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Abstract—An original iterative method based on the conjugate
gradient algorithm is developed in this paper to study electromagnetic
scattering. The Generalized Equivalent Circuit (GEC) method is used
to model the problem and then deduce an electromagnetic equation
based on the impedance operator. For validation purposes, the
developed method has been applied to various iris structures. Results
computed using the new implementation of the conjugate gradient are
similar to theoretical values. The field and current distribution are
identical to the ones obtained with the moment method. Moreover,
the memory resources required for storage are significantly reduced.

1. INTRODUCTION

The study of electromagnetic wave scattering has known considerable
theoretical progress [1]. Numerical methods such as the finite element
method [2], the moment method [3, 4]. . . etc. were used to study
the electromagnetic wave scattering of any given structure. However,
when such methods are applied to large structures, important storage
resources and processing time are required limiting then their range
of applicability. To circumvent these limitations, iterative approaches
have been investigated. Among these approaches, we are interested to
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the conjugate gradient (CG) method [5, 6]. This method is a finite step
iterative method which converges to the solution for any initial guess.

Due to its efficiency, variants of this method have been exploited
to study electromagnetic problems [6–12]. It has received widespread
use in electromagnetic domain with the works of Sarkar, Arvas and
Rao [9], Barkeshli and Volakis [11], when they have combined the
CG algorithm with the fast Fourier Transform (FFT) technique. This
method called “CGFFT” reduces computational time and computer
storage compared to the ordinary CG method.

In this paper, a new formulation of the CG method has been
developed to study the electromagnetic scattering. The main idea is
to combine the ordinary CG method to the Generalized Equivalent
Circuit (GEC) modeling [13–16]. In this formulation, the impedance
operator is used instead of the integro-differential operator [9]
simplifying then the transition between spectral and spatial domains.

The developed method has been applied to solve electromagnetic
equation for some post and iris structures located in the cross section
of a rectangular waveguide.

This paper is organized as follows: Section 2 presents the studied
structures and the problem formulation; it describes the methodology
to extract the equivalent circuit and explains how the Method of
Generalized Equivalent Circuit (GEC) is used to identify the equation
based on the impedance operator. It also reminds the conjugate
gradient algorithm principle and its application to solve the operator
equation obtained. The sections which follow deal with numerical
results: the current obtained has been represented for some post and
iris structures, and the electric field resulted has been compared to the
one computed by the MoM.

2. PROBLEM FORMULATION

As an example of a scattering problem to be solved using the new
formulation of CG, let us consider the scattering from a post and
from an iris located in an infinite rectangular waveguide as shown in
Figures 1(a) and 1(b). These structures are excited by the fundamental
mode of the rectangular waveguide enclosing them.

We are using a uniform waveguide of rectangular cross section; a
and b design respectively the cross section length and width, d is the
window width in Figure 1(a) and the metal width in Figure 1(b). D
is a symmetric plan for the structure; it designs the discontinuity plan
on which we consider a magnetic wall.

Two types of waveguides are tested in this work. The first
waveguide called EMEM waveguide is composed of two perfect electric
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Figure 1. (a) Inductive iris, (b) inductive post.

walls to the top and the bottom, lateral walls are magnetic. The second
type consists of four electric walls, it is noted EEEE waveguide. The
considered waveguides are lossless.

2.1. Structure Modeling

The studied problem is modeled using the GEC method [13–16] which
translates the boundary conditions and the relations between electric
and magnetic fields into an equivalent circuit. In order to satisfy the
boundary conditions we have introduced the Heaviside operators Ĥi

and Ĥm, which are respectively the indicator of the isolator part of the
obstacle and the metallic part.

The discontinuity surface can be dissociated into a metallic surface
and a dielectric surface. The virtual current source J is defined on
the metallic surface and is null on the dielectric part. We note E its
dual. This source behave as a short circuit on the metallic surface
(Ĥm E = 0), and it is equivalent to an open circuit on the dielectric
(Ĥi J = 0). This virtual current source is then representing all the
boundaries conditions on the symmetric plan D of the structure.

