
Progress In Electromagnetics Research B, Vol. 27, 37–59, 2011

REFLECTION PROPERTIES OF A BIAXIALLY ANISOTROPIC
DIELECTRIC FILM IN A LONG-WAVELENGTH AP-
PROXIMATION

P. Adamson

Institute of Physics
University of Tartu, Riia 142, Tartu 51014, Estonia

Abstract—The reflection of linearly polarized light from an ultrathin
biaxially anisotropic dielectric film on an isotropic transparent material
is investigated in the long-wavelength limit. The approximate
expressions for the reflection characteristics of s- and p-polarized
electromagnetic plane waves are obtained. The analytical approach
developed in this paper not only provides insight into the nature of
reflection problem for biaxially anisotropic ultrathin films but also
furnishes the methods for resolving the inverse problem for such
anisotropic layers. It is shown that a key capability of the developed
analytical method is to decouple the usual correlations in the index
and the thickness of ultrathin films.

1. INTRODUCTION

Anisotropic dielectric films play an important role already for a
long time in a number of modern optical systems such a guided-
wave propagation in integrated optics or narrow-band polarization
filters in conventional optics [1, 2]. In addition, at present, dielectric
layers have also grown in importance in the technology of micro- and
nanoelectronic devices [3, 4]. Notably advances in nanotechnology have
raised the issue of novel diagnostics techniques with greater capabilities
for the analysis of ultrathin anisotropic layered structures.

Well-accepted methods for optical characterization of an ultrathin
film (thickness d is much less than an optical wavelength λ)
are differential reflection techniques [5–8], which are founded on
direct measurement of the contribution of an ultrathin layer to
the reflection coefficient or ellipsometric angles. The heart of
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the theory of differential reflection methods is a long-wavelength
approximation [9]. This approximation is of critical importance
particularly for anisotropic thin-film systems because it enables one
to derive the relatively simple analytical relationships for reflection
characteristics. These analytical expressions not only give a physical
insight into the details of the reflection process, but also are especially
advantageous for tackling the inverse problem. The reason is that
the creation a solution for the inversion problem for an anisotropic
layered system is rather intricate process owing to the complexity of the
corresponding exact reflection equations. In general, these equations
cannot analytically be inverted, and the solution of such problems can
only be found by the use of complicated numerical methods. But these
methods, as a rule, come across serious difficulties, the main two being
the instability and the nonuniqueness of the solution. In addition, it
is important to note that the analytical algorithms for calculating the
parameters of interest directly from the measured data are very fast
in comparison with classical, e.g., the regressive type of algorithms.
Because of this fact, approximate analytical techniques are also used
to provide initial guesses at the values of the variable parameters, and
regression techniques are then used to fine tune the desired parameters.

Until the present time only few investigations have been done
to find out how the differential reflection methods can be used for
determining the parameters of anisotropic ultrathin dielectric films on
absorbing [10–12] or transparent substrates [13, 14]. In [13], general
long-wave limit formulas for reflection characteristics of an N -layer
system of anisotropic dielectric films on isotropic dielectric substrates
are derived. In [14], the possibilities for reflection characterization
of biaxially anisotropic ultrathin films are discussed only in the case
where the thickness of such layers is a predetermined quantity.

A purpose of this paper is to study the reflection properties
of biaxially anisotropic nonmagnetic dielectric films on transparent
isotropic bulk in the long-wavelength approximation and to work out
the differential reflection method for optical diagnostics of biaxially
anisotropic ultrathin films in the general case where the film thickness
is also an unknown quantity.

The paper is organized as follows. In Section 2, the second-
order expression in the long-wave limit for 4 × 4 transfer matrix of
an anisotropic layer on a transparent isotropic substrate is produced.
In Sections 3, the final analytical expressions for the reflection and
transmission coefficients are derived. In Section 4, the approximate
analytical results are correlated with the exact numerical solution of
the reflection problem for anisotropic systems. The fifth section is
concerned with the solution of the inverse problem on the basis of
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obtained formulas for reflection characteristics. It must be emphasized
that a key capability of such analytical expressions is to decouple the
usual correlations in the index and the thickness of ultrathin films.

2. 4 × 4 TRANSFER MATRIX

Assuming that all the media are nonmagnetic, we consider
the reflection of s- and p-polarized time-harmonic (the complex
representation is taken in the form exp(−iωt), where ω = 2πc/λ, and
λ is a vacuum wavelength) electromagnetic plane waves in an ambient
medium with isotropic and homogeneous dielectric constant εa ≡ n2

a
from an anisotropic homogeneous dielectric film of thickness d ¿ λ and
with principal dielectric-tensor components in the crystal-coordinate
system εxx = n2

xx, εyy = n2
yy, and εzz = n2

zz that is located upon a semi-
infinite isotropic and homogeneous substrate with dielectric constant
εs ≡ n2

s (Fig. 1). The orientations of the crystal axes are described by
the Euler angles θ, ϕ, and ψ with respect to a fixed xyz coordinate
system (the Cartesian laboratory coordinate system). The laboratory
x, y, and z axes are defined as follows. The reflecting surface is the
xy plane, and the plane of incidence is the zx plane, with the z axis
normal to the surface of the layered medium and directed into it. The
incident light beam in the ambient medium makes an angle φa with
the z axis.

