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Abstract—To describe propagation of polarized electromagnetic wave
within a disperse random medium a new Monte Carlo based technique
with an adopted vector formalism has been developed. The technique
has been applied for simulation of coherent backscattering of circularly
polarized optical radiation from a random scattering medium. It
has been found that the sign of helicity of circular polarized light
does not change for a medium of point-like scatterers and can change
significantly for the scatterers with the higher anisotropy. We conclude
that the helicity flip of the circular polarized light can be observed in
the tissue-like media. We find that this phenomenon manifests itself
in case of limited number of scattering events and, apparently, can be
attributed to the pulse character of incident radiation rather than to
the specific form of scattering particles.

1. INTRODUCTION

Due to the recent intense developments in lasers and optical
technologies a number of novel revolutionary imaging and diagnostic
modalities have been arisen [1]. Utilizing various feature of light these
techniques provide new practical solutions in a range of biomedical,
environmental and industrial applications [2]. Conceptual engineering
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design of new diagnostic system requires clear understanding of light-
tissue interaction and peculiarities of optical radiation propagation
within the biological tissues. The description of optical radiation
propagation within the random media is based on the radiative
transfer [3] that forms a basis of Monte Carlo (MC) modeling of
optical radiation propagation in a complex turbid medium like a
biological tissue [4]. Facing the problem of combining properties of
optical radiation and the ability to cope with the structural parameters
of biological tissues, which are anticipated to vary spatially and
temporally, as well as individually, the MC approach becomes a ‘gold
standard’ in biomedical optics and optical engineering. With the recent
developments MC technique has been successfully used in simulation
of coherent phenomena of multiple scattering [5, 6], modeling of laser
pulses [7] and/or image transfer through random media [8], and the
studies of intermediate scattering regime [9], when the average number
of times the photons are scattered is too great for single scattering to
be assumed, but too few for the diffusion approximation to be applied.
Integrated with the computational model of human skin [10] the MC
technique has been widely used in a range of practical applications
and biomedical studies, including simulation of reflectance spectra of
human skin [11], analysis of spatial localization of autofluorescence
within the skin [12] and imitation of 2D OCT images of human
skin [13, 14].

In the current paper with a further development of the MC
technique mentioned above we study numerically the coherent and
non-coherent backscattering of circularly polarized light from a turbid
tissue-like random medium. Strong multiple scattering typical for most
of biological tissues leads to the loss of initial polarization, direction,
phase and wavefront [1, 2, 4] of incident electromagnetic radiation.
Nevertheless, the polarization of backscattered light survives more
scattering events than the direction of its propagation, whereas the
helicity of the backscattered light depends noticeably on the size
of scattering particles [15–18]. The backscattered circular polarized
light is expected to consist mainly of the cross-polarized component
resulting from the specular reflection. However, it turns to be true
only for the scatterers, which size is smaller than wavelength of incident
radiation; for the media with larger scatterers the opposite situation
happens [16, 17]. This phenomenon, known as the polarization
memory, was explained by specific features of the Mie tensor phase
function.

Kim and Moscoso [16] numerically solved the vector radiative
transfer equation for a circular polarized plane-wave pulse; it has been
concluded that for a medium with large scattering particles the helicity
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is determined by the successive near-forward scattering events strongly
depending on the angular characteristic of the Mie scattering. In [17]
the backscattering of circular polarized pulses has been studied for
spatially separated source-detector geometry; the helicity flip has been
also ascribed to the Mie scattering. For the spatially separated incident
and backscattered beams the co-polarized component is dominating
at the medium with high scattering anisotropy of scatterers. Similar
results have been obtained in [17] for Mie scattering.

In current report, to describe propagation of polarized electromag-
netic wave within a disperse random medium we apply a MC based
technique with an adopted vector formalism [19]. It has been demon-
strated that this computational approach is well suited to obtain and
imitate the realistic images, reflectance spectra and optical signals sim-
ilar those observed experimentally [8, 11, 13, 14, 20]. Thus, we believe,
current approach also have a privilege in simulation and studies of co-
herent backscattering of circularly polarized optical radiation from a
random scattering medium.

