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Abstract—This paper presents an exact analytical method for the
computation of the magnetic field distribution in surface-mounted
permanent-magnet (PM) motors for any pole and slot combinations
including fractional slot machines. The proposed model takes into
account the slotting effect and the armature reaction magnetic
field. The analytical method is based on the resolution of the two-
dimensional Laplace’s and Poisson’s equations in polar coordinates (by
the separation of variables technique) for each subdomain, i.e., magnet,
airgap and slots. Magnetic field distributions, back electromotive force
and electromagnetic torque (cogging torque and load torque) computed
with the proposed analytical method are verified with those obtained
from finite element analyses.

1. INTRODUCTION

An accurate determination of the magnetic field distribution in the
airgap of permanent magnets machines is necessary to evaluate
the machine performances such as electromagnetic torque or back
electromotive force (EMF). The presence of stator slots has a large
influence on the airgap magnetic field distribution and therefore on the
motor performances (noise and vibrations due to radial forces, magnet
eddy-current losses . . . ).

The airgap magnetic field computation with slotting effects can be
evaluated by numerical methods like finite elements or by analytical
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methods. Analytical methods are useful tools for a first evaluation
of electrical motors performances and for design optimization. Two
analytical methods are mainly developed in the literature, the first
one uses conformal mapping [2–6] and the second one the subdomains
method by Fourier analysis [7–19]. Recent comprehensive reviews of
analytical methods can be founded in [11] and [18] and will not be
developed once again here.

Although several papers have been published on the computation
of the no-load airgap magnetic field in permanent magnet machines
with slotting effect, very few papers have been devoted to armature
reaction analysis [8, 16]. In [8], the armature reaction field is calculated
from the product of the magnetic field due to the stator winding
when slotting is neglected by a relative permeance function of the
slotted airgap region. In this model, the winding current is replaced
by a current sheet located at the armature bore radius. In [16], an
improved model based on the exact analytical solution of armature
reaction magnetic field is developed. However, the interaction between
the magnetic field produced by permanent magnets and the armature
reaction magnetic field is not studied, so the computation of the
electromagnetic torque in the motor is not developed.

The authors propose here an exact analytical solution of the
magnetic field distribution in the airgap of a surface mounted PM
machine based on the subdomain method accounting for slotting effects
and armature reaction. Laplace’s and Poisson’s equations are solved in
each subdomain (airgap, magnet and slots) and the solution is obtained
using boundary and interface conditions. The proposed model is very
general and can be used for surface mounted PM machines with any
pole and slot number combinations including fractional slot machines
with distributed or concentrated windings.

The paper is organized as follows. The problem description and
the assumptions of the model are presented in Section 2. Section 3
describes the analytical method for magnetic field calculation in the
airgap, permanent magnets and in the slot subdomains. The back-
EMF and torque expressions are developed in Section 4. The analytical
results are then verified with the finite-element method in Section 5 for
two PM machines including a fractional slot machine under no-load and
load conditions.

2. PROBLEM DESCRIPTION AND ASSUMPTIONS

The geometric representation of the model is shown in Fig. 1. The
geometrical parameters are the inner radius of the rotor yoke R1, the
radius of the PM surface R2, the inner and outer radii of the slots R3
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and R4 respectively. The pole-arc to pole-pitch ratio of the PM rotor
is α and the number of pole pairs is p. The stator has Q slots with a
homogeneous current density distribution Ji in each slot.

The slot opening angle is β. The angular position of the ith stator
slot is defined as

θi = −β

2
+

2iπ

Q
with 1 ≤ i ≤ Q (1)

The following assumptions are considered:
• The machine is assumed infinitely long so the end effects are

neglected.
• The current density has only one component along the z-axis.
• Stator and rotor iron cores are infinitely permeable.
• Radially magnetized magnets with a relative recoil permeability

µr = 1.
• The stator slots have radial sides.

As shown in Fig. 1, the whole domain is divided into three
subdomains: the rotor PMs subdomain (regions I), the airgap
subdomain (regions II) and the Q stator slots subdomains (regions i).
The ith slot subdomain shape is shown in Fig. 2. The subdomains I
and II have annular shapes.

