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Abstract—Ultra Wideband (UWB) radar has been extensively
investigated as a means of detecting early-stage breast cancer. The
basis for this imaging modality is the dielectric contrast between
normal and cancerous breast tissue at microwave frequencies. However,
based on the dielectric similarities between a malignant and a benign
tumour within the breast, differentiating between these types of
tissues in microwave images may be problematic. Therefore, it is
important to investigate alternative methods to analyse and classify
dielectric scatterers within the breast, taking into account other
tumour characteristics such as shape and surface texture of tumours.
Benign tumours tend to have smooth surfaces and oval shapes whereas
malignant tumours tend to have rough and complex surfaces with
spicules or microlobules. Consequently, one classification approach is
to classify scatterers based on their Radar Target Signature (RTS),
which carries important information about scatterer size and shape.
In this paper, Gaussian Random Spheres (GRS) are used to model
the shape and size of benign and malignant tumours. Principal
Components Analysis (PCA) is used to extract information from the
RTS of the tumours, while eight different combinations of tumour
classifiers are analysed in terms of performance and are compared in
terms of two possible approaches: Linear Discriminant Analysis (LDA)
and Quadratic Discriminant Analysis (QDA).
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1. INTRODUCTION

Microwave Imaging (MI) has been comprehensively investigated as
a means of detecting tumours within the breast, and is based on
the dielectric contrast between different types of tissue at microwave
frequencies. Three different MI approaches have been investigated
by many authors: Microwave Tomography, Time-Reversal FDTD
methods and UWB Radar Imaging. In this study only UWB is
addressed so for further detail on Microwave Tomography the reader
is advised to refer to [1–6] and for Time-Reversal Finite-Difference
Time-Domain (FDTD) method to [7–9].

When the breast is illuminated by a UWB pulse, reflections are
generated by dielectric scatterers, such as tumours. These reflections
can be processed to produce an image of the breast, where high energy
regions suggest the possible presence of cancerous tissue. Historical
studies such as those by Joines et al. [10] and Surowiec et al. [11] found
significant dielectric contrast between normal and cancerous tissue in
the breast.

Historically, many studies have examined UWB Radar imaging
to detect early stage breast cancer. Hagness et al. [12] developed
one of the first UWB beamforming algorithms based on the Confocal
Microwave Imaging (CMI) approach. More recently, a series of
beamformers have been developed in studies such as [13–20], with
different antenna configurations compared in studies such as [21–23].
Finally, in [24, 25] a UWB Radar system to detect breast cancer is
described.

However, recent findings by Lazebnik et al. [26, 27] have found
that the dielectric contrast between benign and malignant tumour may
not be as significant as indicated in previous studies. Therefore, it is
important to develop a good imaging modality that allows not only to
identify but also to classify tumours, as UWB imaging on its own may
not be sufficient.

Chen et al. [28, 29] addressed the issue of tumour classification
by analysing the effect that different tumours had on the late-time
response of backscattered signals from a 2D FDTD breast model, and
more recently, in [30], he included the use of a contrast-agent which is
applied to the lesions in order to increase the contrast between tumour
tissues and normal breast tissue. In previous work, Davis et al. [31]
investigated the RTS of dielectric scatterers within the breast in order
to characterise tumours as either benign or malignant. In her paper,
Davis created tumour models based on GRS — first introduced by
Muinonen [32] — which represent the different stages of growth of a
tumour through a range of shapes and sizes.
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The tumour classification process is composed of three distinct
steps:

• PCA on each backscattered signal.
• Dimensionality reduction.
• Classification using both LDA [31, 33–36] and QDA ap-

proaches [33–36].

This paper investigates the development of a classifier which
distinguishes the different types of tumours (malignant or benign),
using shape and size as the key characteristics. There are three
significant differences between this study and the previous work of
Davis [31]:

• The classifiers used in this study are designed in different
architectures that are combinations of coarse and/or fine size and
shape classifiers;

• A fourth tumour model is introduced: the macrolobulated GRS
which represents a benign tumour in a stage of development that
may indicate that a tumour is in a pre-malignant stage. The
introduction of this tumour model is significant because it is
particularly important to classify tumours at the earliest stage
of development possible;

• QDA is investigated as a method for classification.

