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Abstract—Scattering of electromagnetic (EM) waves by many small
particles (bodies), embedded in a homogeneous medium, is studied.
Physical properties of the particles are described by their boundary
impedances. The limiting equation is obtained for the effective EM
field in the limiting medium, in the limit a → 0, where a is the
characteristic size of a particle and the number M(a) of the particles
tends to infinity at a suitable rate. The proposed theory allows
one to create a medium with a desirable spatially inhomogeneous
permeability. The main new physical result is the explicit analytical
formula for the permeability µ(x) of the limiting medium. While the
initial medium has a constant permeability µ0, the limiting medium,
obtained as a result of embedding many small particles with prescribed
boundary impedances, has a non-homogeneous permeability which is
expressed analytically in terms of the density of the distribution of
the small particles and their boundary impedances. Therefore, a new
physical phenomenon is predicted theoretically, namely, appearance of
a spatially inhomogeneous permeability as a result of embedding of
many small particles whose physical properties are described by their
boundary impedances.

1. INTRODUCTION

In this paper, we outline a theory of electromagnetic (EM)
wave scattering by many small particles (bodies) embedded in a
homogeneous medium which is described by the constant permittivity
ε0 > 0, permeability µ0 > 0 and, possibly, constant conductivity
σ0 ≥ 0. The small particles are embedded in a finite domain Ω. The

Received 16 September 2010, Accepted 14 October 2010, Scheduled 22 October 2010
Corresponding author: Alexander G. Ramm (ramm@math.ksu.edu).



194 Ramm

medium, created by the embedding of the small particles, has new
physical properties. In particular, it has a spatially inhomogeneous
magnetic permeability µ(x), which can be controlled by the choice of
the boundary impedances of the embedded small particles and their
distribution density. This is a new physical effect, as far as the author
knows. An analytic formula for the permeability of the new medium
is derived:

µ(x) =
µ0

Ψ(x)
,

where
Ψ(x) = 1 + 4πiε0ωh(x)N(x).

Here ω is the frequency of the EM field, ε0 is the constant dielectric
parameter of the original medium, h(x) is a function describing
boundary impedances of the small embedded particles, and N(x) ≥ 0
is a function describing the distribution of these particles. We assume
that in any subdomain ∆, the number N (∆) of the embedded particles
Dm is given by the formula:

N (∆) =
1

a2−κ

∫

Dm

N(x)dx[1 + o(1)], a → 0,

where N(x) ≥ 0 is a continuous function, vanishing outside of the
finite domain Ω in which small particles (bodies) Dm are distributed,
κ ∈ (0, 1) is a number one can choose at will, and the boundary
impedances of the small particles are defined by the formula

ζm =
h(xm)

aκ
, xm ∈ Dm,

where xm is a point inside m-th particle Dm, Reh(x) ≥ 0, and h(x) is
a continuous function vanishing outside Ω. The impedance boundary
condition on the surface Sm of the m-th particle Dm is Et = ζm[Ht, N ],
where Et(Ht) is the tangential component of E(H) on Sm, and N is
the unit normal to Sm, pointing out of Dm.

Since one can choose the functions N(x) and h(x), one can create
a desired magnetic permeability in Ω. This is a novel idea, to the
author’s knowledge.

We also derive an analytic formula for the refraction coefficient of
the medium in Ω created by the embedding of many small particles.
An equation for the EM field in the limiting medium is derived. This
medium is created when the size a of small particles tends to zero
while the total number M = M(a) of the particles tends to infinity at
a suitable rate.

The refraction coefficient in the limiting medium is spatially
inhomogeneous.
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Our theory may be viewed as a “homogenization theory”, but
it differs from the usual homogenization theory (see, e.g., [1, 2], and
references therein) in several respects: we do not assume any periodic
structure in the distribution of small bodies, our operators are non-
selfadjoint, the spectrum of these operators is not discrete, etc. Our
ideas, methods, and techiques are quite different from the usual
methods. These ideas are similar to the ideas developed in papers [4, 5],
where scalar wave scattering by small bodies was studied, and in
the papers [6, 7]. However, the scattering of EM waves brought new
technical difficulties which are resolved in this paper. The difficulties
come from the vectorial nature of the boundary conditions. Our
arguments are valid for small particles of arbitrary shapes.