The dielectric tensor for an anisotropic layer in the xyz coordinate

Figure 1. Schematic cross section of the simulation structure.
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system is given by
[

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

]
= A

[
εxx 0 0
0 εyy 0
0 0 εzz

]
A−1, (1)

where A is the coordinate rotation matrix [15]. Therefore,

ε11 = −Γ1 sin 2ϕ sin 2ψ cos θ + Γ2 cos2 ϕ

+Γ3 sin2 ϕ cos2 θ + εzz sin2 ϕ sin2 θ, (2)
ε22 = Γ1 sin 2ϕ sin 2ψ cos θ + Γ2 sin2 ϕ

+ cos2 ϕ
(
Γ3 cos2 θ + εzz sin2 θ

)
, (3)

ε33 = Γ3 sin2 θ + εzz cos2 θ, (4)
ε12 = ε21 = Γ1 cos 2ϕ sin 2ψ cos θ

+ sin 2ϕ
(
Γ2 − Γ3 cos2 θ − εzz sin2 θ

)
/2, (5)

ε13 = ε31 = sin θ [Γ1 cosϕ sin 2ψ − sinϕ cos θ (Γ3 − εzz)] , (6)
ε23 = ε32 = sin θ [Γ1 sinϕ sin 2ψ + cosϕ cos θ (Γ3 − εzz)] , (7)

where
Γ1 ≡ (εxx − εyy)/2, Γ2 ≡ εxx cos2 ψ + εyy sin2 ψ,

Γ3 ≡ εxx sin2 ψ + εyy cos2 ψ.
(8)

In a similar manner to the isotropic case, we use the matrix
method for calculating the contributions of anisotropic layers to the
reflection characteristics. Since s and p modes are no longer spatially
independent of each other (a so-called mode coupling appears) in the
anisotropic medium, then, consequently, 4 × 4 matrices are needed
in order to establish an analogous matrix method. Dealing directly
with first-order Maxwell equations, we can calculate the reflection
characteristics of an anisotropic layered system from a wave transfer
matrix of rank 4 [16] (note that the other way is to work with
corresponding second-order wave equations [1]). The 4 × 4-matrix
method consists of calculating a 4 × 4 characteristic matrix, B(d),
such that 


Ex

Hy

Ey

−Hx




z=d

= B(d)




Ex

Hy

Ey

−Hx




z=0

(9)

or
Ξ(d) = B(d)Ξ(0), (10)

where Ex,y and Hx,y are the electric and magnetic field components
parallel to the interfaces.
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On the other hand, on the basis of Maxwell’s equations

curl ~E = i(ω/c) ~H,

curl ~H = −i(ω/c) ~D,
(11)

or
∂Ey

∂z
= −i(ω/c)Hx,

ikxEz − ∂Ex

∂z
= −i(ω/c)Hy,

kxEy = (ω/c)Hz,

∂Hy

∂z
= i(ω/c)Dx,

−ikxHz +
∂Hx

∂z
= −i(ω/c)Dy,

kxHy = −(ω/c)Dz,

and of constitutive relations
Dx = ε11Ex + ε12Ey + ε13Ez,

Dy = ε21Ex + ε22Ey + ε23Ez,

Dz = ε31Ex + ε32Ey + ε33Ez,

(12)

we obtain the following system of equations:
∂Ex

∂z
= i[(ω/c)Hy + kxEz], (13)

∂Hy

∂z
= i(ω/c)[ε11Ex + ε12Ey + ε13Ez], (14)

∂Ey

∂z
= −i(ω/c)Hx, (15)

∂Hx

∂z
= −i(ω/c)[ε21Ex + ε22Ey + ε23Ez] + ikxHz, (16)

Hz = kx(c/ω)Ey, (17)

Ez = −ε−1
33 [kx(c/ω)Hy + ε31Ex + ε32Ey], (18)

where
⇀

D is the electric displacement and kx = (ω/c)na sinφa. Note
that the component of the propagation vector in the x direction kx is
a constant and there is no y component. Solutions in this case have
the common factor exp(ikxx).

Therefore, a differential form of the Equation (10) may be written
{by substituting Equations (17) and (18) into (13)–(16)}

∂

∂z
Ξ(z) =

i2π

λ
CΞ(z), (19)



42 Adamson

C =




c11 c12 c13 0
c21 c11 c23 0
0 0 0 1

c23 c13 c43 0


 , (20)

where c11 = −na sinφaε13/ε33, c12 = 1 − εa sin2 φa/ε33, c13 =
−na sinφaε23/ε33, c21 = ε11 − ε2

13/ε33, c23 = ε12 − ε13ε23/ε33, c43 =
ε22 − ε2

23/ε33 − εa sin2 φa.
A fitting procedure for finding B(d) in the long-wavelength

approximation is simply to integrate Eq. (19). Because the matrix
C is independent of z over the finite distance d in the direction of the
z axis, it is evident that the solution is

Ξ(z) = exp(i2π C z/λ). (21)
Thus,

Ξ(z + d) = B(d)Ξ(z) = exp[i2π C d/λ]Ξ(z), (22)

and
B(d) = exp[i2π C d/λ]. (23)

Within the framework of the long-wavelength limit (d ¿ λ), we can use
the Taylor-series-like expansion, which in the first order with respect
to the small parameter d/λ yields:

Bap(d) =
[
I + i2πC d/λ− 2π2[C]2d2/λ2

]
, (24)

where Bap(d) is the approximate transfer matrix and I is the 4 × 4
identity (unit) matrix.

Hence, the second-order expression for the 4 × 4 approximate
transfer matrix Bap takes the form:

Bap(d) =




b11 b12 b13 b14

b21 b11 b23 b24

b24 b14 b33 b34

b23 b13 b43 b33


 , (25)

in which
b11 = 1 + i2πc11(d/λ)− 2π2

(
[c11]2 + c12c21

)
(d/λ)2,

b12 = i2πc12(d/λ)− 4π2c11c12(d/λ)2,
b13 = i2πc13(d/λ)− 2π2(c11c13 + c12c23)(d/λ)2,
b14 = −2π2c13(d/λ)2

b21 = i2πc21(d/λ)− 4π2c11c21(d/λ)2,
b23 = i2πc23(d/λ)− 2π2(c21c13 + c11c23)(d/λ)2,
b24 = −2π2c23(d/λ)2

b33 = 1− 2π2c43(d/λ)2



Progress In Electromagnetics Research B, Vol. 27, 2011 43

b34 = i2π(d/λ),
b43 = i2πc43(d/λ)− 4π2c13c23(d/λ)2.

Note that, [B(d)]−1 = B(−d).