2. BASIC CONCEPT OF VECTOR MONTE CARLO
FORMALISM

Principles of MC technique applied for computational modeling
of radiation propagation within a randomly inhomogeneous turbid
medium are widely described in everywhere [4, 9–11, 21]. MC is
based on the consequent simulation of a number of random photon
trajectories within the medium between the point where the photons
enter the medium, and the point where their leaves the medium.
Simulation of the photon trajectories consists of the following key
stages: injection of the photon packets into the medium at the
source area, generation of the photon path-length within the medium,
generation of scattering, reflection and refraction on the medium
boundaries, and finally delimitation of photons detection. The photon
free path s between the two successive elastic scattering events is
determined by the Poisson probability density function [21]:

f(s) = µs exp(−µss), (1)

where µs is the scattering coefficient defined by the scattering cross-
section and density of scatters in the medium.

The cumulative probability that the photon free path exceeds s is
defined as:

ξ =

∞∫

s

f(s′)ds. (2)
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Thus, the random magnitude s can be expressed via the probability ξ
as:

s = − ln ξ

µs
, (3)

where ξ is uniformly distributed in the interval [0, 1].
A new direction of photons after each scattering act is defined by

the scattering phase function:

p(ni − ns) =
G(ni − ns)∫

4π

G(ni − ns)dΩs
, (4)

where

G(ni − ns) =
1

(4π)2

∫
dr〈∆ε(0)∆ε(r)〉 exp(−ik0(ni − ns)r) (5)

is the Fourier transform of the permittivity mutual correlation
function, ∆ε(r) is the random permittivity deviation at point r from
the background value, k0 = 2πn/λ is the wave number defined by
central wavelength λ and average refractive index of the medium n,
ni and ns are the unit vectors defining the direction of the photon
prior and after the scattering event, respectively; |ni − ns| = 2 sin θ

2
determine the direction transfer, θ is the scattering angle relative to
the initial direction ni.

These steps are repeated till the photon is detected arriving at
the detector area with the given acceptance angle defined by numerical
aperture, or till the photon leaves the scattering medium. The total
number of the launched photons used in the simulation typically is
∼ 107−108. The details of the reflection and refraction at the medium
boundaries are given in details in [23].

In a similar manner by using the standard MC procedure described
above we trace the polarization of electric field along the trajectories
built for a scalar field. Calculating the n-th order contribution, we are
able to find four components of the Stokes vector at the end of photon
trajectory when a final scattering event occurs. This approach has been
comprehensively validated by comparing the results of simulation with
the exact theoretical solution [24, 25]. In current report, based on this
approach we consider the coherent backscattering of linear and circular
polarized light for the typical experimental probe geometry utilized in
biomedical diagnostic, i.e., when the source and detector are spatially
separated from each other on the surface of the probing medium.

The non-coherent ladder part of the correlation function of electric
field E(r) at a distance r from scattering volume can be presented as:

〈
δE∗

β2
(r)δEβ1(r)

〉
= r−2SLβ2 β1 α2 α1(kf ,ki)× E∗

α2
Eα1 , (6)
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where 〈. . .〉 denotes ensemble average, β2 and β1 are polarization
indices of pair of complex-conjugated scattered fields, and α2 and α1

are polarizations of incident field E, S is the detection square, and ki

and kf are the incident and scattered wave vectors. We consider the
weak scattering limit, λ ¿ l, where λ is the wavelength and l is the
photon mean free path. The fourth rank tensor L̂(kf ,ki) describes the
radiation transfer in a random medium and obeys the Bethe-Salpeter
equation. Iterating the equation we present the tensor L̂(kf ,ki) as the
sum in scattering orders [25]

L̂(kf ,ki) =
∑

n≤m

L̂(n)(kf ,ki) + ∆L̂m(kf ,ki), (7)

where L̂(n)(kf ,ki) is the contribution of the n-th scattering order, and
∆L̂m(kf ,ki) is the contribution of scattering orders higher than the
m-th one.

A normal incidence of optical radiation at the semi-infinite (z ≥ 0)
medium is considered; x, y, z are the cartesian axes. If the incident
light is linearly polarized along the x axis, the intensities of co-polarized
and cross-polarized components of scattered light are I‖ = Lxxxx and
I⊥ = Lyyxx. Arguments ki and kf are omitted for brevity.