Figure 2 represent the equivalent circuit of the structures given in
Figure 1.

The real source E represents the fundamental mode in rectangular
waveguide, and Ẑ is the impedance operator corresponding to
evanescent modes.
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Figure 2. The equivalent circuit of the structure.

The boundary conditions of magnetic field are translated in this
representation by the Kirchhoff law applied to the electric field [16].
This method allows us to identify the relation between the electric field
and the current using the impedance operator. In fact, when we apply
the laws of tension and current, we deduce the relation between virtual
and real sources and its duals.

From this circuit, we can deduce the following system:
{

J0 = −J

E = E0 + ẐJ
(1)

The first part of this system presents the continuity relation of
the current on the discontinuity surface. Remind that J designs the
current density of the source (J0 = ~H0∧~n) and J is the current density
on the iris.

The second part of the system designs the continuity relation of
the electric field at the iris/source discontinuity surface.

So the equation verified on the metallic part of the structure is
given by:

ĤmẐJ = −ĤmE0 (2)

We remind that the impedance operator is given by the following
formal relation [16, 19]

Ẑ =
∑

n=1,2,3,...

|fn〉zn 〈fn| (3)

The operator Ẑ is, in fact, equivalent to the Green function on the
spectral domain, decomposed on the considered mode basis of the
structure. Particularly, it is the dyadic green function and in general,
applied to a function φ it is given by: Ẑφ =

∑
n
|fn〉zn 〈fn |φ〉 .

This represents the decomposition of a function φ on the modes
basis fn.
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The scalar product 〈u, v〉 is defined on the Hilbert space, and is
given by

〈u , v〉 =
∫

u∗v u, v ∈ L2 (4)

where u∗ designs the complex conjugate of u. zn designs the impedance
of each mode, and n is the mode number [17]

zn =
jωµ0

γ
(5)

where γ =
√

(nπ
a )2 − k2

0 denotes the propagation constant.
The fn define the waveguide modal basis [17, 18] and are

determined as a function of the waveguide type.
In the first case, the waveguide used is the EMEM guide. The

fundamental mode is the transverse electromagnetic mode (TEM).
We are interested to the study of scattering from the structure when
excited by this fundamental mode.

The excitation (mode TEM) is independent of y. On the other
hand, the discontinuity is uniform on the y-axis. As a consequence,
studied problem has no y dependency. Also are the fn modes excited
by the scattering of the fundamental mode over the obstacle.

Due to the invariance of the problem, only TEM mode and
Transverse Electric modes exist. The mode basis is then given as
following: {

f0 = E0 = 1√
a

fn =
√

2
a cos(nπ

a x)
(6)

In the second case, the waveguide used is an electric one, so the
excitation is the fundamental mode TE10, and it is the only one
propagating mode within the operating frequency band.

Due to the symmetry of the problem, the modal basis is
independent of y. Then, the scattering of the fundamental mode
over the structure excite only the TE modes which have the following
expression: 




f0 = E0 =
√

2
a sin(π

ax)

fn =
√

2
a sin(nπ

a x)
(7)

In this paper, we focus on solving the given operator linear equation
defined on the metallic part of the structure:

ẐJ = −E0. (8)

with Ẑ is an auto-adjoint operator, J and E0 ∈ L2.
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Thus this equation is an excellent candidate to iterative solution.
We will see in the following how we can solve such equation using the
conjugate gradient iterative method.

2.2. The Modified CGM Formulation

The conjugate gradient method is proposed as an alternative algorithm
for treating ill-conditioned systems, since, there is no rounding errors
building from one iteration step to the other [8]. Also, after each
iteration the quality of the solution is known in the conjugate gradient
method.

The method proceeds by generating successive approximations
to the solution, and search directions used in updating iterates and
residuals. Only a small number of vectors need to be kept in memory.
Also the solution is improved at a steady rate throughout the iterative
process.

The first step in the computation process is evaluation of the term
ẐJ . Some transformations are needed in order to compute this term.