3. REFLECTION AND TRANSMISSION COEFFICIENTS

The electromagnetic field in the ambient medium is made up
of two parts, the incident- and the reflected-wave contributions,
Ξ(a) = Ξ(a)

I + Ξ(a)
R , and the field in the isotropic substrate matches

solely a transmitted wave field, Ξ(s). Since in the media (a)
and (s) field components are H

(a)
Iy = (na/ cosφa)E

(a)
Ix , −H

(a)
Ix =

na cosφaE
(a)
Iy , H

(a)
Ry = −(na/ cosφa)E

(a)
Rx , H

(a)
Rx = na cosφaE

(a)
Ry , H

(s)
y =

(ns/ cosφs)E
(s)
x , and −H

(s)
x = ns cosφsE

(s)
y , where cosφs = (1 −

εaε
−1
s sin2 φa)1/2, then from the matrix equation

Ξ(a)
I + Ξ(a)

R = B−1
ap Ξ(s), (26)

one can obtain four linear equations:

E
(a)
Ix + E

(a)
Rx =b11E

(s)
x +

ns

cosφs
b12E

(s)
x + b13E

(s)
y ,

na

cosφa

(
E

(a)
Ix − E

(a)
Rx

)
=b21E

(s)
x +

ns

cosφs
b11E

(s)
x + b23E

(s)
y ,

E
(a)
Iy + E

(a)
Ry =E(s)

y + ns cosφsb34E
(s)
y ,

na cosφa

(
E

(a)
Iy −E

(a)
Ry

)
=b23E

(s)
x +

ns

cosφs
b13E

(s)
x +b43E

(s)
y +ns cosφsE

(s)
y .

We solve this system of equations for the two cases, first, if E
(a)
Iy ≡

0 (p-polarized incident wave) and, second, if E
(a)
Ix ≡ 0 (s-polarized

incident wave). In the case of p-polarization, we obtain for rpp =
E

(a)
Rx/E

(a)
Ix (reflection coefficient) and tpp = [E(s)

x /E
(a)
Ix ] cos φa/ cosφs

(transmission coefficient) the following results:

rpp ≈
r(0)
p

{
1+i4πna cosφa

(
εa cos2 φs−εs cos2 φa

)−1(
c21 cos2 φs−c12εs

)
(d/λ)

+
[(

c12εs−c21 cos2φs

)
(c12nans+c21 cosφa cosφs)(na cosφs+ns cosφa)−1

+
(
c2
13εs − c2

23 cos2 φs

)
(na cosφa + ns cosφs)

−1 ]
(d/λ)2

]}
, (27)
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tpp = t(0)
p

{
1 + i2π [c11 + α] (d/λ) + 2π2(na cosφs − ns cosφa)

−4π2[(c13ns + c23 cosφs)(c13na + c23 cosφa)(na cosφa + ns cosφs)−1

×(na cosφs+ns cosφa)−1+(c2
11−c12c21)/2+α (c11+α)

]
(d/λ)2

}
, (28)

α ≡ (c12nans + c21 cosφa cosφs)(na cosφs + ns cosφa)−1,

where r
(0)
p and t

(0)
p are the amplitude reflection and transmission

coefficient, respectively, from bare (d ≡ 0) isotropic substrate and are
expressed by the standard Fresnel’s formulas as

r(0)
p = (na cosφs − ns cosφa)/(na cosφs + ns cosφa), (29)

t(0)
p = 2na cosφa/(na cosφs + ns cosφa). (30)

Analogously, in the case of s-polarized incident wave (E(a)
Ix ≡ 0)

for rss = E
(a)
Ry /E

(a)
Iy and tss = E

(s)
y /E

(a)
Iy , we obtain:

rss = r(0)
s

{
1 + i4πna cosφa (εa − εs)

−1 (
c43 − εs cos2 φs

)
(d/λ)

+
[ (

εs cos2 φs − c43

)
(c43 + nans cosφa cosφs) (na cosφa+ns cosφs)

−1

− (
c2
13nans+c2

23 cosφa cosφs

)
(na cosφs+ns cosφa)

−1
]
(d/λ)2

]}
, (31)

tss = t(0)
s

{
1 + i2πβ(d/λ)− 4π2

[
β2 + (c13na + c23 cosφa)

×(c13ns + c23 cosφs)(na cosφa + ns cosφs)−1(na cosφs + ns cosφa)−1

−c13c23(na cosφa + ns cosφs)−1 − c43/2
]
(d/λ)2

}
, (32)

β ≡ (c43 + nans cosφa cosφs) (na cosφa + ns cosφs)
−1 ,

r(0)
s = (na cosφa − ns cosφs)/ (na cosφa + ns cosφs) , (33)

t(0)
s = 2na cosφa/ (na cosφa + ns cosφs) . (34)

For the remaining quantities rps = [E(a)
Ry /E

(a)
Ix ] cosφa, tps =

[E(s)
y /E

(a)
Ix ] cos φa, rsp = [E(a)

Rx/E
(a)
Iy ]/cosφa, and tsp = [E(s)

x /E
(a)
Iy ]/cosφs

(in this paper, the first subscript indicates the incident light) one can
obtain:

rσ ≈ 4na cosφa(η1η2)−1
{

iπ(c23 cosφs + Pσnsc13)(d/λ)

+π2
[
nsc12c23+Pσc13c21 cosφs+(c23 cosφs+Pσnsc13)(ns cosφs−Pσc11)

−2(c23 cosφs + Pσnsc13)
(
(c43 + nans cosφa cosφs)η−1

1

+(c12nans + c21 cosφa cosφs) η−1
2

) ]
(d/λ)2

}
, (35)
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η1 ≡ na cosφa+ns cosφs, η2 ≡ na cosφs + ns cosφa,

where σ = ps or sp, Pps = +1, Psp = −1, and

tσ = 2gσ(η1η2)−1na cosφa

{
i2πγσ(d/λ)+2π2

[
Kσγσ + c23(c11 + Lσc12)

+c13(c21 + Lσc11)− 2γσ(c11 + β + α)
]
(d/λ)2, (36)

where γσ ≡ c23 + Lσc13, gps = cosφs, gsp = cosφa, Kps = na cosφa,
Ksp = ns cosφs, Lps = ns/ cosφs, Lsp = na/ cosφa.