We also give a new numerical method for solving many-body wave-
scattering problems for small scatterers, see Section A.2.

2. EM WAVE SCATTERING BY MANY SMALL
PARTICLES

We assume that many small bodies Dm, 1 ≤ m ≤ M , are embedded
in a homogeneous medium with constant parameters ε0, µ0. Let
k2 = ω2ε0µ0, where ω is the frequency. Our arguments remain valid
if one assumes that the medium has a constant conductivity σ0 > 0.
In this case ε0 is replaced by ε0 + iσ0

ω . Denote by [E, H] = E ×H the
cross product of two vectors, and by (E, H) = E ·H the dot product
of two vectors.

Electromagnetic (EM) wave scattering problem consists of finding
vectors E and H satisfying the Maxwell equations:

∇× E = iωµ0H, ∇×H = −iωε0E in D := R3 \ ∪M
m=1Dm, (1)

the impedance boundary conditions:

[N, [E, N ]] = ζm[H, N ] on Sm, 1 ≤ m ≤ M, (2)

and the radiation conditions:

E = E0 + vE , H = H0 + vH , (3)

where ζ is the impedance, N is the unit normal to Sm pointing out
of Dm, E0,H0 are the incident fields satisfying Equation (1) in all of
R3. One often assumes that the incident wave is a plane wave, i.e.,
E0 = Eeikα·x, E is a constant vector, α ∈ S2 is a unit vector, S2 is the
unit sphere in R3, α · E = 0, vE and vH satisfy the radiation condition:
r(∂v

∂r − ikv) = o(1) as r := |x| → ∞.
By impedance ζm we assume in this paper either a constant,

Re ζm ≥ 0, or a matrix function 2 × 2 acting on the tangential to
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Sm vector fields, such that
Re(ζmEt, Et) ≥ 0 ∀Et ∈ Tm, (4)

where Tm is the set of all tangential to Sm continuous vector fields
such that DivEt = 0, where Div is the surface divergence, and Et

is the tangential component of E. Smallness of Dm means that
ka ¿ 1, where a = 0.5max1≤m≤M diamDm. By the tangential to
Sm component Et of a vector field E the following is understood in
this paper:

Et = E −N(E,N) = [N, [E, N ]], [Et, N ] = [E,N ]. (5)
This definition differs from the one used often in the literature, namely,
from the definition Et = [N, E]. Our definition (5) corresponds
to the geometrical meaning of the tangential component of E and,
therefore, should be used. The impedance boundary condition is
written usually as Et = ζ[Ht, N ], where the impedance ζ is a number.
If one uses definition (5), then this condition reduces to (2), because
[[N, [H, N ]], N ] = [H, N ].
Lemma 1. Problem (1)–(4) has at most one solution.

Lemma 1 is proved in Section 2.
Let us note that problem (1)–(4) is equivalent to the problems (6),

(7), (3), (4), where

∇×∇× E = k2E in D, H =
∇× E

iωµ0
, (6)

[N, [E, N ]] =
ζm

iωµ0
[∇× E, N ] on Sm, 1 ≤ m ≤ M. (7)

Thus, we have reduced our problem to finding one vector E(x). If E(x)
is found, then H = ∇×E

iωµ0
.

