, that is, ϕi = Eiŷ, ϕs = Esŷ, we
obtain
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Derivative terms with the same order on both side of the above
equation have the same value, therefore the first-order, second-order,
third-order, . . . , nth-order boundary relationships can be obtained as
following
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In the spectral domain, the first-order to the nth-order scattered
field can be expressed as the following equations

ϕm
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)
=

∫ ∞
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So the following relationships are obtained on the surface interface,
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By performing Fourier transform of (11), the amplitudes
of A1(kx), A2(kx), · · · , An(kx) are determined. Then these
amplitudes are substituted into (12), and inversion Fourier transform
is used subsequently. Therefore the partial derivative terms
(∂n/∂zn)ϕm(r)|z=0, (m = 1 ∼ n) can be obtained. These partial
derivative terms are needed in the calculation of (9a)–(9n), of which
the first three orders about the incident field and zeroth-order scattered
field can be obtained according to the incident field. As the field
discussed is above the unperturbed surface, the half-space dyadic
Green’s function should be considered in (5). It can be obtained
through the sum of free-space Green’s function and the one associated
with an image source as following
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where gI(r, r′) = g(r, r′−2ẑ(ẑ ·r′)), R denotes the reflection coefficient
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the scattered field in (5) is converted into the following equation
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where ϕs(r) is the scattered field at the unperturbed surface. Thus the
first-order, second-order, third-order, · · · , and till nth-order scattered
field can be obtained through integrating over the unperturbed surface
Sm as following
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When the half-space dynamic Green’s function is expanded at infinity
and substituted into equations above, all the scattered fields can be
written as

ϕs
1(r

′) = − 1√
2πkr′

exp(ikr′) exp(−iπ/4)k cos θsϕ
Ns
1 (θs) (16a)

ϕs
2(r

′) = − 1√
2πkr′

exp(ikr′) exp(−iπ/4)k cos θsϕ
Ns
2 (θs) (16b)

ϕs
3(r

′) = − 1√
2πkr′

exp(ikr′) exp(−iπ/4)k cos θsϕ
Ns
3 (θs) (16c)

· · ·

ϕs
n(r′) = − 1√

2πkr′
exp(ikr′) exp(−iπ/4)k cos θsϕ

Ns
n (θs) (16n)



342 Guo et al.
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where, L is the length of the finite rough surface. In this paper, the
scattering coefficient is defined in this way [3], the integration of the
scattering coefficient over the scattering angles upon the rough surface
equals the ratio of the power received to that of scattered. Usually,
for the infinite surface, a plane wave expressed like ϕi = exp(ik · r) is
used as the incident wave. While, for the finite surface case discussed
in this paper, a form of tapered plane wave expressed as following, is
employed as the incidence field to avoid the ‘edge diffraction effect’ at
the two edges of the surface [14]

ϕinc(r) = exp(ik · r(1 +
[
2(x + z tan θi)2

/
g2 − 1

]
/(kg cos θi)2))

· exp(−(x + z tan θi)2/g2) (18)

where g denotes the tapered factor. Incident wave of this kind has
power of Sinc · ẑ per unit area, and Sinc is the Poynting vector of the
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incident wave. Thus the power received by the finite rough surface
of length L with plane wave incidence and tapered wave incidence,
respectively, can be written as [14]
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)(19)

where η is the intrinsic impedance of free space. Therefore, the
expression for the normalized far-field bistatic scattering coefficient
(BSC) is given as

σn (θi, θs)
(plane wave)

=
r′Ss(r′)

− ∫ L/2
−L/2 dx(Sinc · ẑ)z=0

=
− 1

2ηk Im(ϕs
n(r′)∇ϕs∗

n (r′))

− 1
2ηk (

∫ L/2
−L/2 dx(k cos θi cos 2k(sin θix− cos θiz)))

=
(k cos θs)2|ϕNs

n (θs)|2
2π

∫ L/2
−L/2 dx(k cos θi(2k(sin θix− cos θiz)))

(20)

σn (θi, θs)
(tapered wave)

=
r′Ss (r′)

− ∫ L/2
−L/2 dx (Sinc · ẑ)z=0

=
− 1

2ηk Im (ϕs
n (r′)∇ϕs∗

n (r′))

− 1
2ηk
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−L/2 dx(k cos θi)

(
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(kg cos θi)
2

)

−4k sin θi tan θix
2

k2g4 cos2 θi


 exp

(
−2x2
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)

=
(k cos θs)

2
∣∣ϕNs

n (θs)
∣∣2

2π
(∫ L/2
−L/2 dx(k cos θi)

(
1+ 2x2/g2−1

(kg cos θi)
2

)
− 4k sin θi tan θix2

k2g4 cos2 θi

)
exp

(
−2x2

g2

) (21)

where ϕNs
n (θs) can be found in (17a)–(17n) with the incident wave of

tapered wave. The expressions for the first- to third- order scattering
coefficients of the classical SPM are given in [3, 26] Considering the
rough surface studied by the classical SPM is infinite extent, a plane
wave expressed as ϕi = exp(ik ·r) is used in the classical SPM, and the
advantage of the integral SPM with tapered wave incidence avoids the
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diffraction effect at edge of the surface effectively will be investigated
in the numerical section.