Due to the presence of electrical current in the slots, a magnetic
vector potential formulation is used in 2D polar coordinates to describe
the problem. According to the adopted assumptions, the magnetic
vector potential has only one component along the z-direction and only
depends on the r and θ coordinates. The magnetic vector potential in
the different subdomains is noted

AI = AI(r, θ)ez for the rotor PMs subdomain
AII = AII(r, θ)ez for the airgap subdomain
Ai = Ai(r, θ)ez for the ith slot subdomain.

3. ANALYTICAL MODEL

By using the separation of variables technique, we now consider the
solution of Poisson’s equations for the slots (with current density) and
PMs subdomains and Laplace’s equation in the airgap subdomain. For
the sake of clarity of the general solutions in the different subdomains,
we introduce the following functions of three dummy variables u, v and
w

Pw(u, v) =
(u

v

)w
+

(v

u

)w
(2)

Ew(u, v) =
(u

v

)w
−

(v

u

)w
(3)
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Figure 1. Geometry of the studied surface-mounted PM motor with
the different subdomains (Q = 6 and p = 2).

Figure 2. ith slot subdomain with its boundary conditions.

3.1. Solution of Poisson’s Equation in the ith Slot
Subdomain (Region i)

The ith slot domain and the associated boundary conditions are shown
in Fig. 2. We have to solve Poisson’s equation in a domain of inner
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radius R3 and outer radius R4 delimited by the angles θi and θi + β

∂2Ai

∂r2
+

1
r

∂Ai

∂r
+

1
r2

∂2Ai

∂θ2
= −µ0Ji for

{
R3 ≤ r ≤ R4

θi ≤ θ ≤ θi + β
(4)

where Ji is the current density in slot i.
The tangential component of the magnetic field at the sides and

at the bottom of the slot being null (iron with infinite permeability),
the boundary conditions for the ith slot are

∂Ai

∂θ

∣∣∣∣
θ=θi

= 0 and
∂Ai

∂θ

∣∣∣∣
θ=θi+β

= 0 (5)

∂Ai

∂r

∣∣∣∣
r=R4

= 0 (6)

The continuity condition between the ith slot and the airgap leads to

Ai(R3, θ) = AII(R3, θ) (7)

The general solution of (4) can be found by using the method of
the separation of variables. According to the superposition principle,
the general solution of (4) is the sum of the general solution of the
corresponding Laplace’s equation and a particular solution [1]. Taking
into account the boundary conditions (5) and (6), the solution can be
written as [17]

Ai(r, θ) = Ai
0 +

1
4
µ0Ji

(
R2

3 − r2
)

+
1
2
R2

4µ0Ji ln
(

r

R3

)

+
∞∑

k=1

Ai
k

Pkπ/β(r,R4)
Pkπ/β(R3, R4)

cos
(

kπ

β
(θ − θi)

)
(8)

where the function Pkπ/β(r,R4) is defined by (2).
The constants Ai

0 and Ai
k are determined by using a Fourier series

expansion of the airgap magnetic vector potential AII given by (15)
over the slot interval [θi, θi + β] at r = R3.

Ai
0 =

1
β

θi+β∫

θi

AII(R3, θ)dθ (9)

Ai
k =

2
β

θi+β∫

θi

AII(R3, θ) cos
(

kπ

β
(θ − θi)

)
dθ (10)

The expressions of the coefficients Ai
0 and Ai

k are given in the appendix.
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3.2. Solution of Laplace’s Equation in the AirGap
Subdomain (Region II)

The airgap subdomain and the associated boundary conditions are
shown in Fig. 3. The problem to solve is

∂2AII

∂r2
+

1
r

∂AII

∂r
+

1
r2

∂2AII

∂θ2
= 0 for

{
R2 ≤ r ≤ R3

0 ≤ θ ≤ 2π
(11)

The continuity of the tangential component of the magnetic field at
r = R2 leads to

∂AII

∂r

∣∣∣∣
r=R2

=
∂AI

∂r

∣∣∣∣
r=R2

(12)

The boundary condition at r = R3 is more difficult to handle because of
the existence of the slots as shown in Fig. 1. Considering the continuity
of the tangential magnetic field at the interface between the slots and
the airgap and considering that the tangential magnetic field is equal
to zero elsewhere (infinite permeability of the ferromagnetic pieces),
the boundary condition at r = R3 can be written as

∂AII

∂r

∣∣∣∣
r=R3

= f(θ) (13)

Figure 3. Airgap subdomain (region II) with its boundary conditions.
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with

f(θ) =

{
∂Ai
∂r

∣∣∣
r=R3

∀θ ∈ [θi, θi + β]

0 elsewhere
(14)

where Ai(r, θ) is the magnetic vector potential in the ith slot given by
(8).

