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Abstract—This paper discusses the inverse Joukowski mapping,
w = z +

√
z2 − c2 (c > 0), which can be classified into active and

passive inverse transformation. By using the active inverse Joukowski
mapping, the generalized image problems that the line charge ρl

is located outside the elliptical conducting cylinder, or the finite
conducting plate can be solved. By using the passive logarithmic
inverse Joukowski mapping, the capacitance C of a finite conducting
plate placed vertically above the infinite conducting plate can be
solved. Thus the conformal mapping method can replace the image
method and electrical axis method and become the uniform method to
solve the electrostatic problems.

1. INTRODUCTION

The Joukowski mapping is a famous complex conformal transforma-
tion, whose function is

w =
1
2

(
z +

c2

z

)
(c > 0) (1)

and it is called Joukowski function. The Joukowski mapping has
two well-know applications. One application is simulation that the
airfoil flow can be substituted by flow around the cylinder. Then the
analytic solution was first obtained and used to explain the lifting
of crafts in low speed aerodynamics. The other is transforming the
circle cluster into corresponding confocal elliptical cluster. By this
method, the analytic solution of elliptical coaxial line capacitance
C and characteristic impedance Z0 can be deduced. Thus, analytic
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solution of capacitance is an important research topic and needs to
be extensively discussed. Although some researchers analyzed the
capacitance of a disc [1] or arbitrarily shaped conducting plates [2],
the capacitance of other kinds still needs to be studied in detail.

It is well known that image method, electric axis method and
complex conformal mapping are three typical methods to solve the
electrostatic problem [3–6]. If the conducting bodies have boundaries
of a simple geometry, the method of images has great advantage. When
the system consists of two-wire transmission line, the equipotential
surface of the two wires can be considered to have been generated by
a pair of line charges. The location of the pair of line charges is called
the electric axis of the two-wire transmission, so the method is named
by method of electric axis. However, the two methods are restrained
by the ways of electric charges and the location of conducting bodies.
Furthermore, in many practical problems, it is difficult to find the
potential by applying the two methods directly. Thus a more general
and uniform method is needed to solve the complex electrostatic
problem. Here we provide a useful extension of the conformal method
which will allow us to solve complex electrostatic problem which was
previously done by a much more laborious approach [2–6]. It was
proved that the methods of images can be replaced by active conformal
mapping method [7]. Then the application of conformal mapping
method is discussed extensively.

This paper discusses the electrostatic problem by using conformal
mapping method. The inverse Joukowski mapping discussed in
this paper can be classified into active and passive conformal
transformations. Specifically, the generalized image problem that the
line charge ρl outside the elliptical conducting cylinder or outside
the finite conducting plate can be solved by active inverse Joukowski
mapping. When the finite conducting plate is placed vertically above
the infinite conducting plate, the compatible capacitance solution
of the whole system can be solved by the passive logarithmic
inverse Joukowski mapping. It can be seen that the conformal
mapping method can become the uniform method to solve electrostatic
problems.

2. INVERSE JOUKOWSKI MAPPING

The standard form of inverse Joukowski mapping is

w = z +
√

z2 − c2 (c > 0) (2)

and the normalized form is

w = z +
√

z2 − 1 (3)
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(a) (b) 

Figure 1. Inverse Joukowski mapping (a) the confocal elliptical
cluster. (b) Circle cluster with a cut circle of radius c.

Formulas (2) and (3) are both inverse Joukowski mapping in this paper.
It is worth pointing out that another solution is existed and that is

w′ = z −
√

z2 − c2 (c > 0) (4)

However,

w′ =
c2

w
(5)

It is apparent that the two solutions are mutual inversions. So this
situation will not be discussed.

The typical inverse Joukowski transformation maps a family of
confocal elliptical in the z-plane with the same focal length onto a
family of circles in the w-plane which have a cut circle of radius c. As
shown in Figure 1, the focal length is c =

√
a2

1 − b2
1 =

√
a2

2 − b2
2, the

ellipse of major semi-axis a1 and minor semi-axis b1 are corresponding
to circle of radius a1 + b1, and the ellipse of major semi-axis a2

and minor semi-axis b2 are corresponding to circle of radius a2 + b2.
From the view of electromagnetic field, the focal strip with the range
−c ≤ x ≤ c of the x axis is mapped onto the conducting circle with
radius c in w-plane.

