
Progress In Electromagnetics Research M, Vol. 16, 185–196, 2011

ANALYSIS OF 3-DIMENSIONAL ELECTROMAGNETIC
FIELDS IN DISPERSIVE MEDIA USING CUDA

M. R. Zunoubi

Department of Electrical and Computer Engineering
State University of New York, New Paltz, NY, USA

J. Payne

US Air Force Research Laboratory
Human Effectiveness Directorate (AFRL/HE)
Brooks City-Base, TX, USA

Abstract—This research presents the implementation of the Finite-
Difference Time-Domain (FDTD) method for the solution of 3-
dimensional electromagnetic problems in dispersive media using
Graphics Processor Units (GPUs). By using the newly introduced
CUDA technology, we illustrate the efficacy of GPUs in accelerating
the FDTD computations by achieving appreciable speedup factors with
great ease and at no extra hardware/software cost. We validate our
approach by comparing the results with their corresponding simulated
results obtained from Remcom’s XFDTD software.

1. INTRODUCTION

Due to the growing interest in the fast and efficient analysis of large-
scale complex electromagnetic radiation and scattering problems, much
research has been devoted to enhancing numerical solutions of such
problems in terms of their speed and memory requirements. The
Finite Difference Time Domain (FDTD) technique is commonly used
for these types of problems thanks to its ease of implementation
and a broad range of capabilities. However, for many problems of
interest, the computational runtime can be prohibitive. Traditionally, a
computer cluster has been used to circumvent this problem by devising

Received 25 November 2010, Accepted 6 January 2011, Scheduled 20 January 2011
Corresponding author: Mohammad R. Zunoubi (zunoubm@engr.newpaltz.edu).

186 Zunoubi and Payne

a parallel-FDTD methodology [1], which itself needs a relatively
large space, is expensive, requires occasional maintenance, and is
shared among various research teams. Alternatively, researchers
have recently focused on implementing the FDTD technique on
Graphic Processing Units (GPUs), which possess inherent attributes
for threaded computing and can be easily integrated into a standalone
desktop with minimal extra cost and space.

CUDA (Compute Unified Device Architecture) was recently
introduced by NVIDIA to leverage the parallel compute engine in
NVIDIA GPUs [2]. As commercial sectors like Remcom, Computer
Simulation Technology (CST), Acceleware, SPEAG, and Agilent have
integrated the GPU-accelerated FDTD technique into their software
packages for the analysis of electromagnetic fields in normal and
complex media, researchers in academia have also focused on taking
advantage of inherent attributes of the GPUs for parallel computing.
Such implementations that use the CUDA technology include the
works presented in [3] and [4] originally, and the research presented
by Sypek et al. for a TMz solution of electromagnetic fields [5], the
double precision implementation of the FDTD on the Tesla GPU [6],
and the work reported by Okoniewski’s group [7], more recently.

In this article, we present the implementation of the full 3-
dimensional FDTD method in dispersive media on GPUs using CUDA
technology. The Convolutional Perfectly Matched Layer (CPML)
is used to truncate the solution domain [8], and a plane wave
incident field is utilized to simulate realistic exposure scenarios. The
software validity is established by making comparisons with simulated
results obtained by Remcom’s XFDTD software. Speedup factors
are reported which show promise for the rapid solution of large-scale
electromagnetic radiation and scattering problems.

2. FORMULATION

Here, we present the 3-dimensional FDTD formulation for the plane
wave penetration through a general dispersive media. Accordingly, we
follow the procedure outlined in [9] for the Piecewise-Linear Recursive-
Convolution (PLRC) method for the single-pole Debye representation
of the dispersive media along with the CPML boundary condition,
which is not only efficient in minimizing the memory requirements but
also the most accurate form of absorbing material. This, in turn, yields
the following form of the FDTD update equation for the x-component

Progress In Electromagnetics Research M, Vol. 16, 2011 187

of the electric field:
Ex|n+1

i+1/2,j,k = ca|i+1/2,j,k Ex|ni+1/2,j,k+cb|i+1/2,j,k

·
(

Hz|ni+1/2,j+1/2,k−Hz|ni+1/2,j−1/2,k

κyj
−

Hy|ni+1/2,j,k+1/2−Hz|ni+1/2,j,k−1/2

κzk

+ψEx,y |ni+1/2,j,k
+ ψEx,z |ni+1/2,j,k

)
+ cc|i+1/2,j,k ψEx|ni+1/2,j,k

(1)

where ca, cb, cc are the coefficients associated with space-time
discretization and material properties, κyj and κzk are the scaled tensor
parameters, ψEx,y and ψEx,z are the auxiliary arrays for the CPML,
and ψEx is the recursive accumulator variable given in [9] and defined
in terms of εs, ε∞, and τ which are the static relative permittivity,
the relative permittivity at infinite frequency, and relaxation time,
respectively, for the Debye material.

