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Abstract—Planar waveguides with an isotropic chiral core, called
chirowaveguides, support the propagation of elliptically polarized
modes, making them natural candidates for chiral sensing. We
investigate the potential of chirowaveguides as optical sensors
responding to changes in the circular birefringence of a medium
covering the waveguide. Using first order approximations, we derive
expressions for the sensitivities to refractive index and to changes
in circular birefringence. The chiral sensitivity is proportional
to the achiral sensitivity and to the eccentricity of the mode
under consideration. Possible combinations of materials and design
conditions for chirowaveguide sensors are discussed with reference to
these results. The motivation for this study, besides its theoretical
and academic importance, comes from potential applications for
enantiomeric integrated optical devices.

1. INTRODUCTION

Handedness or chirality is a symmetry property: an object is chiral
if it cannot be superimposed on its mirror image [1]. The two
mirror images are called enantiomers. Chirality at the molecular
scale plays a fundamental role in living systems for which many
mechanisms are based on the selective interaction between chiral active
species and chiral receptors. The biological and physiological effects of
such enantio-specific interactions can be dramatically affected by the
handedness of the enantiomer. Thus, chiral recognition/detection is of
prime importance in key areas such as chemical synthesis, catalysis,
pharmaceutics and biomedical work.
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Optical chiral recognition takes advantage of one of the aspects
characterizing chiral media: the phenomenon of optical activity.
Polarimeters and circular dichroism spectrometers measure the
rotatory power α and the differential absorption between left- and
right-circularly polarized light, respectively. These techniques are of
proven efficiency but are limited to off-line analysis.

The concept of a solid miniaturized chiral sensor opens exciting
perspectives in process monitoring. Recently, the differential detection
of isomers was demonstrated using an organic thin-film transistor gas
sensor [2]. The chiral discrimination arises from in-diffusion and the
subsequent capture of target molecules in the outermost chiral layer.
This capture-based sensing depends on finding a good receptor-analyze
association.

Research for a more versatile compact chiral sensor involves the
direct detection of a physical parameter related only to chirality. The
most universal parameter is circular birefringence, cb = nL − nR,
where nL and nR are the refractive indices for left- and right-circularly
polarized waves illuminating the material. It vanishes for non-chiral
media and changes sign with the enantiomer.

In order to directly measure this parameter, it is necessary to use
an optical device capable of supporting the propagation of circularly
polarized waves. Chirowaveguides, or planar waveguides with an
isotropic chiral core [3], are natural candidates for such a task because
they allow the propagation of circularly polarized waves [4]. This
new class of waveguides was proposed for the first time in 1989 [3]
and, since then, a lot of theoretical work has been done in order to
determine their modal properties [4–7]. Recently, thin films based
on binaphthyl molecules featuring high isotropic optical rotation have
been synthesized, opening the way to the practical realization of
chirowaveguides [8–10].

In this paper, we investigate theoretically the potential of
chirowaveguides to act as circular birefringence optical sensors. The
idea is to combine the compactness and flexibility of evanescent planar
wave sensors [11] with the unique ability of chirowaveguides to support
the propagation of circularly polarized waves. Basic optical waveguide
sensor devices are fabricated from a thin film of high refractive index,
the core, coated on a substrate of lower index. The chemically sensitive
material is applied as a cladding layer on “top” of the waveguide and
is probed by the evanescent field of the mode [12]. In the main,
optical sensors probe three different physical parameters (fluorescence,
absorption and refractive index). Here, we focus on the measurement of
refractive index: a variation of the refractive index in the region probed
by the evanescent field induces a variation of the effective refractive
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index of the guided wave. In the case of chiro-sensing, two parameters
may impact on the modal properties: the achiral refractive index —
correlated to permittivity — and the chiral circular birefringence.

Whatever optical device is used as refractive waveguide sensor
(interferometer, resonator or mode coupler), the first design task is to
find the waveguide structure which maximizes the sensitivity to the
quantity that needs to be measured [13]. Various papers [11, 13] have
been published on how to accomplish this task for achiral waveguides.
The goal of this work is to decide whether or not chirowaveguides may
be used as circular birefringence sensors. The first issue is to find
a waveguide structure with good sensitivity to circular birefringence.
Theoretically, the first step is then to derive an expression for the
sensitivity to this chiral property. We denote this sensitivity by Schir.
The second issue comes from the fact that the circular birefringence is
many orders of magnitude smaller than the refractive index. Thus, the
achiral sensitivity Sachi to refractive index also needs to be calculated
and compared to Schir. If Sachi 6= 0, refractive index sensing will
overwhelm chiral sensing and a special set-up that cancels Sachi must
be conceived.