3. ACTIVE INVERSE JOUKOWSKI MAPPING

This paper proposes the conformal mapping that can be classified
into two types: active conformal mapping with singular line charge
ρl and passive conformal mapping without singular line charge ρl.
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The former can be used to solve complex potential problems in two-
dimensional generalized image method. The latter can be used to solve
the capacitance between the two conducting plates. Therefore, the
complex conformal mapping method which can be utilized to replace
methods of image and electrical axis will become the uniform method
for electrostatic problems.

The typical application of the inverse Joukowski mapping is a line
charge ρl located at a distance h (h > b) from the axis of a parallel,
conducting, elliptical cylinder, as shown in Figure 2(a). Figure 2(b)
plots the corresponding inverse mapping outside the circle. Substitute
the position of the line charge ρl, z0 = jh into (2). Then the formula
can be given as

w0 = j
(√

h2 + c2 + h
)

(6)

Under this consideration, the circle of radius c in w-plane is
equipotential, which is not plotted.

In w-plane, the corresponding inverse point of the image charge is

w′0 = j
(a + b)2(√

h2 + c2 + h
) = j

(
a + b

a− b

) (√
h2 + c2 − h

)
(7)

According to the principle of conformal mapping, the potential

(a) (b) 

Figure 2. (a) Line charge ρl located at h (h > b) which is outside
the elliptical cylinder of major semi-axis a and minor semi-axis b. (b)
Inverse Joukowski mapping of line charge outside the circular cylinder.
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function ϕ is

ϕ =
ρl

2πε0
ln

∣∣∣∣
w−w′0
w−w0

∣∣∣∣ =
ρl

2πε0
ln

∣∣∣∣∣∣

(
z+
√

z2−c2
)
−j

(
a+b
a−b

)(√
h2+c2−h

)
(
z+
√

z2−c2
)
−j

(√
h2+c2+h

)
∣∣∣∣∣∣

(8)
Let c = 0, R = a = b, the elliptical cylinder will be turned into cylinder.
Formula (8) is simplified as

ϕ =
ρl

2πε0
ln

∣∣∣∣∣
z − j R2

h

z − jh

∣∣∣∣∣ (9)

Then, it is well known that the result of this solution is familiar and
correct.

The second example is shown in Figure 3, where line charge ρl is
placed at the vertical center line of the finite conducting strip with the
range −c ≤ x ≤ c of the x axis, and the distribution of the potential
function ϕ is requested.

Suppose that the line charge is placed on the confocal ellipse of
major semi-axis a and minor semi-axis b, we have{

c2 = a2 − b2

b = h
(10)

then
a =

√
h2 + c2 (11)

(a) (b) 

Figure 3. (a) Line charge ρl is placed at the vertical center line of
the finite conducting plate with width of 2c, (b) Corresponding inverse
Joukowski mapping.
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Similarly, taking the inverse Joukowski mapping into account, the
conducting strip is mapped onto the conducting circle of radius c, and
the position of the line charge is jr, where

r =
√

h2 + c2 + h (12)

Applying the cylinder image method, we can get

r′ =
√

h2 + c2 − h (13)

It is satisfied that
rr′ = c2 (14)

Finally, the distribution of the potential function is

ϕ =
ρl

2πε0
ln

∣∣∣∣
w − jr′

w − jr

∣∣∣∣ =
ρl

2πε0
ln

∣∣∣∣∣∣

(
z +

√
z2 − c2

)
− j

(√
h2 + c2 − h

)
(
z +

√
z2 − c2

)
− j

(√
h2 + c2 + h

)
∣∣∣∣∣∣

(15)
Especially, let c → ∞, the problem becomes the line charge ρl placed
above the infinite conducting plate. We can get

lim
c→∞ϕ =

ρl

2πε0
ln

∣∣∣∣
z + jh

z − jh

∣∣∣∣ (16)

Formula (16) is the known result.
The third example is the system that the line charge ρl is placed

at a distance d from the left of the origin at the x axis, and the range
0 ≤ x ≤ 2c of the x axis is placed with the finite conducting strip,
as described in Figure 4(a). Taking the translation inverse Joukowski

(a) (b) 

Figure 4. (a) The line charge ρl placed at left of the conducting strip
with width of 2c. (b) Corresponding inverse mapping.
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mapping into account, the positions of the line charge and its image
line charge are

w0 = −
[
(h + c) +

√
(h + c)2 − c2

]
(17)

w′0 = −
[
(h + c)−

√
(h + c)2 − c2

]
(18)

