ELECTROMAGNETIC WAVE SCATTERING BY MANY SMALL PARTICLES AND CREATING MATERIALS WITH A DESIRED PERMEABILITY

A. G. Ramm
Department of Mathematics
Kansas State University, Manhattan, KS 66506-2602, USA

Abstract

Scattering of electromagnetic (EM) waves by many small particles (bodies), embedded in a homogeneous medium, is studied. Physical properties of the particles are described by their boundary impedances. The limiting equation is obtained for the effective EM field in the limiting medium, in the limit $a \rightarrow 0$, where a is the characteristic size of a particle and the number $M(a)$ of the particles tends to infinity at a suitable rate. The proposed theory allows one to create a medium with a desirable spatially inhomogeneous permeability. The main new physical result is the explicit analytical formula for the permeability $\mu(x)$ of the limiting medium. While the initial medium has a constant permeability μ_{0}, the limiting medium, obtained as a result of embedding many small particles with prescribed boundary impedances, has a non-homogeneous permeability which is expressed analytically in terms of the density of the distribution of the small particles and their boundary impedances. Therefore, a new physical phenomenon is predicted theoretically, namely, appearance of a spatially inhomogeneous permeability as a result of embedding of many small particles whose physical properties are described by their boundary impedances.

1. INTRODUCTION

In this paper, we outline a theory of electromagnetic (EM) wave scattering by many small particles (bodies) embedded in a homogeneous medium which is described by the constant permittivity $\epsilon_{0}>0$, permeability $\mu_{0}>0$ and, possibly, constant conductivity $\sigma_{0} \geq 0$. The small particles are embedded in a finite domain Ω. The
medium, created by the embedding of the small particles, has new physical properties. In particular, it has a spatially inhomogeneous magnetic permeability $\mu(x)$, which can be controlled by the choice of the boundary impedances of the embedded small particles and their distribution density. This is a new physical effect, as far as the author knows. An analytic formula for the permeability of the new medium is derived:

$$
\mu(x)=\frac{\mu_{0}}{\Psi(x)}
$$

where

$$
\Psi(x)=1+4 \pi i \epsilon_{0} \omega h(x) N(x)
$$

Here ω is the frequency of the EM field, ϵ_{0} is the constant dielectric parameter of the original medium, $h(x)$ is a function describing boundary impedances of the small embedded particles, and $N(x) \geq 0$ is a function describing the distribution of these particles. We assume that in any subdomain Δ, the number $\mathcal{N}(\Delta)$ of the embedded particles D_{m} is given by the formula:

$$
\mathcal{N}(\Delta)=\frac{1}{a^{2-\kappa}} \int_{D_{m}} N(x) d x[1+o(1)], \quad a \rightarrow 0
$$

where $N(x) \geq 0$ is a continuous function, vanishing outside of the finite domain Ω in which small particles (bodies) D_{m} are distributed, $\kappa \in(0,1)$ is a number one can choose at will, and the boundary impedances of the small particles are defined by the formula

$$
\zeta_{m}=\frac{h\left(x_{m}\right)}{a^{\kappa}}, \quad x_{m} \in D_{m}
$$

where x_{m} is a point inside m-th particle $D_{m}, \operatorname{Reh}(x) \geq 0$, and $h(x)$ is a continuous function vanishing outside Ω. The impedance boundary condition on the surface S_{m} of the m-th particle D_{m} is $E^{t}=\zeta_{m}\left[H^{t}, N\right]$, where $E^{t}\left(H^{t}\right)$ is the tangential component of $E(H)$ on S_{m}, and N is the unit normal to S_{m}, pointing out of D_{m}.

Since one can choose the functions $N(x)$ and $h(x)$, one can create a desired magnetic permeability in Ω. This is a novel idea, to the author's knowledge.

We also derive an analytic formula for the refraction coefficient of the medium in Ω created by the embedding of many small particles. An equation for the EM field in the limiting medium is derived. This medium is created when the size a of small particles tends to zero while the total number $M=M(a)$ of the particles tends to infinity at a suitable rate.

The refraction coefficient in the limiting medium is spatially inhomogeneous.

Our theory may be viewed as a "homogenization theory", but it differs from the usual homogenization theory (see, e.g., $[1,2]$, and references therein) in several respects: we do not assume any periodic structure in the distribution of small bodies, our operators are nonselfadjoint, the spectrum of these operators is not discrete, etc. Our ideas, methods, and techiques are quite different from the usual methods. These ideas are similar to the ideas developed in papers $[4,5]$, where scalar wave scattering by small bodies was studied, and in the papers $[6,7]$. However, the scattering of EM waves brought new technical difficulties which are resolved in this paper. The difficulties come from the vectorial nature of the boundary conditions. Our arguments are valid for small particles of arbitrary shapes.

We also give a new numerical method for solving many-body wavescattering problems for small scatterers, see Section A.2.

2. EM WAVE SCATTERING BY MANY SMALL PARTICLES

We assume that many small bodies $D_{m}, 1 \leq m \leq M$, are embedded in a homogeneous medium with constant parameters ϵ_{0}, μ_{0}. Let $k^{2}=\omega^{2} \epsilon_{0} \mu_{0}$, where ω is the frequency. Our arguments remain valid if one assumes that the medium has a constant conductivity $\sigma_{0}>0$. In this case ϵ_{0} is replaced by $\epsilon_{0}+i \frac{\sigma_{0}}{\omega}$. Denote by $[E, H]=E \times H$ the cross product of two vectors, and by $(E, H)=E \cdot H$ the dot product of two vectors.