To model the tissue material, we generate three id files that
are used to assign the constitutive parameters to the corresponding
field components in the x, y, and z directions, respectively. For
normal materials, εr, µr, and σ are assigned and used to calculate
the regular FDTD updating coefficients. For dispersive materials, the
Debye parameters εs, ε∞, and τ are assigned and used to calculate the
dispersive FDTD updating coefficients for the electric fields and for the
recursive accumulator variable ψEx. Note that these accumulators are
formed only for the dispersive media by checking the tissue id arrays
and are used in Equation (1) in which case coefficient cc is nonzero.
Otherwise, accumulator variables are not formed and coefficient cc is
set to zero as well.

3. CUDA IMPLEMENTATION

3.1. Memory Management

The implementation of the 3-dimensional FDTD formulation involves
allocating and initializing on the Device’s (GPU) global memory six
one-dimensional arrays for the Ex, Ey, Ez and Hx, Hy, Hz field
components, three arrays for recursive accumulator variables ψEx,
ψEy, ψEz, twenty four auxiliary ψEi,j and ψHi,j arrays where i,j are
interchangeable combinations of x, y, z such as ψEx,y and ψHx,y for
the CPML, and two arrays for the incident electric and magnetic fields.
Since the above quantities need to be updated at every time step, they
have to be stored in such a way that they can be both read from and
be written to while on the device. However, once on the device, it is
advantageous to use the fast but limited shared memory as described
in the next Section to handle updating equations. Additionally, we

188 Zunoubi and Payne

need to allocate and assign three integer arrays tissueIDx, tissueIDy,
and tissueIDz that contain the indices assigned to the different tissue
material under exposure, and 13 arrays for coefficients ca, cb, and cc,
scaled tensor parameters κ’s, and the constants used in calculating
auxiliary ψ-arrays. However, since no updating of these arrays is
needed during the time marching process, we use the texture memory of
the device for storage which allows for fast read-access when updating
the field quantities.

3.2. Device Kernels

In order to implement our FDTD approach efficiently on the GPU,
the device implementation is divided into two kernels. One kernel
is used to update the magnetic field components and the other is
used to update the electric fields. We take full advantage of the
Single Instruction Multiple Data (SIMD) architecture of the GPU and
overcome the memory latency by grouping the threads into i × j × k
columns of the grid. These are loaded into the shared memory of the
device with one thread assigned to an output element. Since the FDTD
updating equations require interaction with the neighboring grids in
the form of i±1 and j±1, we allow four halo regions to include the
neighboring elements in the xy-plane. Due to the limited amount of
the shared memory, we load only 3 k-planes of data at a time, with
an outer loop covering the total number of planes in the z-direction.
Within this outer loop, we read in plane k + 1, calculate, and store
new values for plane k [10]. The main advantage here is that the
threads within each small block access their own shared memory, the
latency of which is two orders of magnitude lower than that of the
global memory. This enables extremely fast FDTD updating on the
device. After completing all the computations inside the k outer loop,
the resulting updated electric or magnetic fields are stored in the global
memory to be read by the host. It should be noted that the thread
dimensions i and j of each block loaded into the shared memory must
be optimized in order to take full advantage of the GPU computational
capabilities. This will be addressed in the Results Section.

Following, we present first a pseudo-code for the host (CPU) side
that manages the device memory allocations, copying data from the
host to device, calling GPU kernels, and copying the data after FDTD
updating from the device to the host :

- cutilSafeCall (cudaMalloc((void**)& d Ex, grid size);
- Repeat for other filed components, incident fields, tissueIDs, and

CPML arrays;

Progress In Electromagnetics Research M, Vol. 16, 2011 189

- cutilsafeCall (cudaMemcpy(d Ex, Ex, grid size, cudaMemcpy-
HostToDevice);

- Repeat for all the above arrays;
- Bind textures for read-only data as discussed in Section 3.1:

cudaBindTexture (0, ttissueIDx, d tissueIDx);
- Repeat for all other constant arrays;
- For all time steps do
{
Update H <Grid of thread blocks, Size of thread block>;
Syncthread;
Update E < Grid of thread blocks, Size of thread block>;
Syncthread;
}

- cutilsafeCall (cudaMemcpy(Ex, d Ex, grid size, cudaMemcpyDe-
viceToHost);

- Repeat for Ey, Ez, Hx, Hy, and Hz.