Let us look for E of the form

E = E0 +
M∑

m=1

∇×
∫

Sm

g(x, t)σm(t)dt, g(x, y) =
eik|x−y|

4π|x− y| , (8)

where t ∈ Sm and dt is an element of the area of Sm, σm(t) ∈ Tm.
This E for any continuous σm(t) solves Equation (6) in D because E0

solves (6) and

∇×∇×∇×
∫

Sm

g(x, t)σm(t)dt = ∇∇ · ∇×
∫

Sm

g(x, t)σm(t)dt

−∇2∇×
∫

Sm

g(x, t)σm(t)dt

= k2∇×
∫

Sm

g(x, t)σm(t)dt, x ∈D. (9)
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Here we have used the known identity divcurl E = 0, valid for any
smooth vector field E, and the known formula

−∇2g(x, y) = k2g(x, y) + δ(x− y). (10)

The integral
∫
Sm

g(x, t)σm(t)dt satisfies the radiation condition. Thus,
formula (8) solves problem (6), (7), (3), (4) if σm(t) are chosen so that
boundary conditions (7) are satisfied.

Define the effective field Ee(x) = Em
e (x) = E

(m)
e (x, a), acting on

the m-th body Dm:

Ee(x) := E(x)−∇×
∫

Sm

g(x, t)σm(t)dt := E(m)
e (x), (11)

where we assume that x is in a neigborhood of Sm, but Ee(x) is defined
for all x ∈ R3. Let xm ∈ Dm be a point inside Dm, and d = d(a) be
the distance between two neighboring small bodies. We assume that

lim
a→0

a

d(a)
= 0, lim

a→0
d(a) = 0. (12)

We will prove later that Ee(x, a) tends to a limit Ee(x) as a → 0,
and Ee(x) is a twice continuously differentiable function. To derive
an integral equation for σm = σm(t), substitute E = E0 + ∇ ×∫
Sm

g(x, t)σm(t)dt into (7), use the formula

[N,∇×
∫

Sm

g(x, t)σm(t)dt]∓=
∫

Sm

[Ns, [∇sg(x, t), σm(t)]]dt±σm(t)
2

, (13)

(see, e.g., [3]), the −(+) signs denote the limiting values of the left-
hand side of (13) as x → s from D(Dm), and get

σm(t) = Amσm + fm, 1 ≤ m ≤ M. (14)

Here Am is a linear Fredholm-type integral operator, and fm is a
continuously differentiable function. Let us specify Am and fm. One
has

fm = 2[Ns, fe(s)], fe(s) := [Ns, [Ee(s), Ns]]− ζm

iωµ0
[∇× Ee, Ns]. (15)

Condition (7) and formula (13) yield

fe(s) +
1
2
[σm(s), Ns] +

[∫

Sm

[Ns, [∇sg(s, t), σm(t)]]dt,Ns

]

− ζm

iωµ0
[∇×∇×

∫

Sm

g(x, t)σm(t)dt,Ns]|x→s = 0 (16)
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Using the formula ∇×∇ = grad div−∇2, the relation

∇x∇x

∫

Sm

g(x, t)σm(t)dt =∇x

∫

Sm

(−∇tg(x, t), σm(t))dt

=∇x

∫

Sm

g(x, t)Divσm(t)dt = 0, (17)

where Div is the surface divergence, and

−∇2
x

∫

Sm

g(x, t)σm(t)dt = k2

∫

Sm

g(x, t)σm(t)dt, x ∈ D, (18)

where Equation (10) was used, one gets from (16) the following
equation

[Ns, σm(s)] + 2fe(s) + 2Bσm = 0. (19)

Here

Bσm : =
[∫

Sm

[Ns, [∇sg(s, t), σm(t)]]dt,Ns

]

+ζmiωε0

[∫

Sm

g(s, t)σm(t)dt,Ns

]
. (20)

Take cross product of Ns with the left-hand side of (19) and use the
formulas Ns · σm(s) = 0, and

[Ns, [Ns, σm(s)]] = −σm(s), (21)

to get from (19) Equation (14):

σm(s) = 2[Ns, fe(s)] + 2[Ns, Bσm] := Amσm + fm, (22)

where Amσm = 2[Ns, Bσm]. The operator Am is linear and compact in
the space C(Sm), so that Equation (22) is of Fredholm type. Therefore,
Equation (22) is solvable for any fm ∈ Tm if the homogeneous version
of (22) has only the trivial solution σm = 0. In this case, the solution
σm to Equation (22) is of the order of the right-hand side fm, that
is, O(a−κ) as a → 0, see formula (15). Moreover, it follows from
Equation (22) that the main term of the asymptotics of σm as a → 0
does not depend on s ∈ Sm.
Lemma 2. Assume that σm ∈ Tm, σm ∈ C(Sm), and σm(s) = Amσm.
Then σm = 0.