Electromagnetic (EM) wave scattering problem consists of finding vectors E and H satisfying the Maxwell equations:

$$
\begin{equation*}
\nabla \times E=i \omega \mu_{0} H, \quad \nabla \times H=-i \omega \epsilon_{0} E \quad \text { in } D:=\mathbb{R}^{3} \backslash \cup_{m=1}^{M} D_{m} \tag{1}
\end{equation*}
$$

the impedance boundary conditions:

$$
\begin{equation*}
[N,[E, N]]=\zeta_{m}[H, N] \text { on } S_{m}, 1 \leq m \leq M \tag{2}
\end{equation*}
$$

and the radiation conditions:

$$
\begin{equation*}
E=E_{0}+v_{E}, \quad H=H_{0}+v_{H} \tag{3}
\end{equation*}
$$

where ζ is the impedance, N is the unit normal to S_{m} pointing out of D_{m}, E_{0}, H_{0} are the incident fields satisfying Equation (1) in all of \mathbb{R}^{3}. One often assumes that the incident wave is a plane wave, i.e., $E_{0}=\mathcal{E} e^{i k \alpha \cdot x}, \mathcal{E}$ is a constant vector, $\alpha \in S^{2}$ is a unit vector, S^{2} is the unit sphere in $\mathbb{R}^{3}, \alpha \cdot \mathcal{E}=0, v_{E}$ and v_{H} satisfy the radiation condition: $r\left(\frac{\partial v}{\partial r}-i k v\right)=o(1)$ as $r:=|x| \rightarrow \infty$.

By impedance ζ_{m} we assume in this paper either a constant, $\operatorname{Re} \zeta_{m} \geq 0$, or a matrix function 2×2 acting on the tangential to
S_{m} vector fields, such that

$$
\begin{equation*}
\operatorname{Re}\left(\zeta_{m} E_{t}, E_{t}\right) \geq 0 \quad \forall E_{t} \in T_{m} \tag{4}
\end{equation*}
$$

where T_{m} is the set of all tangential to S_{m} continuous vector fields such that $\operatorname{Div} E_{t}=0$, where Div is the surface divergence, and E_{t} is the tangential component of E. Smallness of D_{m} means that $k a \ll 1$, where $a=0.5 \max _{1 \leq m \leq M} \operatorname{diam} D_{m}$. By the tangential to S_{m} component E_{t} of a vector field E the following is understood in this paper:

$$
\begin{equation*}
E_{t}=E-N(E, N)=[N,[E, N]], \quad\left[E_{t}, N\right]=[E, N] \tag{5}
\end{equation*}
$$

This definition differs from the one used often in the literature, namely, from the definition $E_{t}=[N, E]$. Our definition (5) corresponds to the geometrical meaning of the tangential component of E and, therefore, should be used. The impedance boundary condition is written usually as $E_{t}=\zeta\left[H_{t}, N\right]$, where the impedance ζ is a number. If one uses definition (5), then this condition reduces to (2), because $[[N,[H, N]], N]=[H, N]$.
Lemma 1. Problem (1)-(4) has at most one solution.
Lemma 1 is proved in Section 2.
Let us note that problem (1)-(4) is equivalent to the problems (6), (7), (3), (4), where

$$
\begin{align*}
& \nabla \times \nabla \times E=k^{2} E \text { in } D, \quad H=\frac{\nabla \times E}{i \omega \mu_{0}} \tag{6}\\
& {[N,[E, N]]=\frac{\zeta_{m}}{i \omega \mu_{0}}[\nabla \times E, N] \text { on } S_{m}, 1 \leq m \leq M} \tag{7}
\end{align*}
$$

Thus, we have reduced our problem to finding one vector $E(x)$. If $E(x)$ is found, then $H=\frac{\nabla \times E}{i \omega \mu_{0}}$.

Let us look for E of the form

$$
\begin{equation*}
E=E_{0}+\sum_{m=1}^{M} \nabla \times \int_{S_{m}} g(x, t) \sigma_{m}(t) d t, \quad g(x, y)=\frac{e^{i k|x-y|}}{4 \pi|x-y|} \tag{8}
\end{equation*}
$$

where $t \in S_{m}$ and $d t$ is an element of the area of $S_{m}, \sigma_{m}(t) \in T_{m}$. This E for any continuous $\sigma_{m}(t)$ solves Equation (6) in D because E_{0} solves (6) and

$$
\begin{align*}
\nabla \times \nabla \times \nabla \times \int_{S_{m}} g(x, t) \sigma_{m}(t) d t= & \nabla \nabla \cdot \nabla \times \int_{S_{m}} g(x, t) \sigma_{m}(t) d t \\
& -\nabla^{2} \nabla \times \int_{S_{m}} g(x, t) \sigma_{m}(t) d t \\
= & k^{2} \nabla \times \int_{S_{m}} g(x, t) \sigma_{m}(t) d t, \quad x \in D \tag{9}
\end{align*}
$$

Here we have used the known identity divcurl $E=0$, valid for any smooth vector field E, and the known formula

$$
\begin{equation*}
-\nabla^{2} g(x, y)=k^{2} g(x, y)+\delta(x-y) \tag{10}
\end{equation*}
$$

The integral $\int_{S_{m}} g(x, t) \sigma_{m}(t) d t$ satisfies the radiation condition. Thus, formula (8) solves problem (6), (7), (3), (4) if $\sigma_{m}(t)$ are chosen so that boundary conditions (7) are satisfied.