The circular cross-polarized backscattered component can be
written as:

Icross =
1
2

(Lxxxx + Lyyxx + Lyxyx − Lxyyx) , (8)

and co-polarized backscattered component:

Ico =
1
2

(Lxxxx + Lyyxx − Lyxyx + Lxyyx) (9)

The n-th order contribution L̂(n)(kf ,ki) can be calculated as an
average over sampling of Nph photon packets, or trajectories, given by
a succession of n scattering events [25],

L̂(n)(kf ,ki) =
1

Nph

Nph∑

i=1

W (i)
n M̂ ′(kf ,kn n−1, . . . ,ki) (10)

⊗M̂(kf ,kn n−1, . . . ,ki) exp(−l−1z(i)
n / cos θf ). (11)

Here W
(i)
n and z

(i)
n are, respectively, the weight and the distance to the

medium boundary of i-th photon after n scattering events. The tensor

M̂(kf ,kn n−1, . . . ,ki) = P̂ (kf )
∞∏

j=2

P̂ (kj j−1)P̂ (ki) (12)
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presents the chain of projection operators P̂ (k) = Î − k−2k ⊗
k, transforming the polarization of the incident field along the
trajectory containing n scattering events in points R1, R2, . . . , Rn;
the wave vector kj j−1 = k(Rj − Rj−1)/ |Rj −Rj−1| describes the
wave propagating between two successive scattering events. Tensor
M̂(kf ,kn n−1, . . . ,ki) acts upon field E, and M̂ ′(kf ,kn n−1, . . . ,ki)
— upon E∗, respectively. The direct product P ′(kj j−1) ⊗ P (kj j−1)
multiplied by the Heney-Greenstein phase function describes the
scattering matrix transforming pair of complex-conjugated fields at
the j-th scattering event.

It should be pointed out that typically simulation of the
electromagnetic field propagation is based on the Stokes vector tracing.
We trace directly the electromagnetic field following the transformation
of the initial polarization under action of tensor M̂(kf ,kn n−1, . . . ,ki)
calculated along a particular trajectory. In case of circular polarization
six components of two orthogonal vectors, shifted by phase in a quarter
of wavelength, are traced along each trajectory.

3. BACKSCATTERING OF CIRCULAR POLARIZED
LIGHT

The series in scattering orders is known to converge very slowly. It
has been shown that scattered intensity [26] continues to increase
even for the upper cut m = 104 of scattering orders. We have
studied numerically the intensity dependence on scattering orders and
find an approximate decay In ∼ n−α for the large n and α ≈ 1.5,
for the scalar and electromagnetic field, independently of scattering
anisotropy. Extrapolating this decay beyond m we obtain:

∆L̂m(kf ,ki) ≈ (α− 1)−1mL̂(m)(kf ,ki). (13)

With this approximation the results obtained appear to be
independent of m beginning with m = 103 for Rayleigh scattering,
g = 0, and with m = 104 for anisotropic scattering, g = 0.9. The
mean cosine of scattering angle g = 〈cos θ〉 characterizes the size of
scatterers.

Using the described approach we calculate the backscattering of
polarized light from a turbid scattering medium. In Table 1 the
polarized components of scattered radiation are presented for two
media, with small, g = 0, and large, g = 0.9, anisotropy of scattering.
The small g values correspond to Rayleigh scattering from a point-like
particle system, whereas the large g values, 1 − g ¿ 1 corresponds
to scattering from a medium with scatterers much larger than the
wavelength.
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Table 1. The backscattered intensities of scalar and electromagnetic
fields, presented in units of energy density (4π)−2

∣∣E(in)
∣∣2, and

polarization ratios, calculated numerically, and theoretical data.

g I(scalar) I‖ + I⊥ I⊥/I‖ Ico/Icross

g = 0, theory 4.228 4.588 0.517 0.617
g = 0 4.228 4.615 0.523 0.618

g = 0.9 4.55 4.40 0.81 0.95

For the point-like particle system the results agree well with
the results obtained theoretically by Milne’s exact solution and its
generalization [27, 28] (see also Table 14.5.1 in [29]).

The polarized component I‖ exceeds the depolarized component
I⊥, whereas the cross-polarized component Icross exceeds the co-
polarized component Ico, as it could be expected for a specular
reflection for an arbitrary anisotropy of scattering. The residual
polarization becomes larger for Rayleigh scattering due to greater
share of lower scattering orders, than for the medium with the
higher anisotropy of scattering particles. The sign of helicity remains
unchanged for either values of anisotropy.