Then the potential function ϕ is

ϕ =
ρl

2πε0
ln

∣∣∣∣
w − w′0
w − w0

∣∣∣∣

=
ρl

2πε0
ln

∣∣∣∣∣∣∣∣

[
(z−c)+

√
(z−c)2−c2

]
+

[
(h+c)−

√
(h+c)2−c2

]

[
(z−c)+

√
(z−c)2−c2

]
+

[
(h+c)+

√
(h+c)2−c2

]

∣∣∣∣∣∣∣∣
(19)

Especially let c → ∞, the problem becomes the system that the line
charge ρl is located at a distance d from the left of the origin at the x
axis and is parallel to the conducting half-plate. We can get

lim
c→∞ϕ =

ρl

2πε0
ln

∣∣∣∣∣
√

z + j
√

h√
z − j

√
h

∣∣∣∣∣ (20)

This is also a known result.
At last, when the line charge ρl is located at (x0, y0) above the

conducting plate which is placed within the range −c ≤ x ≤ c of the
x axis, as shown in Figure 5, the generalized potential distribution
function can be deduced as follows.

Without loss of generality, suppose that (x0, y0) locates at the first
quadrant. The line charge is placed on the confocal ellipse of major
semi-axis a and minor semi-axis b, it is constrained that

c2 = a2 − b2 (21)

Further, suppose that {
x0 = a cos t
y0 = b sin t

(22)

where t is the parameter, and x0, y0 are known. We can easily get

x2
0

cos2 t
− y2

0

sin2 t
= c2 (23)

and
c4 sin4 t +

(
x2

0 + y2
0 − c2

)
sin2 t− y2

0 = 0 (24)
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(a) (b) 

Figure 5. (a) the line charge ρl placed above the conducting plate
with width of 2c, (b) generalized inverse mapping.

Then, it is deduced that

a =
x0√

1
2c2

[
−

√(
x2

0 + y2
0 − c2

)
+ 4c2y2

0 +
(
x2

0 + y2
0 + c2

)] (25)

b =
y0√

1
2c2

[√(
x2

0 + y2
0 − c2

)
+ 4c2y2

0 −
(
x2

0 + y2
0 − c2

)] (26)

It is easy to conclude from Figure 5 that

w0 = u0 + jv0 = (a + b) cos ϕ + j (a + b) sin ϕ (27)

Further, the Joukowski mapping is

z =
1
2

(
w +

c2

w

)
(28)

Thus, we get

x0 +jy0 =
1
2

[
(a + b) +

c2

a + b

]
cosϕ+j

1
2

[
(a + b)− c2

a + b

]
sinϕ (29)

where c2 = a2 − b2, it is
{

x0 = a cosϕ
y0 = b sinϕ

(30)
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Surprising discovery is that
ϕ = t (31)

Then, we can get

u0 = (a + b)

√
1

2c2

[
−

√(
x2

0+y2
0−c2

)2+4c2y2
0+

(
x2

0+y2
0+c2

)]
(32)

v0 = (a + b)

√
1

2c2

[√(
x2

0+y2
0−c2

)2+4c2y2
0−

(
x2

0+y2
0−c2

)]
(33)

and

w′0 = u′0 + jv′0 =
c2

(a + b)2
(u0 + jv0) =

(
a− b

a + b

)
(u0 + jv0) (34)

Finally, the potential function ϕ is

ϕ =
ρl

2πε0
ln

∣∣∣∣
w − w′0
w − w0

∣∣∣∣ =
ρl

2πε0
ln

∣∣∣∣∣∣

(
z +

√
z2 − c2

)
−

(
a−b
a+b

)
(u0 + jv0)(

z +
√

z2 − c2
)
− (u0 + jv0)

∣∣∣∣∣∣
(35)

Formula (35) is the generalized result of the case where the line charge
ρl is placed at (x0, y0) above the conducting strip with width of 2c.