Define the effective field $E_{e}(x)=E_{e}^{m}(x)=E_{e}^{(m)}(x, a)$, acting on the m-th body D_{m} :

$$
\begin{equation*}
E_{e}(x):=E(x)-\nabla \times \int_{S_{m}} g(x, t) \sigma_{m}(t) d t:=E_{e}^{(m)}(x) \tag{11}
\end{equation*}
$$

where we assume that x is in a neigborhood of S_{m}, but $E_{e}(x)$ is defined for all $x \in \mathbb{R}^{3}$. Let $x_{m} \in D_{m}$ be a point inside D_{m}, and $d=d(a)$ be the distance between two neighboring small bodies. We assume that

$$
\begin{equation*}
\lim _{a \rightarrow 0} \frac{a}{d(a)}=0, \quad \lim _{a \rightarrow 0} d(a)=0 \tag{12}
\end{equation*}
$$

We will prove later that $E_{e}(x, a)$ tends to a limit $E_{e}(x)$ as $a \rightarrow 0$, and $E_{e}(x)$ is a twice continuously differentiable function. To derive an integral equation for $\sigma_{m}=\sigma_{m}(t)$, substitute $E=E_{0}+\nabla \times$ $\int_{S_{m}} g(x, t) \sigma_{m}(t) d t$ into (7), use the formula
$\left[N, \nabla \times \int_{S_{m}} g(x, t) \sigma_{m}(t) d t\right]_{\mp}=\int_{S_{m}}\left[N_{s},\left[\nabla_{s} g(x, t), \sigma_{m}(t)\right]\right] d t \pm \frac{\sigma_{m}(t)}{2}$,
(see, e.g., [3]), the $-(+)$ signs denote the limiting values of the lefthand side of (13) as $x \rightarrow s$ from $D\left(D_{m}\right)$, and get

$$
\begin{equation*}
\sigma_{m}(t)=A_{m} \sigma_{m}+f_{m}, \quad 1 \leq m \leq M \tag{14}
\end{equation*}
$$

Here A_{m} is a linear Fredholm-type integral operator, and f_{m} is a continuously differentiable function. Let us specify A_{m} and f_{m}. One has

$$
\begin{equation*}
f_{m}=2\left[N_{s}, f_{e}(s)\right], \quad f_{e}(s):=\left[N_{s},\left[E_{e}(s), N_{s}\right]\right]-\frac{\zeta_{m}}{i \omega \mu_{0}}\left[\nabla \times E_{e}, N_{s}\right] \tag{15}
\end{equation*}
$$

Condition (7) and formula (13) yield

$$
\begin{align*}
& f_{e}(s)+\frac{1}{2}\left[\sigma_{m}(s), N_{s}\right]+\left[\int_{S_{m}}\left[N_{s},\left[\nabla_{s} g(s, t), \sigma_{m}(t)\right]\right] d t, N_{s}\right] \\
& -\left.\frac{\zeta_{m}}{i \omega \mu_{0}}\left[\nabla \times \nabla \times \int_{S_{m}} g(x, t) \sigma_{m}(t) d t, N_{s}\right]\right|_{x \rightarrow s}=0 \tag{16}
\end{align*}
$$

Using the formula $\nabla \times \nabla=\operatorname{grad} \operatorname{div}-\nabla^{2}$, the relation

$$
\begin{align*}
\nabla_{x} \nabla_{x} \int_{S_{m}} g(x, t) \sigma_{m}(t) d t & =\nabla_{x} \int_{S_{m}}\left(-\nabla_{t} g(x, t), \sigma_{m}(t)\right) d t \\
& =\nabla_{x} \int_{S_{m}} g(x, t) \operatorname{Div} \sigma_{m}(t) d t=0 \tag{17}
\end{align*}
$$

where Div is the surface divergence, and

$$
\begin{equation*}
-\nabla_{x}^{2} \int_{S_{m}} g(x, t) \sigma_{m}(t) d t=k^{2} \int_{S_{m}} g(x, t) \sigma_{m}(t) d t, \quad x \in D \tag{18}
\end{equation*}
$$

where Equation (10) was used, one gets from (16) the following equation

$$
\begin{equation*}
\left[N_{s}, \sigma_{m}(s)\right]+2 f_{e}(s)+2 B \sigma_{m}=0 \tag{19}
\end{equation*}
$$

Here

$$
\begin{align*}
B \sigma_{m}:= & {\left[\int_{S_{m}}\left[N_{s},\left[\nabla_{s} g(s, t), \sigma_{m}(t)\right]\right] d t, N_{s}\right] } \\
& +\zeta_{m} i \omega \epsilon_{0}\left[\int_{S_{m}} g(s, t) \sigma_{m}(t) d t, N_{s}\right] \tag{20}
\end{align*}
$$