The paper is organized as follows: the first part is dedicated to
the formulation of the electromagnetic problem and introduces the
notation. In the second part, expressions for the sensitivities are
derived using perturbation theory. In the following section, we write
the sensitivities as a function of one transverse electric field component.
In Section 4, we provide some leads on how to optimize Schir. Finally,
we show that a difference interferometer achieves the cancellation of
achiral sensing.

2. FORMULATION OF THE PROBLEM

We consider an isotropic nonmagnetic chiral medium. Its
electromagnetic constants are the relative permittivity ε and the chiral
parameter γ. By taking the time variation of the fields in the form
exp(iωt), the fields E and H satisfy the Maxwell equations:

∇×E = −iωB ∇×H = iωD (1)

We adopt constitutive equations including chirality in the Drude-
Born-Federov form [14]:

D = ε (E + γ∇×E) (2)
B = µ0 (H + γ∇×H) (3)

Plane waves propagating in such media are right-handed circularly or
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Figure 1. Schematic representation of a slab chirowaveguide sensor.

left-handed circularly polarized with refractive index nR/L [14]:

nR/L =
n

1± k0nγ
(4)

n2 = ε/ε0 k2
0/ω2 = ε0µ0 (5)

The chiral parameter being very small, the circular birefringence may
be approximated as

cb = 2n2k0γ (6)

The circular birefringence is related to rotary power by α = k0cb/2 [15].
The structure of the waveguide under consideration is shown in

Fig. 1. The core, of thickness d, and the cover are chiral with refractive
indices ng and nc, respectively. Their chiral parameters are γg and
∆γc, respectively, with corresponding circular birefringences cbg and
∆cbc. The refractive index of the achiral substrate is ns. The planar
waveguide is invariant over the x and z axes, and the axis of the
waveguide is taken as the z axis.

We are looking for the solution of the problem represented by the
structure with parameters (ns, ng, cbg, nc + ∆nc, ∆cbc) where ∆nc

is a small variation in the cover refractive index. We assume that the
cover chiral parameter is much smaller than the core chiral parameter.
Indeed, the design of a chirowaveguide requires materials with a much
higher rotary power than a conventional diluted chiral medium [4].
Under these assumptions (∆nc ¿ nc and ∆cbc ¿ cbg), we treat
the problem using perturbation theory. The unperturbed structure
is a chirowaveguide with parameters (ns, ng, cbg, nc, ∆cbg = 0).
The general solution for modes in such an asymmetric chirowaveguide
was given by Herman in [4]. The modes are no longer split between
Transverse Electric (TE) and Transverse Magnetic (TM) modes, but
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between LHE (Left Hand Elliptical) and RHE (Rigth Hand Elliptical)
modes. The transverse polarization of a given mode is linear at the
cutoff and elliptical for greater thickness. The eccentricity of the
polarization ellipse of the transverse electric field increases with core
thickness up to circular polarization for large thicknesses.

The electromagnetic fields satisfy Equations (1)–(3) where ε and
γ are functions of the y coordinate. The γ(y) and ε(y) functions
describing the chirowaveguide sensor are plotted in Fig. 2(a). They
can be written as:

ε(y) = εu(y) + ∆ε(y) (7)
γ(y) = γu(y) + ∆γ(y) (8)

where εu(y), γu(y) are the electromagnetic functions describing the
unperturbed chirowaveguide structure (parameters given in Fig. 2(b))
and ∆γ(y), ∆ε(y) are the electromagnetic perturbations defined in
Fig. 2(c).

We use the independent variables ε and γ and their pertrubation
in the first order perturbation theory (Appendix A). Nevertheless, to
get a better physical meaning, the final result is given in term of the
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two independent perturbed cover parameters:

∆nc =
(

∂n

∂ε

)
∆εc (9)

∆cbc =
(

∂cb

∂γ

)
∆γ (10)

Using (5) and (6), those perturbed parameters can be written:

2ncε0∆nc = ∆εc (11)
∆cbc = 2n2

ck0∆γc (12)

Let
E0 = e0(y)e−ik0neff z (13)

be the solution of one mode of the unperturbed chirowaveguide, where
neff is the effective index of the mode. We assume that the application
of perturbations ∆ε(y), ∆γ(y) will only cause small changes to the
mode function e0(y) and effective index neff . Let

Ep = ep(y)e−ik0neff ,pz (14)

be the corresponding perturbed mode, where:

ep(y) = e0(y) + ∆e0(y) (15)
neff,p = neff + ∆neff (16)

∆e0(y) and ∆neff are the first order changes in the mode function
and effective refractive index, respectively. Mathematically speaking,
assuming that the changes in the cover parameters are small, the
resulting change in the effective refractive index can be described to
first order by:

∆neff = Sachi∆nc + Schir∆cbc (17)

Sachi is the sensor sensitivity to a change in cover refractive index.
Schir is the sensor sensitivity to a change in cover circular birefringence.
Schir probes the chiral electromagnetic parameter of the cover and Sachi

probes the achiral parameter.