The impedance operator used here is described using modal basis,
it is a discrete operator applied on the spectral domain. It is also
called a spatial-spectral operator and it allows transition from spectral
to spatial domain

If we apply the impedance operator on J we obtain:

ẐJ =
∑

n

|fn〉zn 〈fn |J〉 (9)

The unknown function J is approximated by a linear combination of
N independent pulse function [3] {gi(x)} with N unknowns coefficients
J1, J2, . . . , JN :

J(x) =
N∑

i=1

Jigi(x) (10)

Since the x-axis is divided into N equivalent segments with negligible
width and the current is assumed to be constant over each segment,
the hermitian scalar product can be approximated by

< fn(x)| J(x) >=
∑

i

fn(xi)J(xi)∆xi (11)

∆xi is the uniform distance between any two sampling point xi and
xi+1, it is equal to a/N and is called the cell density. We will note it
∆ in the subsequent parts of this paper.
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The operator equation can then be written in the discrete domain
as follows:

ẐJ(x) =
∑

n

(∑

i

fn(xi)J(xi)∆

)
znfn(x) (12)

The equation to solve, using the CG method is then given by:

∑
n

(∑

i

fn(xi)J(xi)∆

)
znfn(x) = −E0 (13)

The algorithm starts with an initial guess J of the unknown current.
In all cases examined here a zero estimate is used. The initial residual
and direction vectors are computed as following:

r0 = ĤmE0

p0 = r0
(14)

We remind that Ĥm is the indicator of the metallic part of the

discontinuity surface Ĥm = 1 on the metal
Ĥm = 0 on the dielectric

.

Among the algorithm steps we remind the compute of the
following terms at the kth iteration:

wk = ĤmẐpk (15)

αk =
‖rk‖2

pT
k wk

(16)

Jk+1 = Jk + αkpk (17)

where pk is the direction vector and αk is the scalar coefficient [5, 6].
The values of the current obtained at the kth iteration are stored

in the column vector Jk, with N components. Hence the ith element of
J for example is the initial guess for the current over the ith segment.

We achieve then, all the algorithm steps [5, 6].
The stopping test used to decide about the convergence of the CG

algorithm is the normalized squared residual error expressed as follow:

Errk =
‖rk‖
‖E0‖ < ε (18)

where ε is the accuracy fixed.
Experimental results obtained using the new formulation of the

CG method are detailed in the subsequent section.
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3. NUMERICAL RESULTS

3.1. Case of an Iris

Let us consider the structure given in Figure 1(a) consisting of an
iris located in the cross section of a rectangular waveguide. The CG
algorithm is then implemented in order to determine the current J . We
follow the different algorithm steps exposed on the previous section.

We have two types of convergence, one is related to the error
criterion and the second is attached to the mode convergence. In fact,
the iteration process is continued till Errk = ‖rk‖

‖E0‖ < ε. In this work,
we assume that the CG algorithm converges when ε = 0.001.

Figure 3 shows the convergence of the CGM for the iris structure,
in an EMEM waveguide and in an electric waveguide, all with the cell
density fixed at a/200.

It is observed that the rate of convergence of the CGM is
independent upon the waveguide. In fact, the residual error has the
same behavior for the two types of waveguides.

The CG method adopted requires at about 8 iterations to reduce
the residual norm below 0.001 with a cell density of a/200.

We represent on the following, the current density behavior as a
function of the iterations number and the mode number.
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Figure 3. Convergence of the CGM for iris structures in the case of
EMEM and EEEE waveguides (a = 22.9mm, F = 9GHz, N = 200,
n = 4000).
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Figure 4. Numerical convergence of the normalized current
distribution evaluated by the CG method as a function of iterations
number (case of an EMEM waveguide); a = 10mm, d = a/3,
F = 2 GHz, N = 200.
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Figure 5. Numerical convergence of the normalized current
distribution evaluated by the CG method as a function of modes
number; (case of an EMEM waveguide); a = 10mm, d = a/3,
F = 2 GHz, N = 200.
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Figure 6. The current distribution for an irregular inductive iris as a
function of the mode number (case of an EEEE guide); a = 22.9mm,
d = a/9, N = 128, F = 9GHz.