Take cross product of N_{s} with the left-hand side of (19) and use the formulas $N_{s} \cdot \sigma_{m}(s)=0$, and

$$
\begin{equation*}
\left[N_{s},\left[N_{s}, \sigma_{m}(s)\right]\right]=-\sigma_{m}(s) \tag{21}
\end{equation*}
$$

to get from (19) Equation (14):

$$
\begin{equation*}
\sigma_{m}(s)=2\left[N_{s}, f_{e}(s)\right]+2\left[N_{s}, B \sigma_{m}\right]:=A_{m} \sigma_{m}+f_{m} \tag{22}
\end{equation*}
$$

where $A_{m} \sigma_{m}=2\left[N_{s}, B \sigma_{m}\right]$. The operator A_{m} is linear and compact in the space $C\left(S_{m}\right)$, so that Equation (22) is of Fredholm type. Therefore, Equation (22) is solvable for any $f_{m} \in T_{m}$ if the homogeneous version of (22) has only the trivial solution $\sigma_{m}=0$. In this case, the solution σ_{m} to Equation (22) is of the order of the right-hand side f_{m}, that is, $O\left(a^{-\kappa}\right)$ as $a \rightarrow 0$, see formula (15). Moreover, it follows from Equation (22) that the main term of the asymptotics of σ_{m} as $a \rightarrow 0$ does not depend on $s \in S_{m}$.
Lemma 2. Assume that $\sigma_{m} \in T_{m}, \sigma_{m} \in C\left(S_{m}\right)$, and $\sigma_{m}(s)=A_{m} \sigma_{m}$. Then $\sigma_{m}=0$.

Lemma 2 is proved in Section 2.

Let us assume that in any subdomain Δ, the number $\mathcal{N}(\Delta)$ of the embedded bodies D_{m} is given by the formula:

$$
\begin{equation*}
\mathcal{N}(\Delta)=\frac{1}{a^{2-\kappa}} \int_{D_{m}} N(x) d x[1+o(1)], \quad a \rightarrow 0 \tag{23}
\end{equation*}
$$

where $N(x) \geq 0$ is a continuous function, vanishing outside of a finite domain Ω in which small bodies D_{m} are distributed, $\kappa \in(0,1)$ is a number one can choose at will. We also assume that

$$
\begin{equation*}
\zeta_{m}=\frac{h\left(x_{m}\right)}{a^{\kappa}}, \quad x_{m} \in D_{m} \tag{24}
\end{equation*}
$$

where $\operatorname{Re} h(x) \geq 0$, and $h(x)$ is a continuous function vanishing outside Ω.

Let us write (8) as

$$
\begin{align*}
E(x)= & E_{0}(x)+\sum_{m=1}^{M}\left[\nabla_{x} g\left(x, x_{m}\right), Q_{m}\right] \\
& +\sum_{m=1}^{M} \nabla \times \int_{S_{m}}\left(g(x, t)-g\left(x, x_{m}\right)\right) \sigma_{m}(t) d t \tag{25}
\end{align*}
$$

where

$$
\begin{equation*}
Q_{m}:=\int_{S_{m}} \sigma_{m}(t) d t \tag{26}
\end{equation*}
$$

Since $\sigma_{m}=O\left(a^{-\kappa}\right)$, one has $Q_{m}=O\left(a^{2-\kappa}\right)$. We want to prove that the second sum in (25) is negligible compared with the first sum. One has

$$
\begin{align*}
j_{1}:= & \left|\left[\nabla_{x} g\left(x, x_{m}\right), Q_{m}\right]\right| \leq O\left(\max \left\{\frac{1}{d^{2}}, \frac{k}{d}\right\}\right) O\left(a^{2-\kappa}\right), \tag{27}\\
j_{2}:= & \left|\nabla \times \int_{S_{m}}\left(g(x, t)-g\left(x, x_{m}\right)\right) \sigma_{m}(t) d t\right| \\
& \leq a O\left(\max \left\{\frac{1}{d^{3}}, \frac{k^{2}}{d}\right\}\right) O\left(a^{2-\kappa}\right), \tag{28}
\end{align*}
$$

and

$$
\begin{equation*}
\left|\frac{j_{2}}{j_{1}}\right|=O\left(\max \left\{\frac{a}{d}, k a\right\}\right) \rightarrow 0, \quad \frac{a}{d}=o(1), \quad a \rightarrow 0 \tag{29}
\end{equation*}
$$

Thus, one may neglect the second sum in (25), and write

$$
\begin{equation*}
E(x)=E_{0}(x)+\sum_{m=1}^{M}\left[\nabla_{x} g\left(x, x_{m}\right), Q_{m}\right] \tag{30}
\end{equation*}
$$

with an error that tends to zero as $a \rightarrow 0$. Let us estimate Q_{m} asymptotically, as $a \rightarrow 0$. Integrate Equation (22) over S_{m} to get

$$
\begin{equation*}
Q_{m}=2 \int_{S_{m}}\left[N_{s}, f_{e}(s)\right] d s+2 \int_{S_{m}}\left[N_{s}, B \sigma_{m}\right] d s \tag{31}
\end{equation*}
$$

It follows from (15) that

$$
\begin{equation*}
\left[N_{s}, f_{e}\right]=\left[N_{s}, E_{e}\right]-\frac{\zeta_{m}}{i \omega \mu_{0}}\left[N_{s},\left[\nabla \times E_{e}, N_{s}\right]\right] \tag{32}
\end{equation*}
$$

If E_{e} tends to a finite limit as $a \rightarrow 0$, then formula (32) implies that

$$
\begin{equation*}
\left[N_{s}, f_{e}\right]=O\left(\zeta_{m}\right)=O\left(\frac{1}{a^{\kappa}}\right), \quad a \rightarrow 0 \tag{33}
\end{equation*}
$$