We next present a pseudo-code for the device side that uses the
texture, shared, and global memory hierarchies to perform the FDTD
updating equations efficiently:

- Load the read-only data in the texture memory:
texture<int, 1, cudaReadModeElementType>ttissueIDx ;

- Repeat for all other constant arrays;
- Update H <Grid of thread blocks, Size of thread block>
{
Set up indices for halos;
Set up indices for main block;
Read initial plane of Ex, Ey, and Ez arrays into the shared
memory;
Loop over k-planes;
Move two planes down and read in new plane k+1 into the shared
memory;
Syncthreads;
Perform FDTD updating equations for H;
Correct for plane wave interface;
Update ψHi,j (i,jare interchangeable combinations of x, y, z such
as ψHx,y) terms and H fields inside the CPML regions;
Syncthreads;
Store H fields into the global memory;

190 Zunoubi and Payne

}
- Update E <Grid of thread blocks, Size of thread block>
{
Set up indices for halos;
Set up indices for main block;
Read initial plane of Hx, Hy, and Hz arrays into the shared
memory;
Loop over k-planes;
Move two planes down and read in new plane k+1 into the shared
memory;
Syncthreads;
Perform regular FDTD updating equations for E in main
computational volume;
Force fields to zero at boundaries;
Perform PLRC updates for dispersive media by means of checking
the tissueIDx, tissueIDy, and tissueIDz arrays and updating
ψEx, ψEy, and ψEz terms according to Equation (9.17) in [9];
Correct for plane wave interface;
Update ψEi,j (i,j are interchangeable combinations of x, y, z such
as ψEx,y) terms and E fields inside the CPML regions;
Syncthreads;
Store H fields into the global memory;
}
The flowchart of the CUDA accelerated FDTD scheme is also seen

in Figure 1 which shows the general steps taken in implementing our
tool on both the CPU and GPU sides.

3.3. Arithmetic Instructions

The computational efficiency of our kernels is maximized by facilitating
the mul24 and fdividef functions for integer multiplications and
floating-point divisions, respectively. mul24 performs 24-bit integer
multiplication in 4 clock cycles compared to the 16 clock cycles for the
conventional 32-bit multiplication and fdividef provides for single-
precision floating-point division in 20 clock cycles which is superior
to the 36 clock cycles typically needed for dividing floating point
values [2].

Progress In Electromagnetics Research M, Vol. 16, 2011 191

Allocate memory and initialize

both C and CUDA arrays

Form ca, cb, cc, κ, and

tissueID arrays

Form incident field arrays Einc

and Hinc

Transfer data from the

host to the device

Start FDTD time

marching

Invoke the Magnetic and

Electric fields kernels

End of time
steps

Transfer data from the

device to the host

Clear both CPU and GPU

memories

Yes

No

Figure 1. Flowchart of the CUDA accelerated FDTD scheme.

192 Zunoubi and Payne

4. RESULTS

To demonstrate the accuracy of our developed tool, we simulate a
1× 2.5× 1 cm cuvette with a 1 mm thick wall made from Polystyrene
(εr = 2.0) and filled with water as shown in Figure 2. To model
the frequency dependence of water, the Debye parameters of εS = 81,
ε∞ = 1.8, σS = 0, and τ = 9.4e−12 are used. We choose the cell size of
0.25mm in all three dimensions resulting in a ∆t = 4.81× 10−13 s and
we truncate the solution domain by an 8-cell CPML boundary. The
cuvette is exposed to a y-polarized Gaussian plane wave propagating
in the x direction. The simulation is performed for 4100 time steps and
the results of the y-component of the electric field are recorded on the
vacuum-Polystyrene boundary and plotted in Figure 3. Examining
the results of this figure indicates that the steady-state solution has
been reached which is a requirement for performing the fast Fourier
transforms on the time domain data. The incident field due to
the Gaussian pulse Ae−α(t−β∆t)2 , where β = 32, ∝= (4

β∆t)
2, A =

1000V/m, is subtracted from the total field Ey to obtain the reflected
field due to the material discontinuity. The reflection coefficient versus
frequency is then calculated by normalizing the Fourier transform
of the reflected field by the Fourier transform of the incident pulse.
Results can be seen in Figure 4, where a comparison is made with the
results obtained from the Remcom’s XFDTD software illustrating the
adequacy and accuracy of our FDTD-CUDA implementation.