The data presented in Table 1 are intensities collected from the
infinite area, whereas the effect of helicity flip has been observed for
the spatially separated incident and backscattered beams [17]. We
have also simulated the backscattering for such a geometry. In Figs. 1
and 2 the polarized components are shown as a function of distance d
between the points of incidence of light in the medium and detection.
The results presented in the units of transport length l∗ = l(1− g)−1.
We assume that the transversal size of incident and backscattered thin
plane wave beams is smaller than the transport length. In Fig. 1
the linear and circular polarized components are presented. Both
components are related to the total non-coherent part of backscattered
intensity, I = I‖ + I⊥, for Rayleigh scattering, g = 0. The polarized
component I‖ is larger than the depolarized one I⊥, and the cross-
polarized component Icross remains dominant over Ico as it could be
expected for a specular reflection, at any distances. With d increasing
the light becomes more depolarized due to smaller weight of lower
scattering orders.

In Fig. 2 the relative components of backscattered light are
presented for a system with high scattering anisotropy, g = 0.9.
For linear polarization the picture is qualitatively the same as for
the system with Rayleigh scattering. However for circular polarized
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light at d of order of the transport length the helicity flip occurs.
Assuming the incident light being right-hand circular polarized, the
backscattered light becoming predominantly left circular polarized at
d < l∗, that becomes the right circular polarized at d > l∗. Whereas
at the distances of order of two transport length the right circular
polarized component exceeds approximately two times the left circular
polarized component. The minor oscillations observed at d/l∗ > 2 (see
Fig. 2) are due to statistical limitation of a number of detected high
scattering order photons constrained by a total number of photons used
in the simulation (typically ∼ 106–108).

Thus, for the optical radiation with the right circular polarization
incident on the medium containing the small scattering particles the
backscattered light at a nonzero distance of detection is predominated
by the left polarized component. While in case of large scattering
particles and large source-detector separation the right polarized
component prevails. Such a helicity flip occurs for a finite number
of scattering events m of order of several dozens in case g = 0.9; for
larger values of m the difference between the co- and cross-polarized
components becomes of order of statistical error at the distance d
exceeding photon transport length l∗.

(a) (b)

Figure 1. The backscattered intensity of (a) linear and (b) circular
polarized light as a function of source-detector separation d, for
isotropic scattering, g = 0. (a) Diamonds represent polarized I‖/I and
(b) cross-polarized Icross/I components; circles show the depolarized
I⊥/I and co-polarized Ico/I components, left and right, respectively.
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(a) (b)

Figure 2. The backscattered intensity for (a) linear and (b)
circular polarized light as a function of source-detector separation
d, for highly anisotropic scattering medium, g = 0.9. As in Fig. 1
diamonds represent (a) polarized I‖/I and (b) cross-polarized Icross/I
components; circles show the depolarized I⊥/I and co-polarized Ico/I
ones, left and right, respectively.

4. COHERENT BACK-SCATTERING

The coherent back-scattering (CBS) is well known to be presented
as a sum of cyclic diagrams Ĉ(kf ,ki). The cyclic diagram can be
obtained from the ladder diagram by performing a permutation of
polarization indices as well as wave vectors k∗f ↔ k∗i of complex
conjugated field [30]. In particular, for strictly backward scattering,
kf = −ki, diminished by contribution of the single scattering, it can be
presented as: Cβ2β1α2α1(−ki,ki) = Lα2β1β2α1(−ki,ki). Therefore, for
the linear polarization the co- and cross-polarized components of CBS
are readily expressed through the ladder, non-coherent components:
ICBS
‖ = Lxxxx − I(single) and ICBS

⊥ = Lxyyx. Similarly, for the circular
cross- and co-polarized components we have

ICBS
cross =

1
2

(Lxxxx − Lyyxx + Lyxyx + Lxyyx)− I(single) (14)

ICBS
co =

1
2

(Lxxxx + Lyyxx − Lyxyx + Lxyyx) . (15)

In general case, for the backscattered light inclined at the angle θ along
the x axis, the factor cos

(
k(x(i)

n − x
(i)
0 ) sin θ

)
should be inserted into

the sum (11).
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Table 2. The enhancement of coherent backscattering.

g HScalar H‖ H⊥ Hcross Hco

g = 0, theory 1.882 1.752 1.120 1.251 2
g = 0 1.880 1.752 1.122 1.244 2

g = 0.9 1.997 1.994 1.035 1.125 2

Table 2 presents the results of simulation of CBS enhancement,
known as the ratio of the sum of coherent and non-coherent parts to
the non-coherent component, for linear, H‖,⊥ = (ICBS

‖,⊥ + I‖,⊥)/I‖,⊥,
and circular, Hcross,co = (ICBS

cross,co + Icross,co)/Icross,co, polarizations.
The statistical error for number of photon packets 105 to 106 is less
than one percent for absolute values and about 0.001 for relative
values; calculation of one plot takes about two hours. For the point-
like particle system the results obtained agree remarkably with the
theoretical data [27, 29] and the experimental results [31].