By Lemma 2 the operator $\left(I-A_{m}\right)^{-1}$ is bounded, so $\sigma_{m}=O\left(\frac{1}{a^{\kappa}}\right)$, and

$$
\begin{equation*}
Q_{m}=O\left(a^{2-\kappa}\right), \quad a \rightarrow 0 \tag{34}
\end{equation*}
$$

because integration over S_{m} adds factor $O\left(a^{2}\right)$. As $a \rightarrow 0$, the sum (30) converges to the integral

$$
\begin{equation*}
E=E_{0}+\nabla \times \int_{\Omega} g(x, y) N(y) Q(y) d y \tag{35}
\end{equation*}
$$

where $Q(y)$ is the function such that

$$
\begin{equation*}
Q_{m}=Q\left(x_{m}\right) a^{2-\kappa} \tag{36}
\end{equation*}
$$

The function $Q(y)$ can be expressed in terms of E :

$$
\begin{equation*}
Q(y)=-4 \pi h(y) i \omega \epsilon_{0}(\nabla \times E)(y) \tag{37}
\end{equation*}
$$

see Appendix. Thus, Equation (35) takes the form

$$
\begin{equation*}
E(x)=E_{0}(x)-4 \pi i \omega \epsilon_{0} \nabla \times \int_{\Omega} g(x, y) \nabla \times E(y) h(y) N(y) d y \tag{38}
\end{equation*}
$$

Let us derive physical conclusions from Equation (38). Taking $\nabla \times \nabla \times$ of (38) yields

$$
\begin{align*}
\nabla \times \nabla \times E= & k^{2} E_{0}(x) \\
& -4 \pi i \omega \epsilon_{0} \nabla \times\left(\operatorname{grad} \operatorname{div}-\nabla^{2}\right) \int_{\Omega} g(x, y) \nabla \times E(y) h(y) N(y) d y \\
= & k^{2} E_{0}-k^{2} 4 \pi i \omega \epsilon_{0} \nabla \times \int_{\Omega} g(x, y) \nabla \times E(y) h(y) N(y) d y \\
& -4 \pi i \omega \epsilon_{0} \nabla \times(\nabla \times E(x) h(x) N(x)) \\
= & k^{2} E(x)-4 \pi i \omega \epsilon_{0} h(x) N(x) \nabla \times \nabla \times E \\
& -4 \pi i \omega \epsilon_{0}[\nabla(h(x) N(x)), \nabla \times E(x)] \tag{39}
\end{align*}
$$

Here we have used the known formula $\nabla \times \operatorname{grad}=0$, the known Equation (10), and assumed for simplicity that $h(x)$ is a scalar function. It follows from (39) that

$$
\begin{equation*}
\nabla \times \nabla \times E=K^{2}(x) E-\frac{4 \pi i \omega \epsilon_{0}}{1+4 \pi i \omega \epsilon_{0} h(x) N(x)}[\nabla(h(x) N(x)), \nabla \times E(x)] \tag{40}
\end{equation*}
$$

where

$$
\begin{equation*}
K^{2}(x)=\frac{k^{2}}{1+4 \pi i \omega \epsilon_{0} h(x) N(x)}, \quad k^{2}=\omega^{2} \epsilon_{0} \mu_{0} \tag{41}
\end{equation*}
$$

If $\nabla \times E=i \omega \mu(x) H$ and $\nabla \times E=-i \omega \epsilon(x) E$, then

$$
\begin{equation*}
\nabla \times \nabla \times E=\omega^{2} \epsilon(x) \mu(x) E+\left[\frac{\nabla \mu(x)}{\mu(x)}, \nabla \times E\right] \tag{42}
\end{equation*}
$$

Comparing this equation with (40), one can identify the last term in (40) as coming from a variable permeability $\mu(x)$. This $\mu(x)$ appears in the limiting medium due to the boundary currents on the surfaces $S_{m}, 1 \leq m \leq M$. These currents appear because of the impedance boundary conditions (7). Let us identify the permeability $\mu(x)$. Denote $\Psi(x):=1+4 \pi i \omega \epsilon_{0} h(x) N(x)$. Let $\epsilon(x)=\epsilon_{0}, \epsilon_{0}=$ const, and define $\mu(x):=\frac{\mu_{0}}{\Psi(x)}$. Then $K^{2}=\omega^{2} \epsilon_{0} \mu(x)$, and $\frac{\nabla \mu(x)}{\mu(x)}=$ $-\frac{\nabla \Psi(x)}{\Psi(x)}$. Consequently, formula (40) has a clear physical meaning: the electromagnetic properties of the limiting medium are described by the variable permeability:

$$
\begin{equation*}
\mu(x)=\frac{\mu_{0}}{\Psi(x)}=\frac{\mu_{0}}{1+4 \pi i \omega \epsilon_{0} h(x) N(x)} \tag{43}
\end{equation*}
$$

3. CONCLUSIONS

The limiting medium is described by the new refraction coefficient $K^{2}(x)$ (see (41)) and the new term in the Equation (40). This term is due to the spatially inhomogeneous permeability $\mu(x)=\frac{\mu_{0}}{\Psi(x)}$ generated in the limiting medium by the boundary impedances. The field $E(x)$ in the limiting medium (and in Equation (40)) solves Equation (38).