With the boundary conditions (12) and (13), the general solution
of the magnetic vector potential in the airgap can be written as

AII(r, θ) =
∞∑

n=1

(
AII

n

R2

n

Pn(r,R3)
En(R2, R3)

+ BII
n

R3

n

Pn(r,R2)
En(R3, R2)

)
cos (nθ)

+
∞∑

n=1

(
CII

n

R2

n

Pn(r,R3)
En(R2,R3)

+DII
n

R3

n

Pn(r,R2)
En(R3,R2)

)
sin (nθ) (15)

where n is a positive integer, Pn(r,R3) and En(R2, R3) are defined by
(2) and (3). The coefficients AII

n , BII
n , CII

n and DII
n are determined

using Fourier series expansion of ∂AI
∂r

∣∣∣
R2

and f(θ) over the airgap

interval [0, 2π]

AII
n =

2
2π

2π∫

0

∂AI

∂r

∣∣∣∣
R2

cos(nθ)dθ (16)

BII
n =

2
2π

2π∫

0

f(θ) cos(nθ)dθ (17)

CII
n =

2
2π

2π∫

0

∂AI

∂r

∣∣∣∣
R2

sin(nθ)dθ (18)

DII
n =

2
2π

2π∫

0

f(θ) sin(nθ)dθ (19)

The expressions of the coefficients AII
n , BII

n , CII
n and DII

n are given in
the appendix.

The radial and tangential flux densities in the airgap are deduced
from the magnetic vector potential by

BIIr =
1
r

∂AII

∂θ
BIIθ = −∂AII

∂r
(20)



300 Lubin, Mezani, and Rezzoug

The radial and the tangential components of the magnetic flux in the
inner air-gap are then

BIIr(r, θ)=+
∞∑

n=1

−
(
AII

n

R2

r

Pn(r,R3)
En(R2, R3)

+BII
n

R3

r

Pn(r,R2)
En(R3, R2)

)
sin(nθ)

+
∞∑

n=1

(
CII

n

R2

r

Pn(r,R3)
En(R2,R3)

+DII
n

R3

r

Pn(r,R2)
En(R3,R2)

)
cos(nθ) (21)

BIIθ(r, θ)=+
∞∑

n=1

−
(
AII

n

R2

r

En(r,R3)
En(R2, R3)

+BII
n

R3

r

En(r,R2)
En(R3, R2)

)
cos(nθ)

+
∞∑

n=1

−
(
CII

n

R2

r

En(r,R3)
En(R2,R3)

+DII
n

R3

r

En(r,R2)
En(R3,R2)

)
sin(nθ)(22)

3.3. Solution of Poisson’s Equation in the PMs Subdomain
(Region I)

The rotor PMs subdomain and the associated boundary conditions
are shown in Fig. 4. The problem to solve (derived from Maxwell’s
equations) is

∂2AI

∂r2
+

1
r

∂AI

∂r
+

1
r2

∂2AI

∂θ2
=

µ0

r

∂Mr

∂θ
for

{
R1 ≤ r ≤ R2

0 ≤ θ ≤ 2π
(23)

where µ0 is the permeability of the vacuum and Mr is the radial
magnetization of the magnets. The boundary conditions at r = R1

and r = R2 are respectively
∂AI

∂r

∣∣∣∣
r=R1

= 0 (24)

AI(R2, θ) = AII(R2, θ) (25)

The radial magnetization distribution Mr is plotted in Fig. 5,
where Br is the remanence of the magnets and δ is the position of the
rotor. The radial magnetization can be expressed in Fourier’s series
and replaced in (23).

Taking into account the boundary conditions (24) and (25), the
general solution of the magnetic vector potential in the PMs subdomain
can be written as

AI(r, θ) =
∞∑

n=1

(
AI

n

Pn(r,R1)
Pn(R2, R1)

+ Xn(r) cos (nδ)
)

cos (nθ)

+
∞∑

n=1

(
CI

n

Pn(r,R1)
Pn(R2, R1)

+ Xn(r) sin (nδ)
)

sin (nθ) (26)
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where

Xn(r) = − Pn(r,R1)
Pn(R2, R1)

(
R1

n

(
R1

R2

)n

f ′n(R1) + fn(R2)
)

+
(

R1

n

(
R1

r

)n

f ′n(R1) + fn(r)
)

(27)

Figure 4. PMs subdomain (region I) with its boundary conditions.