Figure 4 shows that the current evaluated by the CG and obtained
at convergence is conform to theory with respect to the boundary
conditions.

Figure 5 represents the current behavior as a function of the mode
number. It shows that the mode convergence is obtained for n = 3000.

We have also tested the current distribution over the iris structure,
for an electric guide. Result obtained is drawn in Figure 6.

It is observed that for a case of electric waveguide the mode
convergence is obtained for n = 4000. Also result obtained is
conforming to theory with respect to the boundary conditions.

3.2. Case of a Post

Let’s consider the structure given in Figure 1(b) consisting of a post
located in the cross section of a rectangular waveguide. We apply the
modified CG algorithm adopted in this work in order to determine the
current distribution.

Figure 7 shows the convergence rates of the two examples of posts
respectively in an EMEM waveguide and in an electric waveguide with
cell density of a/200.

It is observed that the method converges to a good solution at
about 6 iterations, even thought the initial guess was taken to be zero.
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Figure 7. Convergence of the CGM for post structures in the case of
EMEM and EEEE waveguides (a = 22.9mm, F = 9GHz, N = 200,
n = 4000).

Figure 8. The current distribution evaluated by the CG method for
a post located on the cross section of EMEM and EEEE waveguides;
a = 22.9mm, d = a/3, F = 9 GHz, N = 500, n = 4000.
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Note that the rate of convergence in these examples is faster than
in the previous examples shown in Figure 3. In fact, in this case, the
metallic surface is smaller than the one used for iris structure, and the
current is assumed to be null on the major part of the structure, which
exhibit less operations for the algorithm.

Figure 8 shows the current distribution for post structures
respectively in an EMEM waveguide and in an electric guide.

The obtained results are conforming to theory with respect to
boundary conditions. It is also observed that, the waveguide walls
have an influence on the current distribution. In fact, for the same
cell density, the current has the same behavior but not the same
numerical intensity for the two kinds of waveguides. This is related
to the difference on the excitation modes used for the two kinds of
waveguides.

4. VALIDATION OF THE NEW CGM
IMPLEMENTATION

4.1. CGM Versus MoM

After one obtains the induced electric current Jy numerically over the
metallic surface, with a given excitation E, other parameters, such as
the scattered and the total electric fields can be easily deducted.

In this section, the total electric field is determined and compared
to the one found by the MoM.

The electric field is computed by:

E = E0 + ẐJ (19)

Figure 9 draws the normalized total electric field evaluated by
the conjugate gradient method and the one computed by the moment
method (Galerkin method) for the iris structure with EMEM walls.

For the moment method, results are plotted for 4000 sinusoidal
mode functions; the test functions used are 200.

Figure 9 shows that the electric field behavior is with respect
to the boundary conditions It is also observed that result found at
convergence by the CGM is conforming to the ones found by the MoM.

Let’s remind that the CG method on which we are based in this
work, exhibit less storage comparing to the MoM, it has also less
numerical complexity, which make it more convenient. In fact, with
the CGM, there is no need to stock nor to inverse a matrix. The
complexity of this method is O(N2), and the storage is O(N). Also,
convergence is guaranteed after a small number of iterations.
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Figure 9. The normalized electric field depicted by the CGM adopted
in this work and the one evaluated by the traditional Galerkin method,
with a = 10 mm, b = 5 mm, d = a/3 at F = 2 GHz (case of an EMEM
guide). MoM: fn = 3000, gp = 200; CGM: fn = 3000, N = 200.

4.2. Analytical Validation of the Method

As a further test on the validity of this method, results obtained have
been compared with Marcuvitz’s formulae [17]. The input impedance
parameter has been computed by the CG method adopted in this work
and has been compared to the one analytically computed by Markuvitz.

The input impedance is computed as following

Zin =
< E0, E0 >

2 < E0, J >
(20)

The 1/2 factor translated the contribution of the two half spaces
on both sides of the discontinuity.

E0 designs the excitation of an EEEE waveguide, and J is the
current determined at convergence by the CG algorithm adopted in
this work.

Figure 10 depicts the convergence of the input impedance
parameter as a function of frequency.