The remainder of the paper is organized as follows: Section 2 describes
the GRS method used to model the growth patterns of benign and
malignant tumours; Section 3 introduces both the PCA method applied
to the RTS and the LDA and QDA methods; Section 4 describes the
breast model (incorporating the GRS tumour models) developed to
generate representative UWB backscattered signals; finally, the results
and conclusions are presented in Section 5.

2. TUMOUR MODELS

Tumours present different characteristics based on their type, i.e.,
whether they are benign or malignant. The most relevant features from
the perspective of UWB imaging are size, shape and texture of surface,
as these are characteristics that most significantly influence the RTS
of tumours. Benign tumours typically have smooth surfaces and have
spherical, oval or at least well-circumscribed contours. Conversely,
malignant tumours usually present rough and complex surfaces with
spicules or microlobules, and their shapes are typically irregular, ill-
defined and asymmetric. Although size may play an important role
when analysing the development of a tumour over a period of time and
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may be an indication of malignancy, in this study the primary concern
is the analysis of small tumours (up to 1 cm in radius), therefore shape
and texture of the surface of a tumour are the two most important
characteristics that will help differentiate between a benign and a
malignant tumour [37–40].

The tumour models are based on the GRS method [31, 32, 41].
GRS can be modified mathematically to model both malignant and
benign tumours by varying the mean radius (α) and the covariance
function of the logarithmic radius (or simply logradius). The shape,
r = r(ϑ, ϕ), is described in spherical coordinates (r, ϑ, ϕ) by the
spherical harmonics series for the logradius s = s(ϑ, ϕ):

r(ϑ, ϕ) = α exp
[
s(ϑ, ϕ)− 1

2
β2

]
(1)

s(ϑ, ϕ) =
∑∞

l=0

∑l

m=−l
slmYlm(ϑ, ϕ). (2)

In the equations above, β is the standard deviation of the logradius, slm

are the spherical harmonics coefficients and Ylm are the orthonormal
spherical harmonics.

Four different models of tumours at four different sizes are
considered in this paper. Malignant tumours are represented by
spiculated and microlobulated GRS, whereas benign tumours are
modeled with macrolobulated and smooth GRS. Microlobulated,
macrolobulated and smooth GRS are obtained by varying the
correlation angle from low to high. Spiculated GRS are obtained by
adding 3, 5 or 10 spicules to smooth GRS. The average radius of all
types of spheres are 2.5, 5, 7.5 or 10 mm [31, 32]. Between all sizes and
shapes, the number of tumour models developed was 288. A sample of
each of the four shapes of the GRS, with a radius of 5 mm, is shown
in Figure 1.

3. TUMOUR CLASSIFICATION ALGORITHM

The tumour classification is accomplished through an algorithm which
analyses the RTS of the tumours. Firstly, PCA is applied to each
recorded backscattered signal. This is followed by a dimensionality
reduction in which the more representative Principal Components of
the data are extracted. Finally, two classification methods are applied
to the selection of Principal Components: LDA and QDA. These
stages of the classification algorithm are detailed in the following two
subsections.
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(a) (b)

(c) (d)

Figure 1. Samples of different Gaussian Random Spheres. From
left to right, top to bottom: (a) smooth, (b) macrolobulated, (c)
microlobulated and (d) spiculated (5 spicules) models, with an average
radius size of 5 mm.

3.1. Principal Components Analysis

In order to analyse the RTS of the tumours it is important to
use a method to extract the most significant bases of the recorded
backscattered signals of each tumour so that the classification can
be applied more efficiently. The method used in this study is called
PCA, which reduces the dimensionality of multivariate data and reveals
simplified structures that are often hidden in the original data set while
also disregarding less relevant information such as noise or colinearities
in signals [42, 43].