Figure 5. Magnetization distribution along θ-direction (PMs rotor).



302 Lubin, Mezani, and Rezzoug

and

fn(r)=





4Brp
π(1−n2)

rcos
(

nπ
2p (1−α)

)
if n = jp with j = 1, 3 . . .

2Br
π r ln(r) cos

(
π
2(1−α)

)
if n = p = 1

0 otherwise

(28)

where n is a positive integer and p is the number of pole-pairs of the
PMs rotor

It is important to note here that the magnetic vector potential
solution (26) contains some harmonic terms which are not multiple of
the pole pairs number p. This is due to the presence of the slots.

The coefficients AI
n and CI

n are determined using a Fourier series
expansion of AII(R2, θ) over the interval [0, 2π]

AI
n =

2
2π

2π∫

0

AII(R2, θ) cos(nθ)dθ (29)

CI
n =

2
2π

2π∫

0

AII(R2, θ) sin(nθ)dθ (30)

The expressions of the coefficients AI
n and CI

n are given in the
appendix.

4. BACK-EMF AND TORQUE CALCULATION

4.1. Electromagnetic Torque Expression

The electromagnetic torque is obtained using the Maxwell stress tensor.
A circle of radius Re in the airgap subdomain is taken as the integration
path so the electromagnetic torque is expressed as follows

Te =
LR2

e

µ0

2π∫

0

BIIr(Re, θ)BIIθ(Re, θ)dθ (31)

where L is the axial length of the motor. According to (21) and (22),
the analytical expression for the electromagnetic torque becomes

Te =
πLR2

e

µ0

∞∑

n=1

(WnXn + YnZn) (32)
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where

Wn = −AII
n

R2

Re

Pn(Re, R3)
En(R2, R3)

−BII
n

R3

Re

Pn(Re, R2)
En(R3, R2)

Xn = −CII
n

R2

Re

En(Re, R3)
En(R2, R3)

−DII
n

R3

Re

En(Re, R2)
En(R3, R2)

Yn = CII
n

R2

Re

Pn(Re, R3)
En(R2, R3)

+ DII
n

R3

Re

Pn(Re, R2)
En(R3, R2)

Zn = −AII
n

R2

Re

En(Re, R3)
En(R2, R3)

−BII
n

R3

Re

En(Re, R2)
En(R3, R2)

(33)

4.2. Back-EMF Expression

In order to compute the back-EMF of a 3-phase motor, we first
determine at a given rotor position δ, the flux over each slot i of cross
section Sslot. We have supposed that the current density is uniformly
distributed over the slot area, so the vector potential can be averaged
over the slot area to represent the coil

ϕi =
L

Sslot

∫∫

Sslot

Ai(r, θ)rdrdθ with Sslot = β

(
R2

4 −R2
3

)

2
(34)

where L is the machine axial length. The vector potential Ai(r, θ) is
given by (8). The development of (34) gives

ϕi = LAi
0 +Ji

βµ0L

2Sslot

(
−3

8
R4

4 +
1
2
R4

4 ln
(

R4

R3

)
+

1
2
R2

4R
2
3 −

1
8
R4

3

)
(35)

Under no-load condition (Ji = 0), the flux over each slot becomes

ϕi = LAi
0 (36)

The phase flux vector is given by
( Ψa

Ψb

Ψc

)
= nturn[C] ( ϕ1 ϕ2 · ϕi · ϕQ−1 ϕQ )t (37)

where nturn is the number of turns in series per phase and [C] is a
connection matrix (of dimension 3 × Q) that represents the stator
windings distribution in the slots. For example, Fig. 6 shows a three
phases windings distribution for a stator with 12 slots, a number of
pole-pairs p = 1 and a double-layer winding with a coil pitch equals to
5 slots.
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Figure 6. Double-layer windings distribution for a three phases
machine with 12 slots and p = 1.