4. NUMERICAL RESULTS

Several numerical examples are carried out in this Section to evaluate
the validation and efficiency of the above presented method in detail.
As the MOM has been proved to be accurate in a great degree for
modeling EM scattering from rough surface by many works [14], it is
used in this Section to test the accuracy of higher order integral SPM.
In Fig. 2, Fig. 3 and Fig. 5 Gaussian spectral density function [3] is
employed to test the validity of our theory in an easy way, and in Fig. 4
and Fig. 6 the PM spectrum [14] is applied to extend our theory. In Fig.
2(a)–Fig. 2(c), ‘p.w.f’, ‘t.w.f’ and ‘p.w.i’ denote ‘plane wave incident
on finite surface’, ‘tapered plane wave incident on finite plane’ and
‘plane wave incident on infinite surface’, respectively. In Fig. 3–Fig. 6,
‘integral SPM’ is for ‘tapered wave incident on finite surface’, ‘classical
SPM’ is for ‘plane wave incident on infinite surface’, and ‘MOM’ is for
‘tapered wave incident on finite surface’.

Figures 2(a)–(c) present the comparison between the integral SPM
and the classical SPM from the first-order to the third-order with the
incident wavelength 0.45 cm the correlation length l = 0.427λ, and
the rms height h = 0.105λ. The rough surface is divided into 1024
segments (1024 pts shown in the figure), the length of the surface is
100λ, the tapered factor g is L/4.2 (L represents the length of the
rough surface) [14]. Considering the random quality of rough surface
studied in this paper, results for 5 surface realizations are achieved
and averaged. It is shown that, for the finite surface, the bistatic
scattering coefficient by the integral SPM with plane wave incidence is
higher than that by the integral SPM with tapered wave incidence, no
matter which order integral SPM is used. However, good agreement of
the bistatic scattering coefficients can be observed between the integral
SPM (for finite surface with tapered wave incidence) and the classical
SPM (for infinite surface with plane wave incidence) for different order
integral SPM. Based on the above illustrations and comparisons, we
can conclude that the results are not accurate when the plane wave is
still applied when the infinite surface is truncated into a finite one (as
it can generate the so called ‘edge diffraction effect’ on the two ends
of the finite surface). While the ‘edge diffraction effect’ can be greatly
avoided by the integral SPM with tapered wave incidence. It can also
be found that, a peak with finite angular width can be found within the
integral SPM in the specular direction, and this is due to the coherent
scattering by the finite surface. While the incoherent scattering is just
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included in the expression of the classical SPM (p.w.i), and no peak
is shown in the specular direction. It should be mentioned that the
amplitude of the fluctuations in the curves is due to the Monte-Carlo
procedure used to render the surfaces.

In order to further examine the validity of the integral SPM for
the surface with Gaussian spectrum, Fig. 3(a)–Fig. 3(c) gives the
comparison of BSC between the integral SPM and the MOM [14],
where the results for 20 surface realizations are averaged and the result
by MOM is considered to be an accurate one in a great extent By
comparing the scattering pattern of ISPM with that of MOM, it is
observed that only for the first-order integral SPM do we have a visible
discrepancy between the plots by ISPM and MOM in Fig. 3(a), the
more pronounced departure appears at scattering region of −90◦ ∼ 0◦.
It is indicated that, the low order ISPM is not exact enough in this case,
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Figure 2. (a) 1st classical SPM and 1st integral SPM. (b) 2nd classical
SPM and 2nd integral SPM. (c) 3rd classical SPM and 3rd integral
SPM.
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Figure 3. (a) 1st integral SPM and MOM. (b) 2nd integral SPM and
MOM. (c) 3rd integral SPM and MOM.

and the higher order item should be considered for the more exactness.
As for the second-order ISPM to the third-order ISPM is concerned,
it is shown that the higher order ISPM, the better agreement between
BSC of ISPM and MOM.

The validity of integral SPM is also presented in Fig. 4 for the
conducting gentle rough ocean surface with PM ocean spectrum [14],
where the results for 10 rough surface realizations are averaged.
Fig. 4 shows the comparison of the first-order and third-order ISPM
calculations with MOM calculations for the angular distribution of
BSC. It is also obvious that the two methods are in fairly good
agreement over all scattering angles for the slightly sea surface
scattering with low wind speed (denoted by u in the figure).

To further evaluate the efficiency of the presented method, Table 1
and Table 2 show the comparisons between the third-order ISPM and
MOM in memory requirements and average computational time for the
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Table 1. The comparison of the third-order ISPM and MOM in
memory and time (Gaussian Spectrum).

Size of

Surface

Number of

Segments

Memory

Requirements

Computational

Time

(ISPM MOM) (ISPM, MOM) (ISPM/MOM) (ISPM/MOM)

25.6λ 256 1.363 MB/3.172 MB 3s/3s

51.2λ 512 1.445 MB/9.203 MB 7s/50s

100λ 1024 1.641 MB/32.676 MB 15s/6m 18s

200λ 2048 1.992 MB/64.211 MB 31s/1h1m16s

Table 2. The comparison of the third-order ISPM and MOM in
memory and time (PM Spectrum).