We then demonstrate the applicability of our tool to calculating
the absorbed dose of dispersive media exposed to non-ionizing ultra-

1 cm
1 cm

2.5 cm

y

z x

Figure 2. Geometry of exposed polystyrene cuvette filled with water
and exposed to a y-polarized electric field traveling in the x-direction.

Progress In Electromagnetics Research M, Vol. 16, 2011 193

Figure 3. Amplitude of the y-
component of the electric field
computed in the middle of the
cuvette.

Figure 4. Magnitude of the
reflection coefficient computed
on the vacuum-polystyrene inter-
face.

wideband (UWB) electromagnetic pulses of nanosecond duration.
This dosimetry is critical for establishing dose-response curves for
nanosecond electromagnetic pulses. Here, we consider the problem
of exposing water inside the cuvette described above to a short pulse
described as [11]:

Ey = E0(e−α t − e−β t),

with E0 = 18.5KV m−1, α = 108 s−1, β = 2.0× 1010 s−1
(2)

which has a rise time of 150 ps and a width of 10 ns. Since
the penetration of the electric field component in the direction of
polarization is defined by the rise time and pulse width, we plot both
the incident field and the total field inside water in the middle of the
cuvette in Figure 5. This plot indicates that the pulse inside water is
a superposition of a short pulse, induced during a fast rise time, and
recursively longer pulses induced by the slow variation in the incident
pulse.

After illustrating the accuracy and adequacy of our CUDA-
accelerated FDTD tool, we perform a study of the speedup factors
achieved when using GPUs. As discussed in Section 3.2, the dimension
of the 2D blocks i × j plays a critical role in the performance of the
graphic processors. Note that dimension k is fixed at three as explained
earlier due to the limitation imposed by the amount of the shared
memory of the device. Therefore, a study was performed by varying
the dimensions iand j following the format of (i× j) = (2× j), (4×j),
(8×j), (16×j), (32×j), (64×j), (128×j), and (256×j) while setting
j = 2, 4, 8, 16, 32, 64, 128, and 256 for an FDTD problem space of

194 Zunoubi and Payne

Figure 5. Amplitude of the incident and total electric field computed
in the middle of the cuvette.

128× 128× 128 (equivalent to 2,097,152 grids) and timing simulations
for 2000 time steps. Our study showed that a block dimension of 32×4
would be optimal with a GPU computational time of 19.94 s, and was
therefore used for all further calculations. Also note that a poor choice
of the block dimensions could cause a severe performance degradation,
as was the case with i× j = 8× 16 with a GPU time of 72.73 s.

Once the optimum block size was determined, we simulated three-
dimensional FDTD problems that ranged from 64× 64 × 32 (131,072
FDTD cells) to 256 × 256 × 100 (6, 553, 600 FDTD cells) while
keeping ∆t = 4.81 × 10−13 s and compared the CPU time of the C
implementation of our code with its corresponding GPU time using
CUDA. Results are recorded in Table 1 for 2000 time steps. The
CPU for these simulations was an Intel Core2 Quad Q6600, 2.40 GHz,
and 3.25 GB of RAM and the GPU was an NVIDIA GeForce 9800
GT which has 112 Stream Processors, 1024MB Standard Memory,
a Memory Bandwidth of 57.6 GB/s, and a Shader Processing Rate
of 504Gigaflops. Note that these timing are for the FDTD time
marching process only and do not include the pre- and post-processing
calculations and also since we are using one graphic processor, we use
only one core out of the Quad processors available on the CPU.

The speedup factors achieved by performing the FDTD
computations on the GPU are also given in Table 1. As it can be
seen, a speedup factor of 128.5 was obtained for the largest model
space possible (6, 553, 600 voxels) before exceeding the 1024MB global
memory limit of the 9800GT GPU card. It is expected, however, that
with the newly manufactured NVIDIA Tesla C1060 GPUs, the above
computations could be carried out for hundreds of millions of FDTD

Progress In Electromagnetics Research M, Vol. 16, 2011 195

Table 1. CPU and GPU FDTD computational times and the resulting
speedup factors.