The reflectances Rss = |rss|2, Rpp = |rpp|2, Rsp = |rsp|2, and
Rps = |rps|2 are equal to zero in the first order in d/λ. The second-
order formulas take the form:

Rss ≈ R(0)
s

{
1 + 16π2nans cosφa cosφs(εa − εs)−1

×
[ (

c43 − εs cos2 φs

) (
c43 − εa cos2 φa

)
(εa − εs)

−1 −(
c2
13nans

+c2
23 cosφa cosφs

)(
nans cos2 φs+εs cosφa cosφs

)−1
]
(d/λ)2

}
, (37)

Rpp ≈ R(0)
p

{
1 + 16π2nans cosφa cosφs

(
εa cos2 φs − εs cos2 φa

)−1

[ (
c21 cos2 φs−c12εs

)× (
c21 cos2 φa−c12εa

) (
εa cos2 φs−εs cos2 φa

)−1

+
(
c2
13εs−c2

23 cos2 φs

)×(nans cosφa cosφs+εs cos2 φs)−1
]
(d/λ)2

}
, (38)

Rσ = 16π2εa cos2 φa(η1η2)−2 [(c23 cosφs + Pσc13ns)(d/λ)]2 , (39)

where R
(0)
s = |r(0)

s |2 and R
(0)
p = |r(0)

p |2.
The transmittances

Tss = T (0)
s

{
1− 4π2

[
2(c13na + c23 cosφa)(c13ns + c23 cosφs)(η1η2)−1

−2c13c23(na cosφa + ns cosφs)−1 − c43 + β2
]
(d/λ)2

}
, (40)

Tpp = T (0)
p

{
1− 4π2

[
2(c13ns + c23 cosφs)(c13na + c23 cosφa)(η1η2)−1

−c12c21 + α2
]
(d/λ)2

}
, (41)

where

T (0)
s = 4nans cosφa cosφs(na cosφa + ns cosφs)−2, (42)

T (0)
p = 4nans cosφa cosφs(na cosφs + ns cosφa)−2, (43)

are the transmittances for the substrate. The remaining two
transmittances Tsp and Tps can be calculated from the relation

Tσ = ns cosφs(na cosφa)−1 |tσ|2 . (44)
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4. ACCURACY OF APPROXIMATE EXPRESSIONS

In this section, approximate analytical results obtained above are
correlated with the exact computer solution of the reflection problem
for a multilayer system of anisotropic homogeneous films. The main
question is, what is the accuracy of approximate formulas. For exact
analysis of reflection characteristics we find the four periodic solutions
of Eq. (19):

Ξj(z) = ei 2π
λ

qjzΞj(0), (45)

where j = 1, 2, 3, 4 and the four eigenvalues qj can be obtained from
the quartic polynomial equation in q:

q4 − 2c11q
3 +

(
c2
11 − c12c21 − c43

)
q2 + 2(c11c43 − c13c23)q

+2c11c13c23 + c12c21c43 − c2
11c43 − c2

13c21 − c2
23c12 = 0, (46)

which results from expanding the determinant in the secular equation

Det(C− qI) = 0, (47)

where I is the 4× 4 unit matrix. Next, for the eigenvectors Ξj(0) one
can find the following expression:

Ξj(0) =




1
aj/dj

bj/dj

qjbj/dj


 , (48)

in which

aj ≡ c23(qj − c11) + c13c21, (49)

bj ≡ (qj − c11)2 − c12c21, (50)
dj ≡ c13(qj − c11) + c12c23, (51)

and the exact partial transfer matrix Bex can be calculated from the
relation

Bex(d)= G Γ[G]−1, (52)

where 4× 4 matrix

G = [Ξ1(0) Ξ2(0) Ξ3(0) Ξ4(0)], (53)

and Γ ≡ ‖γkm‖ is a diagonal 4 × 4 matrix with elements γkk =
exp(i2πqkd/λ) and γkm = 0 if k 6= m. Finally, the exact reflection
and transmission coefficients can be obtained from the relation (26),
where instead of B−1

ap must be used the accurate transfer matrix B−1.
Note that to eliminate errors in the computer calculations, we utilized
also another, different algorithm, where the eigenvalue problem (47)
was directly numerically solved on a computer.
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The results of computer simulations for reflection characteristics
are plotted in Figs. 2–4. Since in the case of ultrathin films the
experimental error of the overall reflectance Rpp,ss, as a rule, is
greater than the contribution of an ultrathin film to Rpp,ss then in the
subsequent discussion our interest is in differential quantities, e.g., in
the relative change of reflectance ∆Rpp,ss/R

(0)
p,s ≡ (Rpp,ss −R

(0)
p,s)/R

(0)
p,s,

which is directly brought on by an ultrathin layer. The reason is that
the differential reflectance ∆Rpp,ss/R

(0)
p,s is an immediately measurable

quantity because the relative change in the intensity of the reflected

(a)

(b)

Figure 2. Relative errors
of approximate formulas for
(a) ∆Rpp/R

(0)
p (solid curves),

∆Rss/R
(0)
s (dashed curves) and

for (b) Rps (solid curves), Rsp

(dashed curves) as functions of
λ for anisotropic ultrathin films
with d = 3nm, nxx = 1.6 (1),
3.5 (2), nyy = 1.8 (1), 3.2 (2),
nzz = 1.5 (1), 3.8 (2), θ = 60◦,
ϕ = 50◦, ψ = 20◦ at ns = 2.5 and
φa = 45◦. Preceding numbers in
parentheses are curve labels.