The corresponding connection matrix (of the slots with respect to
the phases) is

[C] =

[ 2 1 0 0 0 −1 −2 −1 0 0 0 1
0 0 0 1 2 1 0 0 0 −1 −2 −1
0 −1 −2 −1 0 0 0 1 2 1 0 0

]
(38)

The three-phase back-EMF vector is computed by
(

Ea

Eb

Ec

)
= Ω

d

dδ

( Ψa

Ψb

Ψc

)
(39)

where Ω is the rotating speed of the rotor.
Using (A11), (A12) and (A19) (see the appendix), an analytical

expression can be derived for the back-EMF as follow
(

Ea

Eb

Ec

)
= ΩLnturn [C]

d

dδ

(
Ai

0

)t (40)

5. VERIFICATION OF THE ANALYTICAL RESULTS
USING FEM

5.1. Application Example 1: Integer Slot/pole Machine

The analytical method described above is applied to compute a three-
phase PM motor having an integer slot per pole and per phase ratio
i.e., 4 poles and 24 slots (q = 2). A double-layer winding with a coil
pitch equals to 5 slots is used. The connection matrix for 1 pole-pair
is the one given by (38). The geometrical parameters of the motor are
given in Table 1. The analytical solutions in the airgap, in the PMs
and in the slots domains have been computed with a finite number of
harmonic terms N and K as indicated in Table 1.

In order to validate the proposed analytical model, the analytical
results have been compared with 2D finite element simulations
obtained using FEMM software [20]. The finite-element solutions were
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Table 1. Parameters of the studied PMs Motor.

Symbol Quantity Value
R1 Inner radius of the rotor yoke 3 cm
R2 Radius of the PMs rotor surface 4 cm
R3 Stator bore radius 4.2 cm
R4 Outer radius of the slot 5.7 cm
L Axial length 10 cm
β Slot opening 7.5◦

α PMs pole-arc to pole-pitch ratio 0.85
Br Remanence of the permanent magnets 1.2 T
p Pole-pairs PMs rotor 2
Q Number of stator slots 24

Jrms RMS current density 5A/mm2

N
Number of harmonics used for magnetic field
calculation in the airgap and PMs domains

50

K
Number of harmonics used for magnetic field

calculation in the slot domain
50

obtained by imposing the natural Neumann boundary condition at the
surface of the stator and rotor iron cores. The mesh in the different
subdomains has been refined until convergent results are obtained.

5.1.1. Results under No-load Conditions (Jrms = 0)

Figure 7 presents the radial and tangential flux density distribution
along a circle in the middle of the airgap. A good accordance is
seen between the finite element method (FEM) and the analytical
computations. The effects of the stator slotting can be clearly observed
from this figure.

The back-EMF waveform for nturn = 1 is presented in Fig. 8. The
computation is done for a rotating speed Ω = 1500 rpm. The maximum
value of the back-EMF is around 9 V. The analytical and numerical
predictions are close to less than 1%. An important characteristic of a
PM motor is the cogging torque. For a slot opening corresponding to
half a tooth pitch, viz. β = 7.5◦, the obtained cogging torque is shown
in Fig. 9. The cogging torque waveform obtained from FEM is very
similar to the one issued from the analytical calculation.
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Figure 7. Radial (a) and tangential (b) flux density distribution at
no load in the middle of the airgap (Q = 24 slots).
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Figure 8. Per turn phase back-EMF (Q = 24 slots).

To show the influence of the slot opening on the cogging torque, we
have plotted in Fig. 10 the cogging torque waveforms for several values
of the slot opening β. As expected, the cogging torque decreases for
lower values of β.

5.1.2. Results under Load Conditions (Jrms = 5 A/mm2)

For a RMS current density Jrms = 5 A/mm2 in the slots, Fig. 11
presents the radial and tangential flux density distribution along a
circle in the middle of the airgap. Compared to the no-load results of
Fig. 7, one can see the influence of the armature reaction on both the
radial and the tangential flux densities.



Progress In Electromagnetics Research B, Vol. 25, 2010 307

0 3 6 9 12 15
-1.5

-1

-0.5

0

0.5

1

1.5

Angle (mech. degrees)

T
o

rq
u

e
 (

N
m

)

Finite element

Analytical

Figure 9. Cogging torque for
β = 7.5◦ (Q = 24 slots).
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Figure 10. Cogging torque for
several slot opening values (Q =
24 slots).
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Figure 11. Radial (a) and tangential (b) flux density distribution in
the middle of the airgap under load conditions (Jrms = 5 A/mm2) and
(Q = 24 slots).