3. SENSITIVITIES VERSUS ONE TRANSVERSE FIELD
COMPONENT

3.1. Results of Perturbation Theory

The use of the Lorentz reciprocity theorem is needed to obtain the
relationship between the unperturbed and perturbed fields. In the
conventional way [15, 16], we must develop the expression

∇ · (E∗0 ×Hp + Ep ×H∗
0) (18)
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where ∗ denotes the complex conjugate and integrate it over the
waveguide cross-section. The details of the calculations are given in
the appendix and follow the procedure given in [16]. The identification
of (A11) with (17) leads to expressions for the sensitivities:

Schir =
i

8Pu

∫ +∞

0
(E0 ·H∗

0 −H0 ·E∗0) dy (19)

Sachi =
1

2Pu

∫ +∞

0

nc

η0
E0 ·E∗0dy (20)

where Pu is the power propagating in the unperturbed waveguide
defined by (A12).

3.2. Sensistivity Versus Mode Eccentricity

In achiral films, as is well known, the modes are separated into TE
and TM linear polarization types. In a chirowaveguide, the modes
are also split into two families of modes. Both have transverse
elliptical polarizations outside the core. The two families of modes are
differentiated by their handedness (left or right) and by the direction
of the major axis of the transverse polarization ellipse (x̂ or ŷ) [4].
The class of mode with major axis along the x direction tends to be
the TE modes for small γg chirality parameter. For positive values of
γg, they are LHE polarized. Modes with major axis lying along the
y direction tend to be TM modes in the weak chirality limit and are
RHE polarized for γg > 0.

The eccentricity of the polarization ellipse in the cover is defined
by:

Ey

Ex

∣∣∣∣
y≥0

= iec (21)

For |ec| ≤ 1, the major axis of the polarization ellipse lies along
the x direction, for larger values it lies along the y direction. The sign
of ec gives the handedness. The limit values 0, ±1 and ±∞ correspond
to TE, circular and TM polarizations, respectively. Using the results
of Ref. [4] (Eqs. (3), (8) and (11)), the field coordinates in the top
cladding for the unperturbed mode can be written as a function of the
Ex component only:

E0 = Ex(y)

( 1
iec

−vec/neff

)
(22)
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H0 = Ex(y)
1

η0neff



−in2

cec

n2
eff

ivneff


 (23)

where:

v2 = n2
eff − n2

c , Ex(y) = Ex(0) exp(−k0vy) (24)

Substituting (22)–(23) in Schir (19) and Sachi (20) leads to:

Schir = −S0 · neff

nc
· ec (25)

Sachi = S0 ·
[
1 + e2

c

(
2− n2

c/n2
eff

)]
(26)

where:

S0 =

∫ +∞
0 ncExE∗

xdy

2η0Pu
(27)

is the sensitivity of a “standard” achiral waveguide [12, 15]. These
expressions hold whatever the polarization, nevertheless they lead to
an indeterminate situation in the TM limit for which Ex → 0 and
ec →∞. Thus, for an elliptically polarized mode with major axis lying
along the y axis, it is advantageous to change to a new eccentricity:

ēc = 1/ec (28)

For |ēc| < 1, the transverse electric field is elliptically polarized
with major axis lying along the y axis and ēc = 0 corresponds to the
TM limit. In the same manner as before, we find:

Schir = −S̄0 · neff

nc
· ēc (29)

Sachi = S̄0 · [2− n2
c/n2

eff + ē2
c ] (30)

where :

S̄0 =

∫ +∞
0 ncEyE

∗
ydy

2η0Pu
(31)

4. DISCUSSION

The sensitivities to an uniform chiral and achiral perturbation in the
cover refractive index are given in general form by (19) and (20),
respectively. To gain a deeper understanding of the phenomenon, we
have calculated the expressions of Schir and Sachi as a function of one
transverse electric field component ((25)–(31)).

