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Abstract—Research on digital modeling and realization of non-
correlation measurement frame for compressive sensing (CS) is
conducted aiming at applying CS to imaging radar. FPGA
based Analogue-to-Information Converter (AIC) is proposed and
implemented. Real measurement data from AIC hardware platform
and simulation data from AIC software platform are compressed to
get range profiles, and the results agree well with what expected. The
results show that the noise and synchronization error in real system
deteriorate the performance of AIC thus CS remarkably.

1. INTRODUCTION

The synthetic aperture radar and inverse synthetic aperture radar
(SAR/ISAR) can realize long distance high resolution radar imaging
at all time and under all-weather conditions, so, they have been
widely used in both military and civil applications [1]. High-resolution
SAR/ISAR imaging usually requires large bandwidth signal to achieve,
and high-speed data sampling and data processing are unavoidable
according to Shannon/Nyquist sampling theorem, so it also makes
signal acquisition and processing become more and more difficult.
The recently proposed compressive sensing (CS) theory states that
much lower than Shannon/Nyquist sampling can be realized in signal
measurement if the signal is of some sparsity, and it can be accurately
reconstructed by resolving a kind of optimization problem [2, 3]. Once
CS emerges, it attracts extensive attentions in signal processing, radar,
and many other communities. Up to now, lots of works on CS theory
and its applications in radar have been conducted [4–19], and some
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of them are briefly summarized as follows. Baraniuk and Steeghs
applied CS to SAR imaging with pseudo-noise sequence as transmitted
signal [4]. Herman and Strohmer addressed resolution issue of CS
based radar in point of view of time-frequency analysis and showed that
CS radar is of advantage on better resolution over classic radar [5, 6].
Tello et al. introduced a novel Strategy for SAR imaging based on
CS and tested the proposed method by using ERS SAR raw data [7].
Ender addressed the generic system architectures and implementation
considerations for applying CS, CS based ISAR imaging of satellite
was processed using TIRA real data [9]. Gurbuz et al. [10], Yoon and
Amin [11, 12] and Huang et al. [13] applied CS to ground penetrating
radar (GPR) and through-wall-radar-imaging (TWRI). Subotic et al.
applied CS to distributed radar waveforms design, showed their impact
and constraints in the distributed radar [14]. Yu et al. applied CS to
direction of arrival (DOA) estimation for multiple input and multiple
output (MIMO) radar [15]. Xie and Zhang applied CS to stepped-
frequency chirp signal processing and got high resolution imaging for
a moving train [16]. Shi et al. [17] and Jouny [18] applied CS to ultra
wide band (UWB) signal detection. Zhang et al. applied CS to ISAR
imaging with limited pulses [19].

As CS theory states that non-correlation measurement is the key
step in CS applications. In [20–23], non-correlation measurement
scheme — Analog to Information Converter (AIC) were proposed
for CS. In [20–22] AIC was implemented by adopting high speed
analogue circuit, while digital AIC is implemented based on FPGA
in this paper, which is the basis of analog circuit AIC in the practical
radar application, and at the same time, which also creates a kind
of new method of radar data impression, and proposes a kind of test
system based on radar echo simulation signal source. In this work,
Matlab/Simulink based AIC model is firstly constructed to conduct
non-correlation measurement for chirp radar signal, and then the AIC
is realized based on FPGA, real AIC output data for point targets is
sampled and reconstructed using CS algorithm.

The paper is organized as follows. Section 2 introduces basic
theory of CS. Section 3 introduces the implementation scheme of AIC
based on FPGA and presents both simulated and real measurement
results. Section 4 summarizes the paper in the end.

2. CS THEORY AND APPLICATION IN THE ISAR

2.1. Brief Introduction to CS Theory

CS theory mainly includes the following steps, i.e., sparse signal repre-
sentation, signal non-correlation measurement and signal reconstruc-
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tion. The signal sparsity or compressibility decides the applicability of
CS algorithms.