Lemma 2 is proved in Section 2.
Let us assume that in any subdomain ∆, the number N (∆) of the

embedded bodies Dm is given by the formula:

N (∆) =
1

a2−κ

∫

Dm

N(x)dx[1 + o(1)], a → 0, (23)
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where N(x) ≥ 0 is a continuous function, vanishing outside of a finite
domain Ω in which small bodies Dm are distributed, κ ∈ (0, 1) is a
number one can choose at will. We also assume that

ζm =
h(xm)

aκ
, xm ∈ Dm, (24)

where Reh(x) ≥ 0, and h(x) is a continuous function vanishing outside
Ω.

Let us write (8) as

E(x) = E0(x) +
M∑

m=1

[∇xg(x, xm), Qm]

+
M∑

m=1

∇×
∫

Sm

(g(x, t)− g(x, xm))σm(t)dt, (25)

where

Qm :=
∫

Sm

σm(t)dt. (26)

Since σm = O(a−κ), one has Qm = O(a2−κ). We want to prove that
the second sum in (25) is negligible compared with the first sum. One
has

j1 : = |[∇xg(x, xm), Qm]| ≤ O

(
max

{
1
d2

,
k

d

})
O(a2−κ), (27)

j2 : = |∇ ×
∫

Sm

(g(x, t)− g(x, xm))σm(t)dt|

≤ aO

(
max

{
1
d3

,
k2

d

})
O(a2−κ), (28)

and ∣∣∣∣
j2

j1

∣∣∣∣ = O
(
max

{a

d
, ka

})
→ 0,

a

d
= o(1), a → 0. (29)

Thus, one may neglect the second sum in (25), and write

E(x) = E0(x) +
M∑

m=1

[∇xg(x, xm), Qm] (30)

with an error that tends to zero as a → 0. Let us estimate Qm

asymptotically, as a → 0. Integrate Equation (22) over Sm to get

Qm = 2
∫

Sm

[Ns, fe(s)]ds + 2
∫

Sm

[Ns, Bσm]ds. (31)
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It follows from (15) that

[Ns, fe] = [Ns, Ee]− ζm

iωµ0
[Ns, [∇× Ee, Ns]]. (32)

If Ee tends to a finite limit as a → 0, then formula (32) implies that

[Ns, fe] = O(ζm) = O

(
1
aκ

)
, a → 0. (33)

By Lemma 2 the operator (I − Am)−1 is bounded, so σm = O
(

1
aκ

)
,

and
Qm = O

(
a2−κ

)
, a → 0, (34)

because integration over Sm adds factor O(a2). As a → 0, the sum
(30) converges to the integral

E = E0 +∇×
∫

Ω
g(x, y)N(y)Q(y)dy, (35)

where Q(y) is the function such that

Qm = Q(xm)a2−κ. (36)
The function Q(y) can be expressed in terms of E:

Q(y) = −4πh(y)iωε0(∇× E)(y), (37)
see Appendix. Thus, Equation (35) takes the form

E(x) = E0(x)− 4πiωε0∇×
∫

Ω
g(x, y)∇× E(y)h(y)N(y)dy. (38)

Let us derive physical conclusions from Equation (38). Taking ∇×∇×
of (38) yields

∇×∇×E = k2E0(x)