(a)

(b)

 

Figure 3. Relative errors
of approximate formulas for
(a) ∆Rpp/R

(0)
p (solid curve),

∆Rss/R
(0)
s (dashed curve) and

for (b) Rps (solid curve), Rsp

(dashed curve) as functions of in-
cident angle φa for an anisotropic
ultrathin film with d = 5nm,
nxx = 2.5, nyy = 2.4, nzz = 2.3,
θ = 80◦, ϕ = 30◦, ψ = 60◦ at
ns = 1.5 and λ = 630 nm.
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(a)

(b)

Figure 4. Relative errors of approximate formulas for (a) ∆Rpp/R
(0)
p

(solid curve), ∆Rss/R
(0)
s (dashed curve) and for (b) Rps (solid curve),

Rsp (dashed curve) as functions of ns for an anisotropic ultrathin film
with d = 6 nm, nxx = 3.1, nyy = 3.15, nzz = 3.1, θ = 10◦, ϕ = ψ = 45◦
at φa = 60◦ and λ = 630 nm.

signal

∆Ipp,ss/Ip,s = (Ipp,ss − Ip,s)/Ip,s =
(
Rpp,ssI

(in)
p,s −R(0)

p,sI
(in)
p,s

)
/R(0)

p,sI
(in)
p,s

≡ ∆Rpp,ss/R(0)
p,s, (54)

where Ip,s and Ipp,ss are the reflected intensities from the bare substrate
(d = 0) and from the system of ultrathin films on the same substrate,
respectively, and I

(in)
p,s is the intensity of the incident light. In addition,

the error of approximate expressions for Rpp,ss does not adequately
depict the situation because the contribution of an ultrathin layer to
the reflectance is extremely small (the substrate is of first importance
in the causation of reflectance) and as a result the computational
exactness of Rpp,ss is, in fact, several orders higher than the
corresponding exactness for ∆Rpp,ss/R

(0)
p,s. The relative errors [(Rσ)ex−

Rσ]/(Rσ)ex and [(∆Rss,pp/R
(0)
s,p)ex − ∆Rss,pp/R

(0)
s,p]/(∆Rss,pp/R

(0)
s,p)ex,

where (Rσ)ex and (∆Rss,pp/R
(0)
s,p)ex were obtained by using the

rigorous numerical analysis, and ∆Rss,pp/R
(0)
s,p, Rσ were calculated by
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approximate Equations (37), (38), and (39), respectively (Rσ may also
be considered as a differential quantity because Rσ = 0 if d = 0), for
two different anisotropic ultrathin films as functions of λ are presented
in Fig. 2. Note that the quantities λ and d may be in arbitrary
common units (only the ratio d/λ matters), and the ambient refractive
index na = 1 in all the figures. As illustrated, the error of approximate
equations does not exceed a few percent if the maximum values of d/λ
comprises a few hundredths. This is in good agreement with condition
d/λ ¿ 1/2π used in the derivation of these formulas. However, the
accuracy of approximate equations for given values of d/λ depends
on the values of material dielectric constants as well. This can be
understood as a consequence of the fact that reflectivity is a measure
of optical mismatch between the ambient and the sample. Because
of this, it is difficult to indicate explicitly the value of d/λ where the
long-wavelength approximation is broken down (the difference between
the exact and approximate theory, for example, is greater than 15
percent). Notice that for ultrathin films with nanometric thickness, the
developed approximation theory is highly accurate in the far-infrared
part of the electromagnetic spectrum (d/λ ≤ 10−3).

The dependence of the accuracy of approximate formulas on the
angle of incidence φa is shown in Fig. 3. One can see that in comparison
with s-polarization, the differential reflectance of p-polarization as a
function of φa changes its sign passing through the zero value and
the approximate formula is inapplicable (Fig. 3(a)) in principle in the
neighborhood of the point where ∆Rpp → 0 (even for d/λ as small
as wished) because it is insufficient to restrict oneself to terms of the
second order in the expansion in d/λ in the vicinity of this point.

Of special interest is the problem of dependence of the accuracy
of approximate formulas on the materials refractive indexes and on the
strength of anisotropy of thin films or on the difference of refractive
indexes between films and a substrate. The direct computations show
that generally the accuracy of approximate expressions is lower in the
case of strong anisotropy. The exactness of formulas also decreases
if the difference in refractive indexes between films and substrate
increases (Fig. 4). However, this decrease in accuracy is of little
consequence: the desired exactness can easily be achieved by the use
of a longer wavelength.

In addition, at large incident angles than the difference between
s- and p-polarization is usually clearly defined, the relative error of
the approximate formula for Rss may be significantly greater than the
analogous error for Rpp (Fig. 4). However, for example, if φa = 80◦,
nxx =1.5, nyy =1.55, and nzz =1.45 (the other parameters are the same
as in Fig. 4), then the relative errors of ∆Rpp/R

(0)
p and ∆Rss/R

(0)
s are
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equal to −0.852% and 0.254%, respectively. Therefore, we can not
argue that the error for s-polarization is always greater than the error
for p-polarization. The result is governed by the particular parameters
of films and substrates and, generally, it is not easy to gain an accurate
and coherent impression of how the relative errors of approximate
formulas depend on material parameters.

Finally, it might be well to point out that the approximate analyt-
ical approach works also in the situations of optical degeneracies [17]
that arise when light propagates along one of the optic axes in an
anisotropic layer. It is well known that in theses instances the conven-
tional numerical methods turn out to be applicable for computation
through the presence of mathematical singularities.

5. REFLECTION DIAGNOSTICS

In what follows, we take a look at the potential applicability of
approximate expressions obtained above for the reflection diagnostics
of anisotropic ultrathin films. First, we show that all unknown
components ε11, ε22, ε33, ε12, ε13, and ε23 of the dielectric tensor (1)
and also the thickness d of an ultrathin anisotropic layer can be
determined from the reflection measurements with the expressions
derived above. For instance, on the basis of the measurements of
∆Rpp/R

(0)
p ≡ (Rpp − R

(0)
p )/R

(0)
p , Rps, and Rsp at the three different

incident angles φa = φ
(1)
a , φa = φ

(2)
a , and φa = φ

(3)
a we can determine

the quantities ε11 − ε2
13/ε33 ≡ x, ε−1

33 ≡ y from the following system of
equations:

a21x
2 + a22y

2 + a23xy + a24x + a25y + a26 = 0,

a31x
2 + a32y

2 + a33xy + a34x + a35y + a36 = 0,
(55)

where

ai1 = cos2 φ(i)
s cos2 φ(i)

a − Pi cos2 φ(1)
s cos2 φ(1)

a , (56)

ai2 = ε3
aεs

(
sin4 φ(i)

a − Pi sin4 φ(1)
a

)
, (57)

ai3 = εa

[
εa

(
sin2 φ(i)

a cos2 φ(i)
s − Pi sin2 φ(1)

a cos2 φ(1)
s

)