In CS theory, sparse signal x ∈ CN×1 is not directly measured
while it can be expressed by linear combination of a set of bases
ψ = [ψ1, ψ2, . . . , ψn, . . . , ψN , ]T in terms of signal theory, as shown by
the following equation:

x =
N∑

n=1

ψnαn = Ψα (1)

where ψn are the bases; N is the number of basis; α ∈ CN×1 is the
coefficient vector. When signal x has only K non-zero coefficients and
K is much smaller than N , x is called K sparsified, and Ψ is called as
sparse base or sparse dictionary.

Signal x can be projected into a set of measurement array Φ =
[ϕ1, ϕ2, . . . , ϕm, . . . , ϕM ], and the measurements can be denoted by
ym = 〈x, ϕT

m〉, or it can be rewritten as a multiplication of a matrix
and a vector,

y = Φx + n (2)

Here, x ∈ CN×1 is a N -element vector; y ∈ CM×1 is a M -element
vector; Φ ∈ CM×N is a M × N measurement matrix; n ∈ CM×1 is
noise vector in the process of measurement. After substituting (1)
into (2), we get the following equation:

y = Φx + n = ΦΨα + n = Θα + n (3)

Here, Θ = ΦΨ ∈ CM×N is a M × N matrix; α is K sparse,
K < M < N ; sparse coefficient α may be resolved by the following
signal reconstruction method.

Signal reconstruction is the third key issue in CS theory, and it is
the most direct reconstruction algorithm to get formula’s optimization
resolutions by L0 norm method. It can be expressed by

min
α
‖α‖l0 s.t. y = Θα (4)

Here, sparse coefficient α can be estimated by the above optimization
approach. Equation (4) cannot directly be resolved because it is
NP-hard resolution problem. Donoho and Candes point out that
Equation (4) may be changed to lp-norm optimization problem (0 <
p < 2) when matrix Θ meets a kind of limitation condition. It is
written as

min
α
‖α‖lp s.t. ‖y −Θα‖2 ≤ ε (5)

Sparse coefficients α can be obtained through Equation (5), and
measurement matrix Φ needs to meet the Uniform Uncertainty
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Principle (UUP). It is defined by

C1
M

N
≤ ‖Φx‖

‖x‖ ≤ C2
M

N
(6)

2.2. Sparsity of Radar Echo Signal

In radar imaging, target can be treated as discrete scattering centers.
Let us assume that chirp signal is the transmitted signal, i.e., sT (t) is:

sT (t) = rect(t/T ) exp(j2πf0t + jπKrt
2), 0 < t < Tp (7)

where f0 is the carrier frequency; Kr is the chirp rate; and Tp is the
pulse width. The corresponding reflected signal from a single target
(single scattering center) at distance r can be expressed as:

sR(t) = σrect[(t− τ)/T ] exp[j2πf0(t− τ) + jπKr(t− τ)2]
= σ exp[j2πf0(t− τ)] · rect[(t− τ)/T ] exp[jπKr(t− τ)2] (8)

Here, τ = 2r/c is the delay time, and σ is the reflection coefficient.
Reference [25] indicates that when the target’s dimension is far smaller
than that determined by the time window of data recording, the radar
echo may be thought to be sparse and CS theory can be applied to the
echo data sampling and signal reconstructing in one-dimension range,
because of retaining the echo phase information based on CS algorithm.
The next step is to have pre-filter and FFT in the cross-range, and the
final ISAR two-dimension image may be generated. Like ISAR imaging
process, firstly, compressed radar echo needs be processed according to
motion compensation algorithm in the range direction; secondly, echo
signal matrix should be processed in cross-range direction.

2.3. Non-correlation Measurement of Radar Signal

Based on the sparsity of radar signal, in the following, how to
implement no-correlation measurement is presented, which is one
of the key steps as shown in Figure 1 for applying CS to radar
imaging. Another key step of CS based radar imaging is the signal
reconstruction, which will not be addressed here.

Echo measruement
scheme

Imaging 
reconstruction 

algorithm

Echo measurement data
y [m]

Radar echo signal
 x (t )

Radar 
imaging

Figure 1. CS based radar imaging algorithm.