Therefore, we predict theoretically the new physical phenomenon: by embedding many small particles with suitable boundary impedances into a given homogeneous medium, one can create a medium with a desired spatially inhomogeneous permeability (43).

One can create material with a desired permeability $\mu(x)$ by embedding small particles with suitably chosen boundary impedances. Indeed, by formula (43) one can choose a complex-valued, in general, function $h(x)$, and a non-negative function $N(x) \geq 0$, describing the density distribution of the small particles, so that the right-hand side of formula (43) will yield a desired function $\mu(x)$.

4. PROOFS OF LEMMAS $\mathbf{1 , 2}$

Proof of Lemma 1.

From Equation (1) one derives (the bar stands for complex conjugate):

$$
\int_{D_{R}}(\bar{H} \cdot \nabla \times E-E \cdot \nabla \times \bar{H}) d x=\int_{D_{R}}\left(i \omega \mu_{0}|H|^{2}-i \omega \varepsilon_{0}|E|^{2}\right) d x,
$$

where $D_{R}:=D \cap B_{R}$, and $R>0$ is so large that $D_{m} \subset B_{R}:=\{x$: $|x| \leq R\}$ for all m. Recall that $\nabla \cdot[E, \bar{H}]=\bar{H} \cdot \nabla \times E-E \cdot \nabla \times \bar{H}$. Applying the divergence theorem, using the radiation condition on the sphere $S_{R}=\partial B_{R}$, and taking real part, one gets

$$
0=\sum_{m=1}^{M} \operatorname{Re} \int_{S_{m}}[E, \bar{H}] \cdot N d s=\sum_{m=1}^{M} \operatorname{Re} \int_{S_{m}}{\overline{\zeta_{m}}}^{-1} \bar{E}_{t}^{-} \cdot E_{t}^{-} d s,
$$

where E_{t}^{-}is the limiting value of E_{t} on S_{m} from $D, E_{t}=\zeta_{m}[H, N]$. This relation and assumption (4) imply $E_{t}^{-}=0$ on S_{m} for all m. Thus, $E=H=0$ in D.

Lemma 1 is proved.
Proof of Lemma 2.
If $\sigma_{m}=A_{m} \sigma_{m}$, then the functions $H=\frac{\nabla \times E}{i \omega \mu_{0}}$ and $E(x)=$ $\nabla \times \int_{S_{m}} g(x, t) \sigma(t) d t$ solve Equation (1) in D, E and H satisfy the radiation condition, and condition (2). Thus, $E=H=0$ in D. Consequently,

$$
\begin{align*}
0 & =\nabla \times \nabla \times \int_{S_{m}} g(x, t) \sigma_{m}(t) d t=\left(\operatorname{grad} \operatorname{div}-\nabla^{2}\right) \int_{S_{m}} g(x, t) \sigma_{m}(t) d t \\
& =k^{2} \int_{S_{m}} g(x, t) \sigma_{m}(t) d t, \quad x \in D . \tag{44}
\end{align*}
$$

This implies $\sigma_{m}(s)=0$.
Lemma 2 is proved.

APPENDIX A.

In Section A.1, Equation (38) is derived. In Section A.2, a linear algebraic system (LAS) is derived for finding vectors Q_{m} in Equation (36).

A.1. Boundary Condition (7) Yields

$$
\begin{aligned}
0= & {\left[N\left[E_{e}, N\right]\right]-\frac{\zeta_{m}}{i \omega \mu_{0}}\left[\nabla \times E_{e}, N\right]+\left[N,\left[\nabla \times \int_{S_{m}} g(s, t) \sigma_{m}(t) d t, N\right]\right] } \\
& -\frac{\zeta_{m}}{i \omega \mu_{0}}\left[\nabla \times \nabla \times \int_{S_{m}} g(x, s) \sigma_{m}(t) d t, N\right]
\end{aligned}
$$

Let us denote

$$
f_{e}:=\left[N,\left[E_{e}, N\right]\right]-\frac{\zeta_{m}}{i \omega \mu_{0}}\left[\nabla \times E_{e}, N\right]
$$

One has $\nabla \times \nabla=\nabla \nabla-\nabla^{2}$, and

$$
\begin{aligned}
\nabla_{x} \cdot \int_{S_{m}} g(x, t) \sigma_{m}(t) d t & =-\int_{S_{m}}\left(\nabla_{t} g(x, t), \sigma_{m}(t)\right) d t \\
& =\int_{S_{m}} g(x, t) \nabla_{t} \cdot \sigma_{m}(t) d t=0
\end{aligned}
$$

and

$$
-\nabla_{x}^{2} \int_{S_{m}} g(x, t) \sigma_{m}(t) d t=k^{2} \int_{S_{m}} g(x, t) \sigma_{m}(t) d t
$$

because $-\nabla_{x}^{2} g(x, t)=k^{2} g(x, t), x \neq t$, see (10). Thus, using (13), one gets:

$$
\begin{aligned}
0= & f_{e}+\left[\int_{S_{m}}\left[N_{s},\left[\nabla_{s} g(s, t), \sigma_{m}(t)\right]\right] d t, N_{s}\right]+\frac{1}{2}\left[\sigma_{m}(s), N_{s}\right] \\
& +\frac{\zeta_{m} k^{2}}{i \omega \mu_{0}}\left[N_{s}, \int_{S_{m}} g(s, t) \sigma_{m}(t) d t\right]
\end{aligned}
$$