Size of

Surface

Number of

Segments

Memory

Requirements

Computational

Time

(ISPM, MOM) (ISPM, MOM) (ISPM/MOM) (ISPM/MOM)

25.6λ 256 1.359 MB/3.168 MB 3s/3s

51.2λ 512 1.438 MB/8.598 MB 7s/52s

100λ 1024 1.641 MB/32.688 MB 15s/6m33s

200λ 2048 1.984 MB/65.328 MB 30s/1h1m32s

Gaussian spectrum and PM ocean spectrum, respectively. Except for
the length of rough surface and the divided segments, other parameters
of Table 1 correspond to those in Fig. 3(c) and parameters of Table 2
correspond to those in the Fig. 4. Results for 100 surface realizations
are averaged. Both ISPM and MOM algorithms are tested on the PC
with a 2.33GHz processor (Intel Core 2 Quad Q8200), 4 GB Memory,
and Fortran PowerStation 4.0 compiler. It can be found that, for the
small size rough surface (25.6λ), the differences between the presented
ISPM and MOM in memory requirements and computation time are
not so obvious, but with the increasing of the surface size, the above
mentioned differences is visually large. Also, the larger the rough
surface size, the advantage of ISPM in memory requirements and
computation time is more evident.

In Fig. 5 and Fig. 6, the bistatic scattering coefficients with low
grazing angle incidence for Gaussian and PM spectrum surface are
depicted, respectively. All the parameters are given in the figures.
Ten surfaces realizations are averaged. In Fig. 5, the results for
different rms height are investigated, and the third-order integral SPM
is applied. It can be found that with the increasing of the rms height,
the backward incoherent scattering increases, as the surface becomes
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rougher. It is worth noting that the results of the MOM are not
presented here, due to the fact that, in these cases, the algorithm
of MOM can not be performed, as the computational cost exceeds the
maximal default memory requirement of the Fortran computational
software.

In Fig. 6(a), the comparison of BSC by the integral SPM and
MOM with large incident angle is also given. It is indicated that,
the result of the third-order integral SPM is more exact than that
of the first-order. In Fig. 6(b), when the size of the rough surface
is large, the results for the first- to the third-order ISPM also show
different accuracy. In both cases, the specular peak can be obtained.
In Fig. 6(a), the computational time by the ISPM is 31 s, by the MOM
is 1 h 3 m 12 s, the memory requirements by the ISPM is 1.984MB,
by the MOM is 65.328 MB. In Fig. 6(b), the curves by the MOM are
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not plotted, because the algorithm of MOM can not be performed
at these situations, the same reason discussed in Fig. 5. Therefore,
the work of computing the large size rough surface under low incident
angle, which can not be easily accomplished by the MOM due to its
disadvantage of large memory dependence and time-consuming, but
can be performed accurately and efficiently by the ISPM. That is
mainly owing to its advantages of very low memory requirement and
very high computation efficiency, and this is one of the main intention
and significance of our work discussed in this paper. It should be noted
that, in Figs. 4 and 5, the angular spectrum is qualitatively different for
the case of ocean scattering (Fig. 4) and the Gaussian surface (Fig. 5),
some information of the surface itself, such as parameters h, l, spectral
density function W (k), or wind speed u, etc., can be retrieved from
the angular spectrum data, and this is related with the topic of inverse
problem, which is valuable and worthy of further research.

5. CONCLUSIONS

In this paper, a high order integral SPM (HISPM) for rough surface
scattering with tapered wave incidence is presented. The shortage of
failure to compute the finite size rough surface by the classical SPM
has been solved by the presented integral SPM. Both the incoherent
and coherent scattering components are included within this method.
The validity of this method is evaluated by comparing with the MOM.
Only the first- to the third-order scattering coefficients are given in the
classical SPM, while through the series expansion of the scattered wave,
high order scattering coefficient can be obtained within this integral
SPM. The scattering coefficients with low grazing angle incidence can
also be calculated by this method, which have not ever be resolved
in the previous papers about the SPM, to our knowledge. Results
that should be ideal in a certain extent can be obtained through
calculating higher order scattering coefficient by this method, when
exact result can not be provided by the low order SPM. Unlike the
classical SPM, the scheme presented in this paper is not confined by
the surface spectral density function, it can also be widely applied
to calculate the scattering coefficients of the slightly rough surface
with obtaining the information of the height profile. The presented
HISPM is intermediate in some respects between the analytical and
the numerical methods (‘semi-analytical’ or ‘semi-numerical’), but
comparing with the analytical method-CSPM, it can improve the
exactness, and comparing with the numerical method-MOM, it can
decrease the memory requirement and increase computation efficiency,
theses investigation or comparison also have not ever been carried out
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in the previous work about the SPM to our knowledge. It should be
pointed out that for the case of the transverse magnetic wave incidence
(TM case), the derivation and the numerical simulations is under
investigation, which will appear in our future paper, the numerical
results presented in this paper also needs further verification by the
relevant experiments.
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