The static torque is presented in Fig. 12. Compared to the FE
simulations, one can see that the analytical model well tracks the
torque ripples which are mainly due to the cogging torque. It can
be seen that the cogging torque (Fig. 9) represents almost 3% of the
stall torque of the motor. It is worthy to notice that these ripples will
be less important if a slot isthmus is present as usually done in low to
medium power machines.

5.2. Application Example 2: Fractional Slot/pole Machine

Another example is considered in this section for a fractional slot
machine (q = 1.25). The same geometrical parameters as in Table 1
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Figure 12. Static torque versus rotor position (Jrms = 5A/mm2) and
(Q=24 slots).

0 60 120 180 240 300 360
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Angle (mech. degrees)

R
a

d
ia

l 
flu

x
 d

e
n

s
it
y
 (

T
)

Finite element

Analytical

0 60 120 180 240 300 360
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Angle (mech. degrees)

T
a

n
g

e
n

ti
a

l 
fl
u

x
 d

e
n

s
it
y
 (

T
)

Finite element

Analytical

(a) (b)

Figure 13. Radial (a) and tangential (b) flux density distribution at
no load in the middle of the airgap (Q = 15 slots).

are used except for the number of slots and the slot opening which are
now Q = 15 and β = 12◦. This fractional slot machine has a double-
layer winding with a coil pitch equals to 3 slots. The corresponding
connection matrix is

[C]=

[ 2 1 0 −1 −2 0 0 1 1 0 0 −1 −1 0 0
0 −1 −1 0 0 2 1 0 −1 −2 0 0 1 1 0
0 0 1 1 0 0 −1 −1 0 0 2 1 0 −1 −2

]
(41)

5.2.1. Results under No-load Conditions (Jrms = 0)

Figure 13 shows the flux density distribution (radial and tangential
components) along a circle in the middle of the airgap. As expected,
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the flux density waveforms are not p-periodic for this fractional slot
machine.

The back-emf waveform (with nturn = 1) is presented in Fig. 14.
The computation is done for a rotating speed Ω = 1500 rpm.
Compared to the machine with Q = 24, the maximum value of the
emf is around 5 V in this case instead of 9 V in Fig. 8. This difference
is due to the coil pitch which is equal to 3 slots for the 15-slot machine
and 5 slots for the 24-slot machine.

The cogging torque is given in Fig. 15. As it can be seen, its
maximum value is much lower than the one given for the 24-slot
machine (Fig. 9). Indeed, this is typical for fractional slot machines
for which the cogging torque has a high harmonic order (its period is
360◦/LCM(Q, 2p) = 6◦, where LCM is the lowest common multiple).
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Figure 14. Per turn phase back-
EMF.
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Figure 15. Cogging torque for
β = 12◦.
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Figure 16. Static torque versus rotor position (Jrms = 5A/mm2) and
(Q = 15 slots).
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5.2.2. Results under Load Conditions (Jrms = 5 A/mm2)

For a RMS current density Jrms = 5 A/mm2, the static torque is
presented in Fig. 16. It can be seen that the torque is ripple free.
The maximum torque is comparable to the one obtained for the 24-
slot machine (Fig. 12). Once again, the analytical and FE results are
in close agreement.

6. CONCLUSION

In this paper, a new analytical method for computing the airgap field
distribution in PMs motors considering slotting effects and armature
reaction field has been presented. Laplace’s and Poisson’s equations
in polar coordinates have been solved by the technique of separation
of variables in the different subdomains. The proposed model can
be used for any pole and slot combinations including fractional slot
winding machines as shown in the paper. Flux density distribution,
back-EMF and torque computations for no-load and load conditions
are in close agreement with those issued from finite element predictions.
Compared to numerical approaches like FEM, the proposed analytical
model is less computational time consuming. Hence, it may be used as
a tool for the first stage of the design and optimization of PM motors.
With this approach, sensitivity analyses and the impact of the different
parameters on the machine design can be evaluated rapidly (under
magnetically linear conditions).

APPENDIX A.