In the following paragraphs, we will first analyze these expressions
in order to get the general features of the chirowaveguide sensitivities.
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Then, we will discuss the different possibilities leading to significant
values for chiral sensitivity.

For this last purpose, we have generated a computer program to
calculate sensitivity curves for different model systems. The mode
equation and field patterns are taken from the paper of Herman [4].
The numerical simulations use a light-source wavelength of 500 nm and
a positive chiral parameter for the core. The chirality of the core was
studied for rotary power values between 0 and 50◦/mm. The LHE
modes present polarization ellipses with major axis lying along the x
direction. The RHE modes’ polarization ellipses have their longer axes
oriented in the y direction. The numerical results are presented only
for the fundamental LHE0 and RHE0 modes, the higher modes behave
in a similar way with smaller values for the sensitivities.

4.1. General Features

4.1.1. Achiral Sensitivity

Equation (20) shows that the achiral sensitivity is related to the
integral of the squared evanescent field in the cover material. This
result is identical to that obtained for achiral waveguides [13, 15]. Sachi

thus has no direct dependence on the chirality of the chirowaveguide.
Fundamentally, this comes from the fact that the perturbation ∆ε(y)
does not couple with the chirality parameters in the expression for the
field curls in (A3)–(A4).

The expression (20) only depends on the electric field modal
profiles. Thus Sachi may depend on the chirality only via a change
in the field patterns between chirowaveguide and achiral waveguide.
We check this point by plotting the field patterns and Sachi for
chirowaveguides with rotary power varying from 0 to 80◦/mm for
various refractive indices and thicknesses. Our simulations did not
reveal any detectable variation with the chirality of the core. Thus,
we can safely conclude that chirowaveguides behave like achiral
waveguides in terms of achiral sensing.

4.1.2. Chiral Sensitivity

The general expression for chiral sensitivity (19) shows that it depends
on the field polarisation structure via the scalar product E0 ·H∗

0. For
standard TE/TM modes this product is zero showing that achiral
waveguides cannot sense chirality in the cover. In a chirowaveguide, E
and H are no longer perpendicular, thus chiral sensing is possible.

The expressions for Schir as a function of one transverse electric
field component (Ex, (25) and Ey, (29)) reveal that Schir can be
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factorized into two terms: one term proportional to achiral sensitivity
(S0 or S̄0) and another term proportional to the eccentricity (ec or ēc)
of the transverse polarization ellipse. In this discussion, we can neglect
the term neff /nc which is limited between ns/nc and ng/nc and does
not vary significantly compared to the eccentricity.

The first term depends only on the mode profiles and not on
the chirality as stated before. It represents the fraction of the power
propagating in the perturbed cover. The second term, the eccentricity,
is directly related to the chiral nature of chirowaveguides. Its sign
changes with the handedness of the propagating mode and vanishes
for achiral waveguides.

4.2. Chiral Sensitivity Optimization

The optimization of chiral sensitivity requires the simultaneous
optimization of two different terms: the “standard” achiral sensitivity
(via the terms S0, S̄0) and the eccentricity (ec, ēc). The first
term is generally maximized by using a combination of materials
leading to high contrast in refractive index (∆n ∼ 0.3) and by
working with thin guiding layers (thicknesses of a few hundreds of
nm) [11]. The eccentricity, on the other hand, takes significant values
in chirowaveguides with high rotary power, small index contrast and
thick cores [4].

Figures 3 and 4 illustrate the difficulties in finding a good trade-off
between the two constraints. In both figures, the calculated Sachi, Schir

and eccentricity curves versus core thickness are plotted in the (a), (b)
and (c) sub-figures respectively. We choose, as chiral core parameters,
a refractive index of 1.75 and a rotary power of 20◦/mm. These values
are taken from pure chiral organic thin films deposited by pulsed laser
ablation [10]. The cover is an aqueous medium (nc = 1.33). The
difference between the two figures comes from the substrate refractive
index: 1.48 and 1.74 for Figs. 3 and 4 respectively.

The large difference between refractive indices in the first case
allows good achiral sensitivity (Sachi ∼ 0.15) for thicknesses less than
200 nm. But, as the eccentricity is lower than 10−3 in this range of
thicknesses, this results in small Schir. For greater thicknesses, the
eccentricity increases, but not enough to compensate for the fall in
Sachi. Finally, whatever the thickness, Schir remains small, less than
10−4.