4. PASSIVE LOGARITHMIC INVERSE JOUKOWSKI
MAPPING

The passive logarithmic inverse Joukowski mapping is the inverse
hyperbolic cosine mapping, that is

w = ch−1 (z) = ln
(
z +

√
z2 − 1

)
(36)

It actually contains several transformations, such as arccosine
transformation

w = cos−1 (z) = −jch−1 (z) (37)

and arcsine transformation

w = sin−1 (z) = −jch−1 (z) +
π

2
(38)

The transformations mentioned above are all normalized logarithmic
inverse Joukowski mapping. Thus, all these functions can be
considered as one kind. Then, taking arccosine transformation as the
example, we get

w = cos−1
( z

A

)
(39)
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Formula (39) is equivalent to
x + jy = A cos (u + jv) (40)

It is easy to get that
x2

A2ch2v
+

y2

A2sh2v
= 1 (41)

x2

A2 cos2 u
− y2

A2 sin2 u
= 1 (42)

Formula (41) shows that v = constant is the family of confocal elliptical
curves with the center at origin. Major semi-axis and minor semi-axis
respectively are {

a1 = Achv
b1 = Ashv

(43)

Then the distance between the two focuses is

2
√

a2
1 − b2

1 = 2A (44)

Formula (42) shows that u = constant is the family of confocal
hyperbola curves. We get {

a2 = A cosu
b2 = A sinu

(45)

The distance between the two focuses is

2
√

a2
2 + b2

2 = 2A (46)

It is obvious that the confocal elliptical cluster and confocal
hyperbola cluster are conjugate and orthogonal, as shown in Figure 6.
By using this inverse mapping, many difficult electromagnetic problems
of capacitance C can be tackled.

The capacitance C of the vertical plate AB placed above the
infinite conducting plate can be solved by the passive conformal
mapping. Figure 7 shows that the distance between O and A is denoted
by A, and the distance between O and B is denoted by B. The length
of the plate is

L = B −A (47)

As an approximate solution, the problem in Figure 7 can be considered
as the finite plate (B − A) at u = 0. Under this consideration, power
lines are in semi-elliptical shape. For the purpose of convenience,
suppose that the potential of the finite plate satisfies u′ = u0 and
that the potential of the infinite conducting plane satisfies u′ = 0. It
gets that

w′ = K + H cos−1
( z

A

)
= u′ + jv′ (48)
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Figure 6. Complex potential distribution of z = A cosw.

Figure 7. Capacitance C of the vertical plate placed above the infinite
conducting plate can be solved by passive conformal mapping.

where K and H are constants to be determined; u′ represents the
potential function; v′ represents the force line function. Figure 6 is
compared with Figure 7. The first boundary condition is

{
u = u′−K

H = 0
u′ = u0

(49)

It is easy to get that
K = u0 (50)
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Then the second boundary condition is
{

u = u′−K
H = π

2
u′ = 0

(51)

and
H = − 2

π
u0 (52)

Finally, we get

z = x + jy = A cos
[(

1− w′

u0

)
π

2

]
(53)

Figure 7 shows the vertical plate AB

x = Ach
(

πv′

2u0

)
(54)

Then the force line function is

v′ =
2u0

π
ch−1

( x

A

)
(55)

According to the definition of charging density σ, we have

σ = −ε0
∂ϕ

∂y
= −ε0

∂u′

∂y
= ε0

∂v′

∂x
(56)

The charge of the vertical plate AB is

Q =
∫ B

A
σdx =

∫ B

A
ε0

∂v′

∂x
dx = ε0v

′∣∣B
A

(57)

Substituting formula (55) into formula (57), we obtain

Q =
2ε0u0

π
ch−1

(
B

A

)
(58)

According to the definition of the capacitance, we have

C =
Q

u0
=

2ε0

π
ch−1

(
B

A

)
=

2ε0

π
ln




(
B

A

)
+

√(
B

A

)2

− 1


 (59)

Let B À A. The expression is

C ≈ 2ε0

π
ln

(
2B

A

)
(60)

Suppose that A = 1, B = 10. From (59), we get C = 1.68487×10−11 F.
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5. CONCLUSION

Joukowski mapping is a famous complex conformal transformation.
The inverse Joukowski mapping w = z +

√
z2 − c2 (c > 0) is discussed

in this paper. The conformal mapping application can be classified
into two types. Active inverse Joukowski mapping is used to solve the
generalized image problem where the line charge ρl is placed outside
the elliptical conducting cylinder or outside the finite conducting plate.
The passive logarithmic inverse Joukowski mapping is used to solve
the capacitance approximate solution of the finite conducting plate
which is placed above and vertical to the infinite conducting plate.
The conformal mapping method which replaces the image method
and electrical axis method becomes the uniform method to solve
electrostatic problems.
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