−4πiωε0∇×(grad div−∇2)
∫

Ω
g(x, y)∇×E(y)h(y)N(y)dy

= k2E0 − k24πiωε0∇×
∫

Ω
g(x, y)∇× E(y)h(y)N(y)dy

−4πiωε0∇× (∇× E(x)h(x)N(x))
= k2E(x)− 4πiωε0h(x)N(x)∇×∇×E

−4πiωε0[∇(h(x)N(x)),∇× E(x)]. (39)
Here we have used the known formula ∇ × grad = 0, the known
Equation (10), and assumed for simplicity that h(x) is a scalar function.
It follows from (39) that

∇×∇×E =K2(x)E− 4πiωε0
1+4πiωε0h(x)N(x)

[∇(h(x)N(x)),∇×E(x)], (40)
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where

K2(x) =
k2

1 + 4πiωε0h(x)N(x)
, k2 = ω2ε0µ0. (41)

If ∇× E = iωµ(x)H and ∇× E = −iωε(x)E, then

∇×∇× E = ω2ε(x)µ(x)E +
[∇µ(x)

µ(x)
,∇× E

]
. (42)

Comparing this equation with (40), one can identify the last term
in (40) as coming from a variable permeability µ(x). This µ(x)
appears in the limiting medium due to the boundary currents on the
surfaces Sm, 1 ≤ m ≤ M . These currents appear because of the
impedance boundary conditions (7). Let us identify the permeability
µ(x). Denote Ψ(x) := 1 + 4πiωε0h(x)N(x). Let ε(x) = ε0, ε0 = const,
and define µ(x) := µ0

Ψ(x) . Then K2 = ω2ε0µ(x), and ∇µ(x)
µ(x) =

−∇Ψ(x)
Ψ(x) . Consequently, formula (40) has a clear physical meaning:

the electromagnetic properties of the limiting medium are described
by the variable permeability:

µ(x) =
µ0

Ψ(x)
=

µ0

1 + 4πiωε0h(x)N(x)
. (43)

3. CONCLUSIONS

The limiting medium is described by the new refraction coefficient
K2(x) (see (41)) and the new term in the Equation (40). This
term is due to the spatially inhomogeneous permeability µ(x) = µ0

Ψ(x)

generated in the limiting medium by the boundary impedances. The
field E(x) in the limiting medium ( and in Equation (40)) solves
Equation (38).

Therefore, we predict theoretically the new physical phenomenon:
by embedding many small particles with suitable boundary impedances
into a given homogeneous medium, one can create a medium with a
desired spatially inhomogeneous permeability (43).

One can create material with a desired permeability µ(x) by
embedding small particles with suitably chosen boundary impedances.
Indeed, by formula (43) one can choose a complex-valued, in general,
function h(x), and a non-negative function N(x) ≥ 0, describing the
density distribution of the small particles, so that the right-hand side
of formula (43) will yield a desired function µ(x).
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4. PROOFS OF LEMMAS 1,2

Proof of Lemma 1.

From Equation (1) one derives (the bar stands for complex
conjugate):

∫

DR

(
H̄ · ∇ × E − E · ∇ × H̄

)
dx =

∫

DR

(
iωµ0|H|2 − iωε0|E|2

)
dx,

where DR := D ∩ BR, and R > 0 is so large that Dm ⊂ BR := {x :
|x| ≤ R} for all m. Recall that ∇ · [E, H̄] = H̄ · ∇ × E − E · ∇ × H̄.
Applying the divergence theorem, using the radiation condition on the
sphere SR = ∂BR, and taking real part, one gets

0 =
M∑

m=1

Re
∫

Sm

[E, H̄] ·Nds =
M∑

m=1

Re
∫

Sm

ζ̄m
−1

Ē−
t · E−

t ds,

where E−
t is the limiting value of Et on Sm from D, Et = ζm[H, N ].

This relation and assumption (4) imply E−
t = 0 on Sm for all m. Thus,

E = H = 0 in D.
Lemma 1 is proved.