In the second example, by reducing the contrast in refractive index
between core and substrate, the chiral feature of the chirowaveguide is
emphasized (the eccentricity is twice as high for the same chirality
in the core Figs. 3(c) and 4(c). But, at the same time, Sachi is
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Figure 3. Calculated sensitivities of evanescent-wave chirowaveguide
sensor, depending on waveguide film thickness, for chiral core (α =
20◦/mm, ng = 1.75) on achiral substrate (ns = 1.48). Sensitivities
to (a) changes in refractive index (nc = 1.33) of aqueous cover
medium, and (b) changes of circular birefringence (nL-nR) of cover.
(c) Calculated tranverse ellipticities of the modes (ratio of small axis
over large axis).

dramatically decreased by about 2 orders of magnitude. Thus, again,
the chiral sensitivity is very weak (< 10−4).

One way to optimize a chirowaveguide sensor is to use nearly
symmetrical waveguides with low refractive index contrast. Indeed,
(1) high achiral sensitivity may be achieved with nearly symmetrical
waveguides due to the equal extent of the modal field outside
the core [17] and (2) the smaller the index contrast, the higher
the eccentricity [4]. The second condition will limit the use of
chirowaveguides to special cover/core/substrate material combinations
with small index differences. As it is difficult to realize solid materials
with ng < 1.4, we use, in the following, a cover refractive index nc = 1.5
corresponding to an organic solvent.

Maximum achievable chiral sensitivities versus refractive index
contrasts are shown in Fig. 5 in the case of a cover refractive index
nc = 1.5 and core rotary power of 20◦/mm. These curves show clearly
that, the smaller the refractive index contrast (for both ng − ns and
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to (a) changes in refractive index (nc = 1.33) of aqueous cover
medium, and (b) changes of circular birefringence (nL-nR) of cover.
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ng − nc), the higher Schir is. Theoretical sensitivities higher than 0.02
(circle and square curves) are achievable but they require a very small
difference in index (ns − nc ∼ 10−3), necessitating accurate control of
materials.

A higher rotary power will obviously simplify the refractive
index constraints, as shown in Fig. 6, where the maximum
achievable sensitivities are plotted versus α for a given chirowaveguide
(parameters ng = 1.52, ns = 1.51 and nc = 1.5). Indeed, Schir

increases with α allowing good sensitivities to be achieved with higher
index contrast.

In order to further increase the sensitivities, a reverse-symmetry
waveguide (nc > ns) can be used [13, 17, 18]. Calculated sensitivities of
the same chirowaveguide used in standard (top) and reverse-symmetry
(bottom) modes, are plotted in the Fig. 7. As expected from previous
works [18], Sachi is significantly enhanced by about one order of
magnitude in the reverse-symmetry mode. Because the eccentricity
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remains identical in the two modes, Schir is enhanced by the same
factor, reaching values as high as 0.2 as shown in Fig. 7.

4.3. Chirowaveguide as Difference Interferometer

Nevertheless, an issue remains: the order of magnitude of the circular
birefringence cb is very small compared to the standard achiral
refractive index. For a typical chiral organic compound, such as glucose
([α]D = 52.9◦ g−1 ·ml · dm−1), the circular birefringence is of the order
of 10−7 at visible wavelengths for a concentration around 0.1 g · ml−1.
Any fluctuation of the cover refractive index will easily overwhelm the
circular birefringence. Thus, the only way to actually detect changes
in chirality requires the cancellation of achiral sensing.

For this purpose, a solution is to use chirowaveguides as difference
interferometers, also called polarimeters [19]. For this detection set-
up, the measurement is the phase difference between two modes
propagating in the waveguide. Thus, by working with the LHE0 and
RHE0 pair of modes, the measurement is directly proportional to the
effective refractive index difference ñeff ≡ nLHE0

eff −nRHE0
eff . Using (17),

the index difference is related to the various sensitivities by:

∆ñeff = (SLHE0
achi − SRHE0

achi )∆nc + (SLHE0
chir − SRHE0

chir )∆cbc (32)

where the RHE0 and LHE0 superscripts refer to the RHE0 and LHE0

modes, respectively. As the LHE0 and RHE0 achiral sensitivities
include cross-terms, it is easy to cancel out the achiral part in (32)
by designing the core thickness in such a way that SLHE0

achi = SRHE0
achi

(for example 560 nm in the top of Fig. 7). Moreover, while the achiral
sensitivity vanishes, the chiral sensitivity is twice as high as can be
seen in Fig. 7.