Cross multiply this by N_{s} and use $N_{s} \cdot \sigma_{m}(s)=0$ to obtain

$$
\begin{aligned}
0= & {\left[f_{e}, N_{s}\right]+\left[N_{s},\left[\int_{S_{m}}\left[N_{s},\left[\nabla_{s} g(s, t), \sigma_{m}(t)\right]\right] d t, N_{s}\right]\right]+\frac{1}{2} \sigma_{m}(s) } \\
& -\zeta_{m} i \omega \mu_{0}\left[N_{s},\left[N_{s}, \int_{S_{m}} g(s, t) \sigma_{m}(t) d t\right]\right] .
\end{aligned}
$$

Note that

$$
\begin{aligned}
{\left[N_{s},\left[\int_{S_{m}}\left[N_{s},\left[\nabla_{s} g(s, t), \sigma_{m}(t)\right]\right] d t, N_{s}\right]\right] } & =\int_{S_{m}}\left[N_{s},\left[\nabla_{s} g(s, t), \sigma_{m}(t)\right] d t\right. \\
& -N_{s}\left(\int_{S_{m}}\left[N_{s},\left[\nabla_{s} g(s, t) \sigma_{m}(t)\right]\right] d t, N_{s}\right) \\
= & \int_{S_{m}}\left[N_{s},\left[\nabla_{s} g(s, t), \sigma_{m}(t)\right]\right] d t .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\sigma_{m}(t)= & \left.2\left[f_{e}(s), N_{s}\right]+2 \zeta_{m} i \omega \epsilon_{0}\left[N_{s}, \int_{S_{m}} g(s, t) \sigma_{m}(t) d t\right]\right] \\
& -2 \int_{S_{m}}\left[N_{s},\left[\nabla_{s} g(s, t), \sigma_{m}(t)\right]\right] d t:=A \sigma_{m}+f_{m}
\end{aligned}
$$

where

$$
f_{m}:=2\left[f_{e}(s), N_{s}\right]
$$

Denote

$$
Q_{m}=\int_{S_{m}} \sigma_{m}(s) d s
$$

One has

$$
\begin{aligned}
2 \int_{S_{m}}\left[\left[N_{s},\left[E_{e}(s), N_{s}\right]\right], N_{s}\right] d s & =2 \int_{S_{m}}\left[E_{e}(s), N_{s}\right] d s \\
& =-2 \int_{D_{m}} \nabla_{s} \times E_{e} d x
\end{aligned}
$$

and

$$
\begin{aligned}
& 2 \zeta_{m} i \omega \epsilon_{0} \int_{S_{m}}\left[\left[\nabla \times E_{e}, N_{s}\right], N_{s}\right] d s \\
= & -2 \zeta_{m} i \omega \epsilon_{0}\left(\int_{S_{m}} \nabla \times E_{e} d s-\int_{S_{m}} N_{s}\left(\nabla \times E_{e}, N_{s}\right) d s\right) \\
= & -2 \zeta_{m} i \omega \epsilon_{0} \int_{S_{m}} \nabla \times E_{e} d s+2 \zeta_{m} i \omega \epsilon_{0} \int_{D_{m}} \nabla \nabla \cdot \nabla \times E_{e} d x \\
= & -2 \zeta_{m} i \omega \epsilon_{0} \int_{S_{m}} \nabla \times E_{e} d s .
\end{aligned}
$$

Thus,
$\int_{S_{m}} f_{m}(s) d s=-2 \int_{D_{m}} \nabla \times E_{e} d x-2 \zeta_{m} i \omega \epsilon_{0} \int_{S_{m}} \nabla \times E_{e} d s=O\left(a^{2-\kappa}\right)$,
provided that

$$
\zeta_{m}=\frac{h\left(x_{m}\right)}{a^{\kappa}}, \quad 0<\kappa<1
$$

One has

$$
\begin{aligned}
& -2 \int_{S_{m}} d s \int_{S_{m}}\left[N_{s},\left[\nabla_{s} g(s, t), \sigma_{m}(t)\right]\right] d t \\
= & -2 \int_{S_{m}} d s \int_{S_{m}} d t\left(\nabla_{s} g(s, t)\left(N_{s}, \sigma_{m}(t)\right)-\sigma_{m}(t) \frac{\partial g(s, t)}{\partial N_{s}}\right) d t \\
= & -2 \int_{S_{m}} d s \int_{S_{m}} d t \nabla_{s} g(s, t)\left(N_{s}, \sigma_{m}(t)\right)+\int_{S_{m}} \sigma_{m}(t) d t 2 \int_{S_{m}} d s \frac{\partial g(s, t)}{\partial N_{s}} .
\end{aligned}
$$