Proof of Lemma 2.
If σm = Amσm, then the functions H = ∇×E

iωµ0
and E(x) =

∇ × ∫
Sm

g(x, t)σ(t)dt solve Equation (1) in D, E and H satisfy the
radiation condition, and condition (2). Thus, E = H = 0 in D.
Consequently,

0 =∇×∇×
∫

Sm

g(x, t)σm(t)dt = (grad div−∇2)
∫

Sm

g(x, t)σm(t)dt

= k2

∫

Sm

g(x, t)σm(t)dt, x ∈ D. (44)

This implies σm(s) = 0.
Lemma 2 is proved.

APPENDIX A.

In Section A.1, Equation (38) is derived. In Section A.2, a
linear algebraic system (LAS) is derived for finding vectors Qm in
Equation (36).
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A.1. Boundary Condition (7) Yields

0 = [N [Ee, N ]]− ζm

iωµ0
[∇× Ee, N ] +

[
N,

[
∇×

∫

Sm

g(s, t)σm(t)dt,N

]]

− ζm

iωµ0

[
∇×∇×

∫

Sm

g(x, s)σm(t)dt,N

]
.

Let us denote

fe := [N, [Ee, N ]]− ζm

iωµ0
[∇× Ee, N ].

One has ∇×∇ = ∇∇−∇2, and

∇x ·
∫

Sm

g(x, t)σm(t)dt = −
∫

Sm

(∇tg(x, t), σm(t)) dt

=
∫

Sm

g(x, t)∇t · σm(t)dt = 0,

and

−∇2
x

∫

Sm

g(x, t)σm(t)dt = k2

∫

Sm

g(x, t)σm(t)dt,

because −∇2
xg(x, t) = k2g(x, t), x 6= t, see (10). Thus, using (13), one

gets:

0 = fe +
[∫

Sm

[Ns, [∇sg(s, t), σm(t)]]dt,Ns

]
+

1
2
[σm(s), Ns]

+
ζmk2

iωµ0

[
Ns,

∫

Sm

g(s, t)σm(t)dt

]
.

Cross multiply this by Ns and use Ns · σm(s) = 0 to obtain

0 = [fe, Ns] +
[
Ns,

[∫

Sm

[Ns, [∇sg(s, t), σm(t)]]dt,Ns

]]
+

1
2
σm(s)

−ζmiωµ0

[
Ns,

[
Ns,

∫

Sm

g(s, t)σm(t)dt

]]
.

Note that

[Ns,

[∫

Sm

[Ns,[∇sg(s,t),σm(t)]]dt,Ns]
]
=
∫

Sm

[Ns, [∇sg(s, t), σm(t)]dt

−Ns

(∫

Sm

[Ns,[∇sg(s,t)σm(t)]]dt,Ns

)

=
∫

Sm

[Ns, [∇sg(s, t), σm(t)]]dt.
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Consequently,

σm(t) = 2[fe(s), Ns] + 2ζmiωε0

[
Ns,

∫

Sm

g(s, t)σm(t)dt]
]

−2
∫

Sm

[Ns, [∇sg(s, t), σm(t)]]dt := Aσm + fm,

where
fm := 2[fe(s), Ns].

Denote
Qm =

∫

Sm

σm(s)ds.

One has

2
∫

Sm

[[Ns, [Ee(s), Ns]], Ns]ds = 2
∫

Sm

[Ee(s), Ns]ds

= −2
∫

Dm

∇s × Eedx,

and

2ζmiωε0

∫

Sm

[[∇× Ee, Ns], Ns]ds

= −2ζmiωε0

(∫

Sm

∇× Eeds−
∫

Sm

Ns(∇× Ee, Ns)ds

)

= −2ζmiωε0

∫

Sm

∇× Eeds + 2ζmiωε0

∫

Dm

∇∇ · ∇ ×Eedx

= −2ζmiωε0

∫

Sm

∇× Eeds.

Thus,∫

Sm

fm(s)ds = −2
∫

Dm

∇×Eedx− 2ζmiωε0

∫

Sm

∇×Eeds = O(a2−κ),

provided that

ζm =
h(xm)

aκ
, 0 < κ < 1.