5. CONCLUSION

The potential for using chirowaveguides as refractometric optical
sensors was investigated. For the first time, an expression for the
chirowaveguide sensitivity as a function of both the refractive index
and circular birefringence of the cover was obtained using perturbation
theory. The following features were revealed:

• chirowaveguides act as standard achiral waveguides for achiral
sensing;

• the chiral sensitivity Schir is written as the product of achiral
sensing and mode eccentricity;
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• optimization of chiral sensitivity requires the use of a waveguide
with small contrast in refractive index.

The requirement for small refractive index contrast devices limits
the general use of chirowaveguides as refractive sensors. Indeed,
the indices of the chiral core and cover medium (analyze) need to
be very close to equal, making gas or aqueous sensing irrelevant.
Some applications can be found in organic environments with higher
refractive index. Numerical simulations show that good sensitivities
can be obtained when probing a medium of index around 1.5.
Sensitivity values of 0.02 and 0.2 can be achieved using normal or
reverse-symmetry configurations, respectively.

Finally, in practical applications, fluctuations of the refractive
index of the medium may overwhelm chiral sensing except if achiral
sensing is cancelled in identical fashion. We have suggested a difference
interferometer design to totally suppress the achiral component in
refractometric sensing.
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APPENDIX A. PERTURBATION THEORY

Substituting the constitutive Equations (2) and (3) in the Maxwell
Equation (1) and keeping only the first order term in γu, we obtain for
the unperturbed fields (remember here εu and γu are functions of y):

∇×E0 = −iωµ0H0 + µ0εuω2γuE0 (A1)
∇×H0 = µ0εuω2γuH0 + iωεuE0 (A2)

For the perturbed fields, by neglecting the second order terms and
noting that ∆ε(y)γu(y) = 0, we obtain in the same way:

∇×Ep = −iωµ0Hp + µ0εuω2(γu + ∆γ)Ep (A3)

∇×Hp = µ0εuω2(γu + ∆γ)Hp + iω(εu + ∆ε)Ep (A4)

By substituting the curl term from (A1)–(A4) and assuming that
the media are lossless, we can write:

∇ · (E∗0 ×Hp) = Hp · ∇ ×E∗0 −E∗0 · ∇ ×Hp

= iωµ0Hp ·H∗
0 − µ0εuω2∆γE∗0 ·Hp − iω (εu + ∆ε)Ep ·E∗0 (A5)
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and :

∇ · (Ep ×H∗
0) = H∗

0 · ∇ ×Ep −Ep · ∇ ×H∗
0

= −iωµ0H∗
0 ·Hp + µ0εuω2∆γEp ·H∗

0 + iωεuEp ·E∗0 (A6)

Adding these two terms leads to the identity:

∇ · (E∗0 ×Hp + Ep ×H∗
0)

= µ0εuω2∆γ (Ep ·H∗
0 −E∗0 ·Hp)− iω∆εEp ·E∗0 (A7)

As the function ∆γ(y) vanishes for y < 0, εu(y) can be replaced
by εc in this expression. Then, by using (5), (11) and (12), it can be
written as a function of ∆cb(y) and ∆n(y):

∇ · (E∗0 ×Hp + Ep ×H∗
0)

=
k0

2
(Ep ·H∗

0 −E∗0 ·Hp)∆cb(y)− 2in(y)k0

η0
Ep ·E∗0∆n(y) (A8)

where η0 =
√

µ0/ε0.
Taking into account the z, y dependencies of the fields E0 (13)

and Ep (14) together with (16), the ∇ in (A8) simplifies to:

∇ =
∂

∂y
ŷ − ik0∆neff ẑ (A9)

where ŷ and ẑ are the unit vectors in the y and z directions. Since the
modes are confined, the integral∫

y

∂

∂y
ŷ · (E∗0 ×Hp + Ep ×H∗

0) dy = 0 (A10)

Thus, by integrating (A8) over the entire y axis with (A9)–(A10), and
substituting the unperturbed fields for the perturbed fields, we obtain:

∆neff =
i

8Pu

∫ +∞

−∞
∆cb(y) (E0 ·H∗

0 −H0 ·E∗0) dy

+
1

2Pu

∫ +∞

−∞
∆n(y)

nc

η0
E0 ·E∗0dy (A11)

where the factor in the denominator represents the power propagating
in the unperturbed waveguide:

4Pu =
∫ +∞

−∞
ẑ · (E∗0 ×H0 + E0 ×H∗

0) dy (A12)

(A11) can be directly identified with (17) by noting that the
∆n(y) and ∆cb(y) functions vanishes for y < 0 and are constant above
(Fig. 2(c)).
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