+εs

(
sin2 φ(i)

a cos2 φ(i)
a − Pi sin2 φ(1)

a cos2 φ(1)
a

)]
, (58)

ai4 = εa

(
Pi cos2 φ(1)

s −cos2 φ(i)
s

)
+εs

(
Pi cos2 φ(1)

a −cos2 φ(i)
a

)
,(59)

ai5 = 2ε2
aεs

(
Pi sin2 φ(1)

a − sin2 φ(i)
a

)
, (60)

ai6 = εaεs(1− Pi), (61)
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Pi =

(
εa cos2 φ

(i)
s − εs cos2 φ

(i)
a

)2

16π2nans cosφ
(i)
a cosφ

(i)
s P1

[
∆R

(i)
pp

R
(0)
p

+ Si

]
, (62)

and i = 2, 3;

P1 =

(
εa cos2 φ

(1)
s − εs cos2 φ

(1)
a

)2

16π2nans cosφ
(1)
a cosφ

(1)
s

[
∆R

(1)
pp

R
(0)
p

+ S1

]
, (63)

Sj = ±

(
na cosφ

(j)
a + ns cosφ

(j)
s

) (
na cosφ

(j)
s + ns cosφ

(j)
a

)

na cosφ
(j)
a

(
na cosφ

(j)
s − ns cosφ

(j)
a

)

[
Rps

(
φ(j)

a

)
Rsp

(
φ(j)

a

)]1/2
, (64)

and j = 1, 2, 3.
The system of two nonlinear Equation (55) can be solved with a

computer. On the other hand, rather than solve the nonlinear system,
the problem can be reduced to a quartic equation for one unknown.
This approach has an advantage over the first method because for
solving the quartic equations foolproof methods exist. For unknown y,
for instance, one can obtain the following quartic equation:

Ay4 + By3 + Cy2 + Dy + F = 0, (65)
A = a11f

2
1 + a12f

2
4 − a13f1f4, (66)

B = 2(a11f1f2+a12f4f5)−a13(f2f4+f1f5)−a14f1f4+a15f
2
4 , (67)

C = a11(f2
2 + 2f1f3) + a12f

2
5 − a13(f3f4 + f2f5)

−a14(f2f4 + f1f5) + 2a15f4f5 + a16f
2
4 , (68)

D = 2a11f2f3−a13f3f5−a14(f3f4+f2f5)+a15f
2
5 +2a16f4f5, (69)

F = a11f
2
3 − a14f3f5 + a16f

2
5 , (70)

f1 = a12a21 − a11a22, f2 = a15a21 − a11a25, f3 = a16a21 − a11a26,

f4 = a13a21 − a11a23, f5 = a14a21 − a11a24.

If the quantities x and y are known, then the thickness d can be
determined from the expression:

(d/λ)2 = P1

(
x cos2 φ(1)

s − εs + yεaεs sin2 φ(1)
a

)−1

(
x cos2 φ(1)

a − εa + yε2
a sin2 φ(1)

a

)−1
. (71)

Notice that whilst d/λ is always a real positive quantity, then the right-
hand side of Equation (71) must also be a real positive number. Such is
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indeed the case if the measurement errors of reflection coefficients are
within the normal range. However, if in the course of the calculations
it emerges that the right-hand side of Equation (71) has not a
positive value, then, obviously, the measurement errors of reflection
coefficients are unacceptably great and, of course, on the basis of such
experimental results one cannot determine the desired parameters.
Thus, Equation (71) provides a good separating filter (diplexer) for
great random experimental errors.

The quantities ε12 − ε13ε23/ε33 and ε23/ε33 can simply be
determined from the measurements of Rps and Rsp. On the basis of
the Equation (39) one can obtain that

ε12 − ε13ε23

ε33
=

Kps + Ksp

2 cos φs
, (72)

ε23

ε33
=

Ksp −Kps

2nans sinφa
, (73)

where

Kσ = ±R1/2
σ

(na cosφa + ns cosφs)(na cosφs + ns cosφa)
4πna cosφa

λ

d
. (74)

Consider next the determination of the quantity ε22 − ε2
23/ε33.

We can use for this purpose s-polarized light making measurements of
∆Rss/R

(0)
s ≡ (Rss−R

(0)
s )/R

(0)
s . The alternative is to use the reflection

mode ellipsometric parameters:

rpp/rss ≡ tanΨ(r)
pp exp

(
i∆(r)

pp

)
. (75)

For the contributions of an ultrathin film to ellipsometric angles
δΨ(r)

pp = Ψ(r)
pp −Ψ(r)

0 and δ∆(r)
pp = ∆(r)

pp −∆(r)
0 , where Ψ(r)

0 and ∆(r)
0 are the

ellipsometric angles of a bare substrate (for non-absorbing substrates
∆(r)

0 ≡ 0 and Ψ(r)
0 (φB) = 0), one can obtain the following first-order

formulas:
δ∆(r)

pp = 4πna cosφa (εa − εs)
−1 [(

c21 cos2 φs − c12εs)

×(cos2 φa − εaε
−1
s sin2 φa)−1 − c43 + εs cos2 φs

]
(d/λ),(76)

if φa 6= φB = arctan(ns/na) (for φa = φB, we have δ∆(r)
pp ≈ π/2), and

δΨ(r)
pp = π(εa + εs)1/2

∣∣[c21 − c12(εa + εs)](εa − εs)−1
∣∣ (d/λ), (77)

if φa = φB (for φa 6= φB the quantity δΨ(r)
pp ∼ (d/λ)2).