One has

−2
∫

Sm

ds

∫

Sm

[Ns, [∇sg(s, t), σm(t)]]dt

=−2
∫

Sm

ds

∫

Sm

dt

(
∇sg(s, t)(Ns, σm(t))− σm(t)

∂g(s, t)
∂Ns

)
dt

=−2
∫

Sm

ds

∫

Sm

dt∇sg(s, t)(Ns, σm(t))+
∫

Sm

σm(t)dt2
∫

Sm

ds
∂g(s, t)

∂Ns
.
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Since
2

∫

Sm

ds
∂g(s, t)

∂Ns
= −2

∫

Dm

dxk2g(x, t)− 1,

one gets∫

Sm

dtσm(t)2
∫

Sm

ds
∂g(s,t)
∂Ns

=−
∫

Sm

σm(t)dt−2k2

∫

Sm

dtσm(t)
∫

Dm

dxg(x, t).

If
∫
Sm
|σm(t)|dt < ∞ and

∫
Sm

σm(t)dt 6= 0, then
∣∣∣∣
∫

Sm

σm(t)dt

∣∣∣∣ À
∣∣∣∣
∫

Sm

dtσm(t)
∫

Dm

dxg(x, t)
∣∣∣∣ ,

because | ∫Dm
dxg(x, t)| = O(a2) if x ∈ Dm.

One has:∣∣∣∣−2
∫

Sm

ds

∫

Sm

dt∇sg(s, t)(Ns, σm(t))
∣∣∣∣ ¿

∣∣∣∣
∫

Sm

σm(t)dt| = |Qm

∣∣∣∣ .

Therefore,

Qm =
∫

Sm

σm(t)dt =−
∫

Dm

∇×Eedx− ζmiωε0

∫

Sm

∇×Eeds[1 + o(1)],

a → 0.

This yields the following formula (cf (30)):

E(x)=E0(x)+
M∑

m=1

[
∇g(x, xm),−

∫

Dm

∇×Eedx−ζmiωε0

∫

Sm

∇×Eeds

]
.

One has∫

Dm

∇× Eedx = O(a3) ¿
∣∣∣∣ζmiωε0

∫

Sm

∇× E0ds

∣∣∣∣ = O(a2−κ).

Thus, if ζm are scalars, one gets

E = E0(x)− iωε0

M∑

m=1

ζm

[
∇xg(x, xm),

∫

Sm

∇× Eeds

]
.

Passing to the limit a → 0, one obtains

Ee = E0(x)− 4πiωε0

∫
[∇xg(x, y),∇× Ee(y)]h(y)N(y)dy.

The above passage to the limit is done by Theorem 1 from [7], p.
206. It uses the convergence of the collocation method for solving
Equation (38), see [6]. Writing Ee = E for the limiting field yields
Equation (38).
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A.2.

In this Section, a numerical method is developed for solving many-body
wave scattering problem when the scatterers are small in comparison
with the wavelength. The method consists of a derivation of a linear
algebraic system for finding vectors Pm := (∇× E)(xm), 1 ≤ m ≤ M.
If Pm are found, then by formulas (37) and (36) one finds Qm =
−4πiωε0h(xm)a2−κPm, and, by formula (3), field E(x).

Let us derive linear algebraic system for finding Pm.
Apply ∇× to Equation (30), let x = xj , 1 ≤ j ≤ M, and replace∑M

m=1 by the sum
∑M

m6=j,m=1.
Then one obtains

Pj = P0j − 4πiωε0a
2−κ

M∑

m6=j,m=1

(graddiv−∇2)g(x, xm)|x=xjh(xm)Pm,

1 ≤ j ≤ M,

where P0j := (∇×E0)(xj). This is a linear algebraic system for finding
Pm. In the above derivation we have used the formula

∇× [∇g,Qm] = (graddiv −∇2)gQm.
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