Progress In Electromagnetics Research C, Vol. 19, 2011 211

Low-pass filter
h(t ) mRT

y [m]x (t )

p (t)

Figure 2. AIC measurement framework.
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Figure 3. Design procedure diagram.

Kirolos et al. proposed an AIC implementation diagram [20]
to perform non-correlation measurement on radar signal as shown
in Figure 2, where x(t) expresses the echo signal, and p(t) is a
high-speed random sequence of non-correlation measurement matrix.
According to the AIC scheme, the radar echo signal is firstly randomly
sampled with a speed as high as twice of the signal bandwidth, and
then the sampled echo data is low-pass filtered and decimated to
form a signal which could be digital sampled with much lower rate
than that required by Nyquist theorem. In Kirolos’s approach, AIC
measurement framework was implemented by analogue advices, but
here it is implemented digitally based on FPGA.

3. FPGA BASED AIC REALIZATION

3.1. AIC Design Procedure

In this section, we shall introduce briefly the developing platform
of FPGA. In our AIC design, Xilinx company’s Virtex-4 FPGA is
used with XtremeDSP development Kit-IV including Xilinx company’s
ISE11.1 IDS and Mentor Graphics company’s Modelsim simulation
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software. Figure 3 outlines the design procedure.
In the design, AIC simulation model is firstly built up by the

System Generator in ISE, and then simulation data can be generated in
the MATLAB, which is in accord with the data interfacing format. Test
file is generated with simulation data so as to perform pre-simulation by
using ModelSium. After obtaining correct simulation, FPGA hardware
configuration file can be formed and downloaded to FPGA developing
board to perform real data simulation. Finally, both simulated data
and real output data and reconstruction results are compared and
validated.

3.2. Simulation Model of AIC

In this section, AIC simulation model shall be constructed in System
Generator, which is seamlessly connected to Matlab/SimuLink and can
be started in standard Matlab toolbox. Different modules of Xilinx
library can be used to simulate different algorithms. The constructed
simulation diagram is shown in Figure 4.
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Figure 4. AIC Matlab/Simulink simulation diagram.

In the following, we shall interpret the simulation diagram in
detail. In Figure 4, “A” is the module of echo data source from
WorkSpace; “B” module generates and stores the random sequence
measurement matrix base on CS theory; “C” is the GatewayIn module,
which is used for transforming double precision data into 16-bit integer
data with 12-bit denoting fractional numbers; “D” is the Delay module
used for synchronize the output I data and Q data flowing into
the two ports of Multiplexing module E; the Multi module “E” is
used to execute the multiplication of radar echo data and random
measurement sequence and realize random sampling of radar echo; “F”
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is the low-pass FIR filter module; “G” is the Downsample module used
for decimating the low-pass filtered data; module “H” truncates and
converts the data to make them with the same data format as input
of C module; “I” is the GatewayOut module to transform integer data
into double precision numbers suitable for D/A.

Now we conduct simulation experiments to test the effectiveness
of the diagram. The basic idea is to use simple modulation sequences
to modulate echo data from A (completed in E), low-pass filter
the modulated output, decimate the filtered output, perform data
conversion so as to finally complete the whole simulation. Before
experiment, let us assume the following test conditions: (1) Chirp is
used as the transmitted signal and the echoes have been transformed
into the 16-bit integer numbers; (2) two modulation sequences
are chosen (generated and stored in B), i.e., constant sequence of
{1 1 1 . . . 1 1 1} and the period sequence of {1 −1 1 −1 . . . 1 −1 1 −1},
these sequences are the test vector signal of AIC module for the
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Figure 5. Simulation results by using the sequence of {1 1 1 . . . 1 1 1}.
(a) Original I component of chirp signal, (b) multiplied signal, (c) low-
pass filtered signal, (d) decimated signal.
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Figure 6. Simulation results by using the period sequence of {1 −
1 1 − 1 . . . 1 − 1 1 − 1}. (a) Original I component of chirp signal, (b)
multiplied signal, (c) low-pass filtered signal, (d) decimated signal.