The specific linear dependence on scattering angle in the narrow
range kl∗θ ≤ 1 is exhibited by the components Lxxxx and Lyyxx

only. Their difference turns to be a much wider Lorentzian than the
triangle CBS peak [28]. It explains the features of angular behavior
of the polarized components of backscattering. For non-coherent
contribution into backscattering component I‖ is larger than I⊥ and
Icross is larger than Ico; therewith a gap between them decreases with
the scattering angle increasing. As for the CBS contribution the
co-polarized component ICBS

co exhibits specific linear dependence on
scattering angle, and component ICBS

co does not.
Thus, for the linear polarization the enhancement of CBS is

observed only in the polarized component ICBS
‖ ; therewith the sum of

coherent and non-coherent contributions into the polarized components
larger that that into depolarized one, I‖ + ICBS

‖ > I⊥ + ICBS
⊥ for any

scattering angle.
For the circular polarization in case of Rayleigh scattering the

sum of coherent and non-coherent cross-polarized components always
exceeds the corresponding sum of co-polarized components due to
a larger share of the lower scattering orders. However in case of
highly anisotropic scattering, 1− g ¿ 1, the co-polarized components,
Ico + ICBS

co exceeds the sum of cross-polarized ones, Ico + ICBS
co >

Icross + ICBS
cross for strictly backward scattering due to smaller gap

between non-coherent contributions into co- and cross-components.
For larger scattering angles the picture becomes ordinary, cross-
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polarized component exceeds the co-polarized one.
In Ref. [18] the authors maintained that in case of exactly

backward scattering the total co-polarized component exceeds the
cross-polarized one even for the Rayleigh scatterers. However, this
conclusion contradicts to the exact theoretical results [27, 29] obtained
earlier within a Milne-like approach; for ratio of co- and cross-
components theory gives χ = (Ico+ICBS

co )(Icross+ICBS
cross)

−1 = 0.9865395,
which can be obtained with the data from Tables 1 and 2; we find
χ = 0.994 in a fair agreement with the theory. We believe that a slight
prevailing co-polarized component has been observed in [18] due to a
non-zero size of scatterers.

In Fig. 3 we present the angular dependence of the total
backscattering polarized components for two scattering media, with
g = 0 and g = 0.9, correspondingly. The co-polarized and circular
cross-polarized components ICBS

‖ and ICBS
co are seen to exhibit the

well-known linear dependence on scattering angle, in kl∗θ units, in
accordance with the diffusion theory. For the Rayleigh scattering
the cross-polarized components exhibiting no CBS peak exceeds
nevertheless the co-polarized ones; for a medium with high anisotropy
of scattering particles, g = 0.9, the sign of helicity of backscattered
light is seen to change due to the coherent contribution decreasing
with scattering angle.

(a) (b)

Figure 3. Angular dependence of the backscattered polarized light
for (a) Rayleigh g = 0 and (b) anisotropic g = 0.9 scattering:
rhombus, circles, triangles and squares represent I‖+ ICBS

‖ , I⊥+ ICBS
⊥ ,

Icross + ICBS
cross, and Ico + ICBS

co , respectively; same units, as in Table 1.
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5. SUMMARY AND CONCLUSIONS

Thus, we have shown that there is no change of helicity sign with
the scattering angle for a point-like particle system. On the contrary
it is clearly observed for a system with larger scatterers. In case of
circular polarization for small particles the cross-polarized component
is shown to exceed the co-polarized component, whereas for the
large particles at the distances between incidence and scattering
sites exceeding transport length the co-polarized component becomes
dominant; the important feature is that such a helicity flip occurs
only for a contribution of lower scattering orders only. The novel
feature is that this phenomenon appears to be valid also for the Heney-
Greenstein scattering phase function, which is the most widely used for
modeling scattering of optical radiation in biological tissues [4]. Based
on the results of this study we conclude that a change of dominant
component with the transition from small to large scatterers, found
in [17], can be attributed rather to the form of pulse of incident
radiation than to the scattering phase function.

Finally, we conclude that the helicity flip of the circular polarized
light occurs in systems with the different forms of scattering particles,
and can be observed in the tissue-like media. We find that this
phenomenon manifests itself in case of limited number of scattering
events and, apparently, can be attributed to the pulse character of
incident radiation rather than to the specific form of scattering.
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