From Equation (76), we obtain that

ε22 − ε2
23

ε33
= εs +

c21 cos2 φs − c12εs

cos2 φa − εaε
−1
s sin2 φa

− δ∆(r)
pp

(εa − εs)
4πna cosφa

λ

d
, (78)
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For determining all components of the dielectric tensor (1) there is
a need to evaluate the quantity ε13. All one has to do is to measure the
transmission mode ellipsometric parameter ∆(t)

pp because in the case of
transmission ellipsometry, where

tpp/tss ≡ tan Ψ(t)
pp exp

(
i∆(t)

pp

)
, (79)

one can obtain that

∆(t)
pp = 2π

[
c11 + (c21 cosφa cosφs + nansc12)(na cosφs + ns cosφa)−1

−(nans cosφa cosφs + c43)(na cosφa + ns cosφs)−1
]
(d/λ), (80)

whence it follows that
ε13

ε33
=

1
na sinφa[

c21 cosφa cosφs+c12nans

na cosφs+ns cosφa
−nans cosφa cosφs+c43

na cosφa+ns cosφs
− δ∆(t)

pp

2π

λ

d

]
. (81)

Consequently, by the use of reflectance and ellipsometric
measurements we can found the quantities ε11, ε22, ε33, ε12, ε13,
ε23 and then on the basis of the Equations (2)–(7) work out the six
desired parameters of anisotropy: εxx, εyy, εzz, θ, ϕ, and ψ. But the
corresponding system of six equations for these unknown quantities
is difficult to tackle analytically and, generally, this system can be
solved with a computer. Here, we consider solely a couple of cases
where one parameter of anisotropy is known, i.e., we have only five
unknown quantities. In this situation, the analytical resolution of the
issue presents no special problem. For instance, if the angle ψ is known
and for simplicity we suppose that ψ = 0, then we can obtain the
following system of five equations for five unknown quantities εxx, εyy,
εzz, θ, ϕ:

εxx + εyy + εzz = ε11 + ε22 + ε33,

εyy sin2 θ + εzz cos2 θ = ε33,

(εyy − εzz)2 cos2 θ sin2 θ = ε2
13 + ε2

23,

εxx sin2 ϕ +
(
εyy cos2 θ + εzz sin2 θ

)
cos2 ϕ = ε22,

(εzz − εyy) cos θ sin θ sinϕ = ε.
13

(82)

The solution of this system has the form:

εxx = (ε22ε
2
13 − ε11ε

2
23)/(ε2

13 − ε2
23), (83)

εzz = (εD − εxx)/2

±{
(εD − εxx)2/4 + ε2

13 + ε2
23 + ε2

33−ε33(εD − εxx)
}1/2

, (84)
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εyy = εD − εxx − εzz, (85)

θ = arcsin[(ε33 − εzz)/(εyy − εzz)]1/2, (86)

ϕ = arcsin[ε2
13/(ε2

13 + ε2
23)]

1/2, (87)

where εD = ε11 + ε22 + ε33.
Analogously it can be shown that if ϕ = 0 then

εxx =
{

εP + ε11 ±
[
(εP − ε11)

2 + 4
(
ε2
12 + ε2

13

)]1/2
}

/2, (88)

εyy = ε11 + εP − εxx, (89)
εzz = εD − εxx − εyy, (90)

θ = arctan(ε13/ε12), (91)

ψ = arcsin[(εxx − ε11)/(εxx − εyy)]1/2, (92)

where εP = (ε33ε
2
13 − ε22ε

2
12)/(ε2

13 − ε2
12), and if θ = 0 then

εxx =
{

ε11 + ε22 ±
[
(ε11 − ε22)2 + 4ε2

12

]1/2
}

/2, (93)

εyy = ε11 + ε22 − εxx, (94)
εzz = ε33 (95)

ϕ + ψ = arcsin[(ε22 − εyy)/(εxx − εyy)]1/2. (96)

As may be inferred from the Equation (96) in the later case (θ = 0)
we can determine only the sum of two angles ϕ and ψ.

For reference, we have included a computer simulation for the
possible errors of approximate formulas (71), (83)–(87), and (88)–(92)
(Figs. 5–9). Computer simulations offer a clearer view of how the
approximate formulas work because such approach makes it possible
to analyze more complicated situations than we can create in real
experiments. It can be said with confidence that expressly this moment
is an important benefit to the harnessing of computer simulations.
In order to calculate the error of these equations we give certain
exact values for all unknown parameters d, εxx, εyy, εzz, θ, ϕ, ψ
and then calculate by the exact electromagnetic theory the values
of ∆Rpp/R

(0)
p , Rσ, δ∆(r)

pp , and ∆(t)
pp . Next, we use these quantities

in the form of ∆Rpp/R
(0)
p (1 − vpp), Rσ(1 − vσ), δ∆(r)

pp (1 − v∆r), and
δ∆(t)

pp (1−v∆t) {where vpp, vσ, v∆r, and v∆t represent the relative errors
of ∆Rpp,ss/R

(0)
p,s, Rσ, δ∆(r)

pp , and ∆(t)
pp respectively} in Equations (62),

(63), (64), (74), (78), and (81) for calculating, firstly, the quantities
ε
(calc)
11 , ε

(calc)
22 , ε

(calc)
33 , ε

(calc)
12 , ε

(calc)
13 , ε

(calc)
23 , and d(calc) and then for

determining ε
(calc)
xx , ε

(calc)
yy , ε

(calc)
yy , θ(calc), and ϕ(calc) on the basis of
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(a)

(b)

Figure 5. Relative errors of
approximate formulas (a) (83)
(dash-dotted curve), (84) (solid
curve), and (85) (dashed curve)
and (b) (86) (dash-dotted curve),
(87) (dashed curve), and (71)
(solid curve) as functions of λ for
an anisotropic ultrathin film with
d = 2nm, nxx = 2.4, nyy = 2.6,
nzz = 2.8, θ = 40◦, ϕ = 60◦, and
ψ = 0 at ns = 1.46, φ

(1)
a = 30◦,

φ
(2)
a = 50◦, φ

(3)
a = 75◦, and vps =

vsp = v∆r = v∆t = 0.