validity; (3) the filter is customized by normalization parameters, i.e.,
band pass frequency ωpass = 0.1, cutoff frequency ωstop = 0.4, pass
band amplitude ripple Apass = 1 dB, stop band amplitude attenuation
Astop = 80 dB. In the following, simulations shall be conducted by
using the above two sequences, and the corresponding results are shown
in Figures 5 and 6, respectively, where the waveforms at different
positions are presented. It is very clear that the shown results of
Figures 5(b), (c) and (d) are quite different from those of Figures 6(b),
(c) and (d). The reason is the equivalent low-pass filtering effect
of constant modulation sequence (CMS) and the equivalent high-
pass filtering effect of periodic modulation sequence (PMS). Both of
Figures 5 and 6 show that the AIC function is correctly performed.
In Section 3.3 we shall implement the simulation diagram into FPGA,
obtain the real AIC output waveforms and compare them with the
simulated waveforms of Figures 5(c), (d) and Figures 6(c), (d).
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3.3. Hardare Implementation and Test of AIC

In this section, we implement the AIC into FPGA hardware and further
test it. Figure 7 shows the designed hardware test system, where the
AIC module (marked in red) is realized by FPGA. In the test system,
main control computer generates the simulated radar echo data, which
is then downloaded to the FIFO in FPGA through PCI interface [24].
FIFO not only acts as the data buffer, but also acts as the clock
domain convertor. AIC receives the FIFO output data, executes non-
correlation measurement and outputs the downsampled digital I/Q
waveforms, which meet the interface requirement of D/A convertor,
and finally D/A outputs the compressive sensed measurement signal.

Figure 8 shows the real output I/Q waveforms corresponding to
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Figure 8. Recorded output waveforms from AIC by oscilloscope.
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CMS and PMS, from which one can see that the upper I waveforms
in the upper-left figure and up-right figure are very similar to that
from software simulations as shown in Figures 5(c), (d), and the upper
I waveforms in lower-left figure and lower-right figure are also very
similar to that from simulations as shown in Figures 6(c), (d).

3.4. CS Measurement and Signal Reconstruction

In this section, we present CS measurement and reconstruction results
for radar echo of four point targets. The CS measurement is completed
by the hardware system shown by Figure 7. Here, pseudo-random
modulation sequence (PRMS) is used instead of CMS or PMS. For
comparing purpose, we also present the results obtained by software
simulation. The used radar parameters are as follows, chirp signal
bandwidth B = 20 MHz, pulse width Tp = 14µs, data sampling rate
= 50 MHz. The four targets are positioned at 22 m, 57m, 133m and
143m away from the referenced point with reflection coefficients of
0.9, 1.0, 0.9 and 1.0. In the experiment Agilent Sampling Card (ASC)
with 8-bit precision is used. The experiment results are presented in
Figure 9, where Figures 9(a) and (c) show the real output waveforms
(I components) of echo signal and sparse base, respectively, which
are sampled by ASC with only 5MHz sampling rate. Figure 9(e)
shows the reconstructed range profile, from which one can see that
the obtained range profile is not as good as one expected. In fact, the
reconstruction error is due to the high frequency noise in contained in
the sampled data, which is induced by both ASC and real circuit. If
we adopt low pass filtering (LPF) to the sampled data, much better
results can be expected to achieve. Figures 9(b) and (d) show the low-
pass filtered counterparts of Figures (a) and (c). Figure 9(f) shows
the reconstructed range profile from waveforms of Figures (b) and (d).
Obviously, Figure 9(f) is much better than Figure 9(e) not only in
recovered accuracy (positions and amplitudes) but also in signal to
noise ratio (SNR).

For further analyzing the influence of real noise in real system, we
also present the experiment results by software simulation, and they
are shown in Figure 10. Figure 10(a) is the I-component sampled by
5MHz. Figure 10(b) is the product of (a) and a corresponding pseudo-
random sequence, and the sequence can meet application condition
based on Equation (6) of CS reconstruction algorithm. Figure 10(c) is
the output waveform from a filter. Figure 10(d) is the downsampled
waveform of (c). Figure 10(e) is the reconstructed range profile. For
comparing purpose, normal result by matched filtering of (a) is also
presented in Figure 10(f).