It is observed that the input impedance obtained using the CG
method, presented in this paper, is considerably approached to the
one computed by Markuvitz especially in the low frequency band. In
its book, Markuvitz is computing Zin analytically using the equivalent
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Figure 10. Zin-parameter as a function of frequency for the inductive
iris structure in an EEEE waveguide. Dimensions are: a = 22.9mm,
d = a/9, n = 4000, N = 500.

static method and the lowest mode, in our case; we are using a complete
basis mode.

5. CONCLUSION

A new formulation of the CG method was presented in this paper
to solve electromagnetic scattering problem. The conventional CG
algorithm was combined to the generalized equivalent circuit method
to get an original formulation. This technique is based on the
impedance operator and is applied to structures with discontinuities
on a rectangular waveguide The obtained equation was expressed
as a function of the impedance operator which is a spatial-
spectral operator allowing an easy transition from spectral to spatial
domain. This method exhibits O(N) memory storage and O(N2)
addition/multiplication operations.

This method converges to the solution in a finite small number of
steps starting from a zero initial guess. Some numerical examples are
given to illustrate the properties of this method.

The current and the electric field behaviors have been determined
using this method. For validation purposes, the computed results were
compared to those obtained by the MoM and the analytical results of
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Markuvitz.
The primary area of future work is to validate this method for

more complicated structures.

REFERENCES

1. Tsang, L., J. A. Kong, and K. Ding, Scattering of Electromagnetic
Waves: Theories and Applications, John Wiley and Sons, Canada,
2000.

2. Fleming, A. H. J., “A finite element method for composite
scatterers,” Progress In Electromagnetic Research, Vol. 2, 69–112,
1990.

3. Harrington, R. F., Field Computation by Moment Methods,
Macmillan, New York, 1968

4. Harrington, R. F. and T. K. Sarkar, “Boundary elements and the
method of moments,” 5th Int. Conf. Boundary Elements, 31–40,
Hiroshima, Japan, November 8–11, 1983.

5. Nocedal, J. and S. Wright, Numerical Optimization, Springer
Series in Operations Research, Springer-Verlag, New York, 1999.

6. Sarkar, T. K., “The conjugate gradient method as applied to
electromagnetic field problems,” IEEE Antennas and Propagation
Society Newsletter, August 1986.

7. Volakis, J. L. and K. Barkeshli, “Applications of the conjugate
gradient FFT method to radiation and scattering,” Progress In
Electromagnetic Research, Vol. 5, 159–239, 1991.

8. Peterson, A. F., S. L. Ray, C. H. Chan, and R. Mittra, “Numerical
implementation of the conjugate gradient method and the Cg-
FFT for electromagnetic scattering,” Progress In Electromagnetic
Research, Vol. 5, 241–300, 1991.

9. Sarkar, T. K., E. Arvas, and S. M. Rao, “Application of FFT and
the conjugate gradient method for the solution of electromagnetic
radiation from electrically large and small conducting bodies,”
IEEE Trans. Antennas Propagat., Vol. 34, No. 5, 635–640, 1986.

10. Peterson, A. F. and R. Mittra, “Convergence of the conjugate
gradient method when applied to matrix equations representing
electromagnetic scattering problems,” IEEE Trans. Antennas
Propagat., Vol. 34, 1447–1454, 1986.

11. Barkeshli, K. and J. L. Volakis, “Improving the convergence rate
of the conjugate gradient FFT using subdomain basis functions,”
IEEE Trans. Antennas Propagat., Vol. 37, No. 7, 893–900, 1989.

12. Cwik, T. A. and R. Mittra, “Scattering from a periodic array of



36 Belhadj, Mili, and Aguili

free-standing arbitrarily shaped perfectly conducting or resistive
patches,” IEEE Trans. Antennas Propagat., Vol. 35, 1226–1234,
1987.

13. Baudrand, H., “Representation by equivalent circuit of the
integrals methods in microwave passive elements,” European
Microwave Conference, Vol. 2, 1359–1364, Budapest, Hungary,
September 10–13, 1990.

14. Aguili, T., “Modélisation des composantes SFH planaires par la
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