Grid points CPU(s) GPU(s) Speedup

131,072 175.45 3.92 44.75
262, 144 402.11 7.27 55.31
819,200 1330.4 13.2 100.6

1,310,720 2135.5 20.9 102.2
2,097,152 3466.1 33.2 104.5
6,553,600 11221.7 87.4 128.5

grid points with even greater computational efficiency. We also need
to note that in these simulations, minimum data transfer between the
device and the host was required. However, the above speedup factors
could be reduced drastically for applications involving large amount of
data transfer as discussed in [12].

5. CONCLUSION

We presented a CUDA-based FDTD analysis of 3-dimensional
Maxwell’s equations in dispersive media on an NVIDIA 9800GT
GPU card. The accuracy of our implementation was illustrated by
calculating the reflection coefficient on a vacuum/dielectric interface
for a cuvette filled with water and comparing the results with
their corresponding results obtained by the Remcom’s XFDTD
software. Very good agreements were observed. We also presented
a very practical problem of exposing dispersive media to the
UWB electromagnetic pulses of nanosecond duration. We further
investigated the computational advantage of performing the 3-
dimensional FDTD computation on GPUs using CUDA by solving
for the electromagnetic fields for various problem dimensions. It
was shown that speedup factors of up to 128.5 can be achieved
by facilitating the memory hierarchy of GPUs and using CUDA’s
arithmetic instructions. It was shown that shared memory usage
minimizes the memory latency associated with graphic cards when
optimized block dimension is used.

REFERENCES

1. Yu, W., R. Mittra, T. Su, Y. Liu, and X. Yang, Parallel Finite-
Difference Time-Domain Method, Artech House, July 2006.

196 Zunoubi and Payne

2. “NVIDIA CUDA compute unified device architecture program-
ming guide,” 3.2, NVIDIA Corporation, Nov. 2010.

3. Balevic, A., L. Rockstroh, A. Tausendfreund, S. Patzelt, G. Goch,
and S. Simon, “Accelerating simulations of light scattering based
on finite-difference time-domain method with general purpose
GPUs,” Proc. IEEE CSE’08, 11th IEEE Int. Conference on
Computational Science and Engr., 16–18, São Paulo, Brazil, July
2008.

4. Valcarce, A., G. De La Roche, A. Juttner, D. López-Pérez, and
J. Zhang, “Applying FDTD to the coverage prediction of WiMAX
femtocells,” Eurasip Journal of Wireless Communications and
Networking. Special issue: Advances in Propagat. Modeling for
Wireless Systems, Feb. 2009.

5. Sypek, P., A. Dziekonski, and M. Mrozowski, “How to render
FDTD computations more effective using a graphics accelerator,”
IEEE Trans. Magnetics, Vol. 45, No. 3, 1324–1327, Mar. 2009.

6. Demir, V., “Performance analysis of CUDA implementation of
FDTD on Tesla GPU using double precision arithmetic,” 2010
USNC-URSI National Radio Science Meeting, Boulder, CO, Jan.
6–9, 2010.

7. Ong, C. Y., M. Weldon, S. Quiring, L. Maxwell, M. C. Hughes,
C. Whelan, and M. Okoniewski, “Speed it up,” IEEE Microwave
Magazine, Vol. 11, No. 2, Apr. 2010.

8. Roden, A. and S. D. Gedney, “Convolutional PML (CPML): An
efficient FDTD implementation of the CFS-PML for arbitrary
media,” Microwave and Opt. Tech. Letters, Vol. 27, 334–339, June
2000.

9. Taflove, A. and S. C. Hagness, Computational Electrodynamics:
The Finite-Difference Time-Domain Method, 2nd Edition, Artech
House, 2000.

10. Giles, M., “Jacobi iteration for a Laplace discretization on a 3d
structured grid,” Technical Report, 2008.

11. Simicevic, N., “Three-dimensional FDTD simulation of biomate-
rial exposure to electromagnetic nanopulses,” Phys. Med. Biol.,
Vol. 50, No. 21, 5041–5053, Nov. 2005.

12. Zunoubi, M. R., J. Payne, and W. P. Roach, “CUDA
implementation of TEz-FDTD solution of Maxwell’s equations
in dispersive media,” IEEE Antennas Wireless Propagat. Lett.,
Vol. 9, 756–759, Sept. 2010.