In the following, we compare the reconstructed profiles of
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Figure 9. CS measurement from hardware and the corresponding
reconstructed range profiles. (a) The I-component of echo signal
sampled by 5MHz, (b) the waveform of (a) after LPF, (c) the sparse
base sampled by 5 MHz, (d) the waveform of (c) after LPF, (e) the
reconstructed range profile without LPF, (f) the reconstructed range
profile with LPF.
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Figure 10. CS measurement from software and the corresponding
reconstructed range profiles. (a) The I-component of echo signal
sampled by 50 MHz, (b) the product of (a) and a corresponding
pseudo-random sequence, (c) low-pass filtered waveform of (b), (d)
the downsampled waveform of (c), (e) the reconstructed range profile,
(f) the reconstructed range profile by matched filtering.

Figure 9(e), Figure 9(f), Figures 10(e) and 10(f). Figure 10(e) clearly
shows the “superresolution” effect compared with Figure 10(f). After
comparing Figures 9(e) and 9(f) with Figure 10(e), one can find that
this is because the synchronization and noise problem, which is not
avoidable in real hardware system, remarkably deteriorate the final
reconstruction result. We list the concrete numbers got from the above
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(a) (b)

(c) (d)

Figure 11. CS reconstructed range profiles from noise-added signals.
(a) Reconstructed result when SNR = 10 dB, (b) reconstructed result
when SNR = 20dB, (c) reconstructed result when SNR = 30dB,
(d) reconstructed result when SNR = 40 dB.

four figures in Table 1. In Table 1, case 1, case 2, case 3 and case 4
refer to “CS imaging with data from hardware and without low-pass
filtering”, “CS imaging with data from hardware and has low-pass
filtering performed”, “CS imaging with data from software simulation”,
and “Standard matched-filtering imaging without down sampling on
echo”. From Table 1, one can see that the software simulated results
are most close to the results by normal matched filtering without CS
applied. The hardware results without low-pass filtering will lead to
big errors in position and amplitude, while with low-pass filter used
the reconstruction accuracy can be remarkably improved. In order to
compare with the practical measurement, Figure 11 shows different
CS reconstructed results from noise-added signals based on the same
simulation parameters with Figure 10 except for eight scatter points
of target model, and scatter points number is 4 in Figure 9. Here,
the added noise is Additive White Gaussian Noise. Four simulation
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Table 1. Reconstruction results.

PPPPPPPPPPP

Imaging

methods

Targets
1

(Position, Amplitude)

25 (m) 0.9

2

(Position, Amplitude)

57 (m) 1.0

Case 1 (26, 0.9982) (58, 0.6271)

Case 2 (25, 0.7999) (57, 0.9990)

Case 3 (25, 0.8999) (57, 0.9999)

Case 4 (25, 0.9021) (57, 0.9999)

PPPPPPPPPPP

Imaging

methods

Targets
3

(Position, Amplitude)

133 (m) 0.9

4

(Position, Amplitude)

143 (m) 1.0

Case 1 (133, 0.6462) (143, 0.7664)

Case 2 (133, 0.8455) (143, 0.8890)

Case 3 (133, 0.8999) (143, 0.9999)

Case 4 (133, 0.8742) (143, 0.9729)

results show that reconstruction quality will be degraded when SNR
becomes lower and lower. It also illustrates the same noise influence
as the practical measurement in Figure 9.

4. CONCLUSIONS

In this work, we firstly build up digitalized AIC simulation platform
based on Matlab/Simulink and then implement it into FPGA based
hardware platform. The performances of both software platform
and hardware platform have been tested by simulating CS based
measurement and reconstruction of radar echo from four point targets.
Only 1/4 data are sampled by CS compared with that required by
Nyquist theorem. Experimental results show that the synchronization
error between echo measurement and sparse base measurement and the
noise in real system are the major facts influencing the performance
of CS imaging. Another important issue, robust reconstruction
algorithm, will be addressed later on. Both software and hardware
platforms are scheduled for further improving, and much work needs
to be done.
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