(a)

(b)

Figure 6. Relative errors of
approximate formulas (a) (88)
(dash-dotted curve), (89) (dashed
curve), and (90) (solid curve) and
(b) (91) (dash-dotted curve), (92)
(dashed curve), and (71) (solid
curve) as functions of λ for an
anisotropic ultrathin film with
d = 8 nm, nxx = 1.46, nyy = 1.48,
nzz = 1.52, θ = 70◦, ϕ = 0, and
ψ = 20◦ at ns = 2.5, φ

(1)
a = 40◦,

φ
(2)
a = 60◦, φ

(3)
a = 20◦, and vps =

vsp = v∆r = v∆t = 0.

Equations (83)–(87), if ψ = 0 or ε
(calc)
xx , ε

(calc)
yy , ε

(calc)
yy , θ(calc), and ψ(calc)

on the basis of Equations (88)–(92), if ϕ = 0. The machine performed
computations of the relative errors (εxx−ε

(calc)
xx )/εxx, (εyy−ε

(calc)
yy )/εyy,

(εzz − ε
(calc)
zz )/εzz, (θ − θ(calc))/θ, (ϕ − ϕ(calc))/ϕ, and (ψ − ψ(calc))/ψ

as functions of λ for vps = vsp = v∆r = v∆t = 0 are plotted in
Figs. 5 and 6. Note that, if vpp = vss = vps = vsp=0, then we obtain
the pure mathematical error of the approximate formulas that has
nothing to do with the error of ∆Rpp,ss/R

(0)
p,s and Rσ that occurs in

the experimental measurements of these quantities. The influence of
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Figure 7. Relative error of the approximate formula (71) versus
relative error of ∆Rpp/R

(0)
p at λ = 1000 nm, vps = vsp = v∆r = v∆t = 0

(solid curve), vps = vsp = 2% and v∆r = v∆t = 1% (dashed curve),
and vps = vsp = −3% and v∆r = v∆t = −2% (dash-dotted curve) for
an anisotropic ultrathin film with the same parameters as in Fig. 4.

experimental error of Rσ and ∆Rss,pp/R
(0)
s,p is demonstrated in Figs. 7–

9. These calculations show that the wavelength plays a role in the
error formation only in the short-wavelength region where d/λ is not
a sufficiently small quantity. But, in the long-wavelength region the
error of approximate formulas is of no concern: the error of desired
anisotropic constants is completely defined by instrumental error.

It is necessary to stress that a quartic equation gives generally four
different solution, then it may be that Equation (65) yields several real
positive solutions for ε33. However, computer simulations show that
frequently only one solution of Equation (65) is physically meaningful,
i.e., is greater than unity. On the other hand, if two (or even more)
real solutions of Equation (65) are > 1, then, of course, one needs
to find all final solutions for εxx, εyy, εzz, θ, ϕ, ψ, and d that
follow from different solutions of Equation (65). It is apparent that a
mathematical model generates all possible combinations of parameters
which possess identical reflection characteristics (the greater the
number of parameters, the greater the probability that such different
combinations exist). Hence, if two (or more) dissimilar combinations of
optical constants and thickness that are all physically meaningful exist
among final solutions, then more information (or a combination of
optical methods and alternate metrology techniques) is needed for the
separation of a true value of the set of optical parameters for the biaxial
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(a)

(b)

Figure 8. Relative error of
approximate formulas (a) (83)
and (b) (87) versus relative error
of ∆Rpp/R

(0)
p at λ = 1500 nm,

vps = vsp = v∆r = v∆t = 0
(solid curves) and vps = vsp =
−3%, v∆r = v∆t = −2%
(dashed curves) for an anisotropic
ultrathin film with the same
parameters as in Fig. 4.

(a)

(b)

 

Figure 9. Relative error of
approximate formulas (a) (89)
and (b) (91) versus relative error
of Rσ (vps = vsp) if λ = 1000 nm,
vpp = v∆r = v∆t = 0 (solid
curves), vpp = 2%, v∆r = v∆t = 0
(dashed curves), vpp = 0, v∆r =
v∆t = 0.5% (dash-dotted curves),
and vpp = −2%, v∆r = −1%,
v∆t = 1% (dotted curves) for an
anisotropic ultrathin film with the
same parameters as in Fig. 5.

ultrathin film to be investigated. Note that the elucidation of the
proper solution in computer simulations should present no problems
because, with reduction in d/λ, one can always increase the accuracy
of such calculations in a way that one possible solution virtually agrees
with given film parameters.

6. CONCLUSION

The analytical approach developed in this paper not only provides
insight into the nature of reflection problem for anisotropic films on
transparent materials but also furnishes the methods for determining



58 Adamson

simultaneously the dielectric constants and thickness of ultrathin
anisotropic films. Namely the latter feature of obtained analytical
expressions for reflection characteristics is currently of first importance
in optics of ultrathin films because the standard regression methods for
determining the parameters of ultrathin films on the basis of reflection
measurements are characterized by a strong correlation between
film thickness and dielectric response. Concurrently performed
numerical calculations show that the accuracy of the long-wavelength
approximation is reasonable if d/λ ≤ a few hundredths. Thus, if
we use the visible region of wavelengths for measurements, then the
thickness of surface layers cannot be in excess of several nanometers.
In this case physically in the category of ultrathin films fall, e.g., such
layers as native oxides, adsorbed monolayers, Langmuir-Blodgett films,
and gate oxides (nanometer-size insulating films) on microelectronic
devices. In fact, at the moment of interest are also the possibilities
of optical diagnostics for the analysis of utrathin films less than 1 nm
thick [8] because expressly this technique is of primary importance in
real-time control of deposition and applications involving preparation
of next-generation (opto) electronic devices. Generally, in the
present context the concept of “ultrathin” should not be taken too
literally. For example, in the far infrared region of wavelengths the
suggested methods, in principle, can be used in reflection diagnostics
of conventional thin films, i.e., the layer thicknesses can even be close
to visual wavelengths as well.
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