For the determination of the integration coefficients, we have to
calculate integrals of the form

f(k, n, i) =

θi+β∫

θi

cos(nθ) cos
(

kπ

β
(θ − θi)

)
dθ (A1)

g(k, n, i) =

θi+β∫

θi

sin(nθ) cos
(

kπ

β
(θ − θi)

)
dθ (A2)
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r(n, i) =

θi+β∫

θi

cos(nθ)dθ (A3)

s(n, i) =

θi+β∫

θi

sin(nθ)dθ (A4)

The development of (A1) and (A2) gives the following functions
that will be used in the expressions of the Fourier coefficients

— for kπ 6= nβ

f(k, n, i) =
−nβ2

(
(−1)k sinn(β + θi)− sin(nθi)

)

k2π2 − n2β2
(A5)

g(k, n, i) =
nβ2

(
(−1)k cosn(β + θi)− cos(nθi)

)

k2π2 − n2β2
(A6)

— for kπ = nβ

f(k, n, i) =
β

2

(
cos(nθi) +

1
2kπ

(sinn(θi + 2β)− sin(nθi))
)

(A7)

g(k, n, i) =
β

2

(
sin(nθi)− 1

2kπ
(cosn(θi + 2β)− cos(nθi))

)
(A8)

The development of (A3) and (A4) gives the following functions

r(n, i) =
1
n

(sin(nθi + nβ)− sin(nθi)) (A9)

s(n, i) =
1
n

(− cos(nθi + nβ) + cos(nθi)) (A10)

• Expressions of the coefficients AII
n , BII

n , CII
n and DII

n for the
airgap subdomain. The development of (16) and (18) gives

AII
n = AI

n

n

R2

En(R2, R1)
Pn(R2, R1)

+ X ′
n(R2) cos (nδ) (A11)

CII
n = CI

n

n

R2

En(R2, R1)
Pn(R2, R1)

+ X ′
n(R2) sin (nδ) (A12)

where δ is the position of the PM rotor and X ′
n(R2) = dXn(r)

dr

∣∣∣
r=R2

·
Xn(r) is given by (27).

The coefficient BII
n and CII

n defined in (17) and (19) can be written
as

BII
n =

2
2π

Q∑

i=1

θi+β∫

θi

∂Ai

∂r

∣∣∣∣
r=R3

cos(nθ)dθ (A13)
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DII
n =

2
2π

Q∑

i=1

θi+β∫

θi

∂Ai

∂r

∣∣∣∣
r=R3

sin(nθ)dθ (A14)

where Q is the number of stator slots. The development of (A13) and
(A14) gives

BII
n =

Q∑

i=1

µ0Ji

2π

(
R2

4

R3
−R3

)
r(n, i)

+
Q∑

i=1

∞∑

k=1

Ai
k

k

βR3

Ekπ/β(R3, R4)
Pkπ/β(R3, R4)

f(k, n, i) (A15)

DII
n =

Q∑

i=1

µ0Ji

2π

(
R2

4

R3
−R3

)
s(n, i)

+
Q∑

i=1

∞∑

k=1

Ai
k

k

βR3

Ekπ/β(R3, R4)
Pkπ/β(R3, R4)

g(k, n, i) (A16)

• Expressions of the coefficients AI
n and CI

n, for the PMs
subdomain (29) and (30)

AI
n = AII

n

R2

n

Pn(R2, R3)
En(R2, R3)

+ BII
n

R3

n

2
En(R3, R2)

(A17)

CI
n = CII

n

R2

n

Pn(R2, R3)
En(R2, R3)

+ DII
n

R3

n

2
En(R3, R2)

(A18)

• Expression of the coefficients Ai
0 and Ai

k for the ith slot
subdomain.

The treatment of (9) and (10) yields to the following linear
relations

Ai
0=

∞∑

n=1

(
AII

n

R2

nβ

2
En(R2, R3)

+ BII
n

R3

nβ

Pn(R3, R2)
En(R3, R2)

)
r(n, i)

+
∞∑

n=1

(
CII

n

R2

nβ

2
En(R2, R3)

+ DII
n

R3

nβ

Pn(R3, R2)
En(R3, R2)

)
s(n, i) (A19)

Ai
k=

∞∑

n=1

(
AII

n

2R2

nβ

2
En(R2, R3)

+ BII
n

2R3

nβ

Pn(R3, R2)
En(R3, R2)

)
f(k, n, i)

+
∞∑

n=1

(
CII

n

2R2

nβ

2
En(R2,R3)

+DII
n

2R3

nβ

Pn(R3,R2)
En(R3, R2)

)
g(k,n,i) (A20)
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We have to solve a system of linear Equations (A11) to (A20) with
the same number of unknowns. By rewriting the above equations in
matrix and vectors form, a numerical solution can be found by using
mathematical software (Matlab).
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