Since

$$
2 \int_{S_{m}} d s \frac{\partial g(s, t)}{\partial N_{s}}=-2 \int_{D_{m}} d x k^{2} g(x, t)-1
$$

one gets
$\int_{S_{m}} d t \sigma_{m}(t) 2 \int_{S_{m}} d s \frac{\partial g(s, t)}{\partial N_{s}}=-\int_{S_{m}} \sigma_{m}(t) d t-2 k^{2} \int_{S_{m}} d t \sigma_{m}(t) \int_{D_{m}} d x g(x, t)$.
If $\int_{S_{m}}\left|\sigma_{m}(t)\right| d t<\infty$ and $\int_{S_{m}} \sigma_{m}(t) d t \neq 0$, then

$$
\left|\int_{S_{m}} \sigma_{m}(t) d t\right| \gg\left|\int_{S_{m}} d t \sigma_{m}(t) \int_{D_{m}} d x g(x, t)\right|
$$

because $\left|\int_{D_{m}} d x g(x, t)\right|=O\left(a^{2}\right)$ if $x \in D_{m}$.
One has:

$$
\left|-2 \int_{S_{m}} d s \int_{S_{m}} d t \nabla_{s} g(s, t)\left(N_{s}, \sigma_{m}(t)\right)\right| \ll\left|\int_{S_{m}} \sigma_{m}(t) d t\right|=\left|Q_{m}\right|
$$

Therefore,

$$
\begin{array}{r}
Q_{m}=\int_{S_{m}} \sigma_{m}(t) d t=-\int_{D_{m}} \nabla \times E_{e} d x-\zeta_{m} i \omega \epsilon_{0} \int_{S_{m}} \nabla \times E_{e} d s[1+o(1)] \\
a \rightarrow 0
\end{array}
$$

This yields the following formula (cf (30)):

$$
E(x)=E_{0}(x)+\sum_{m=1}^{M}\left[\nabla g\left(x, x_{m}\right),-\int_{D_{m}} \nabla \times E_{e} d x-\zeta_{m} i \omega \epsilon_{0} \int_{S_{m}} \nabla \times E_{e} d s\right]
$$

One has

$$
\int_{D_{m}} \nabla \times E_{e} d x=O\left(a^{3}\right) \ll\left|\zeta_{m} i \omega \epsilon_{0} \int_{S_{m}} \nabla \times E_{0} d s\right|=O\left(a^{2-\kappa}\right)
$$

Thus, if ζ_{m} are scalars, one gets

$$
E=E_{0}(x)-i \omega \epsilon_{0} \sum_{m=1}^{M} \zeta_{m}\left[\nabla_{x} g\left(x, x_{m}\right), \int_{S_{m}} \nabla \times E_{e} d s\right]
$$

Passing to the limit $a \rightarrow 0$, one obtains

$$
E_{e}=E_{0}(x)-4 \pi i \omega \epsilon_{0} \int\left[\nabla_{x} g(x, y), \nabla \times E_{e}(y)\right] h(y) N(y) d y
$$

The above passage to the limit is done by Theorem 1 from [7], p. 206. It uses the convergence of the collocation method for solving Equation (38), see [6]. Writing $E_{e}=E$ for the limiting field yields Equation (38).

A.2.

In this Section, a numerical method is developed for solving many-body wave scattering problem when the scatterers are small in comparison with the wavelength. The method consists of a derivation of a linear algebraic system for finding vectors $\mathcal{P}_{m}:=(\nabla \times E)\left(x_{m}\right), 1 \leq m \leq M$. If \mathcal{P}_{m} are found, then by formulas (37) and (36) one finds $Q_{m}=$ $-4 \pi i \omega \epsilon_{0} h\left(x_{m}\right) a^{2-\kappa} \mathcal{P}_{m}$, and, by formula (3), field $E(x)$.

Let us derive linear algebraic system for finding \mathcal{P}_{m}.
Apply $\nabla \times$ to Equation (30), let $x=x_{j}, 1 \leq j \leq M$, and replace $\sum_{m=1}^{M}$ by the sum $\sum_{m \neq j, m=1}^{M}$.

Then one obtains

$$
\mathcal{P}_{j}=\mathcal{P}_{0 j}-\left.4 \pi i \omega \epsilon_{0} a^{2-\kappa} \sum_{m \neq j, m=1}^{M}\left(\text { graddiv }-\nabla^{2}\right) g\left(x, x_{m}\right)\right|_{x=x_{j}} h\left(x_{m}\right) \mathcal{P}_{m}
$$

$$
1 \leq j \leq M
$$

where $\mathcal{P}_{0 j}:=\left(\nabla \times E_{0}\right)\left(x_{j}\right)$. This is a linear algebraic system for finding \mathcal{P}_{m}. In the above derivation we have used the formula

$$
\nabla \times\left[\nabla g, Q_{m}\right]=\left(g r a d d i v-\nabla^{2}\right) g Q_{m}
$$

REFERENCES

1. Cioranescu, D. and P. Donato, An Introduction to Homogenization, Oxford Univ. Press, New York, 1999.
2. Marchenko, V. and E. Khruslov, Homogenization of Partial Differential Equations, Birkhäuser, Boston, 2006.
3. Müller, C., Foundations of the Mathematical Theory of Electromagnetic Waves, Springer-Verlag, Berlin, 1969.
4. Ramm, A. G., "Many-body wave scattering by small bodies and applications," J. Math. Phys., Vol. 48, No. 10, 103511, 2007.
5. Ramm, A. G., "Wave scattering by many small particles embedded in a medium," Phys. Lett. A, Vol. 372, No. 17, 30643070, 2008.
6. Ramm, A. G., "A collocation method for solving integral equations," Internat. Journ. Comp. Sci. Math (IJCSM), Vol. 3, No. 2, 222-228, 2009.
7. Ramm, A. G., "Electromagnetic wave scattering by many small bodies and creating materials with a desired refraction coefficient," Progress In Electromagnetic Research M, Vol. 13, 203-215, 2010.