This process is accomplished when, by means of a linear algebraic
operation, the basis that was used to record the original signals is
changed into one new orthonormal basis, or rows of vectors, that
allows the best representation to discriminate the original data set,
i.e., when the new data set presents maximal variance. The principal
components are ordered by decreasing variance, and furthermore the
variance along each principal component provides a measurement of
the relative importance of each dimension [43].
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It must also be noted that PCA is non-parametric, meaning that
the data on its own is sufficient to calculate its principal components by
means of its sample mean and sample covariance matrix, disregarding
how the data was acquired or the need of any type of parameters.
However, it must be added that PCA does not explicitly identify
the optimal basis for discriminating among the analysed class labels
and so the PCA results must be appropriately dimensioned and
classified [31, 43]. For the sake of computational simplicity, the
original data should be well represented with the minimum number of
principal components, thus creating a problem with the least number
of dimensions possible [44].

To obtain the principal components of a matrix X represented
by (m × n), where m is the number of measurements and n is the
number of samples, the mean of the sample for each ith measurement is
subtracted and finally the basis vectors hm, which are the eigenvectors
of the covariance matrix C = E{X̂X̂

T }, are calculated. The centered
data is represented, for each ith measurement, by its Karhunen-Loéve
expansion:

X̂ = X− E{X} =
∑Nm

m=1
θmhm, (3)

in which, θm represents each basis expansion coefficient and Nm

represents the full dimensionality of the problem [31, 43].

3.2. Classifiers Based on Linear and Quadratic Discriminant
Analysis

Two classification methods are investigated in this paper: LDA [31, 33–
36] and QDA [33–36].

LDA is used under the assumption that the groups being
discriminated have multivariate normal distributions and have the
same covariance matrix. With the LDA method, the pooled
within-group covariance matrix is calculated and used to determine
the discriminant function which will allow classification [33–36].
QDA is usually applied when the groups being discriminated have
significantly different group-specific covariance matrices, while the
group populations represent multivariate normal distributions with the
same mean [33–35]. Generally, QDA offers increased flexibility over
LDA at the cost of possibly ‘overfitting’ the training sample [33].

Both LDA and QDA classifiers are applied to the data using the
cross-validation method so that the performance of each classifier is
evaluated using a testing set, independent from the training set [45].
The cross-validation method is as follows: to test the whole set of
288 tumours, the set is divided in A subsets, each of which contains



Progress In Electromagnetics Research, Vol. 105, 2010 301

one sample of each type and each size of tumour; each subset is then
tested against the remaining (A− 1) subsets and, finally, all resulting
A sub-classifications are averaged to obtain the performance of each
classifier.

Eight different classifier architectures are considered, five of which
first classify the RTS by size and then by shape, and the other
three only classify the RTS by shape. The different architectures are
defined by the size and shape granularity, i.e., how many categories are
classified in each step (two or four categories), and by the number of
steps each size and/or shape classifier is composed of (one or two steps).
It must be emphasized that a coarse shape classifier is used to classify
tumours into either malignant or benign tumours, which may give
sufficient information to the patient. However, extra granularity in the
shape classifier allows further classification of tumours into spiculated,
microlobulated (both malignant tumours) and in macrolobulated and
smooth (both benign tumours), giving important clinical information
on the development stage of a breast tumour.

The first classifier architecture, Coarse-Shape (CS), splits the
RTS in one step into two shape groups: malignant or benign.
Similarly, the Fine-Shape (FS) initially classifies the RTS into the
same shape categories as the CS, but then adds another level of
shape granularity by dividing malignant tumours into spiculated and
microlobulated tumours and benign tumours into macrolobulated and
smooth tumours.

The Coarse-Size-Coarse-Shape (CSCS) splits the RTS in one step
into two size groups (the first group has 2.5 and 5 mm tumours and
the second has 7.5 and 10 mm tumours), before further classifying
the tumours into either benign or malignant. Similarly, the Coarse-
Size-Fine-Shape (CSFS) initially classifies the RTS into the same size
and shape categories as the CSCS, but then adds another level of
shape granularity by dividing malignant tumours into spiculated and
microlobulated tumours and benign tumours into macrolobulated and
smooth tumours in a second step of classification.

The Fine-Size-Coarse-Shape (FSCS) and Fine-Size-Fine-Shape
further classify the RTS into four subcategories of size (2.5 mm, 5 mm,
7.5mm and 10 mm) in two steps. The FSCS then divides them into
two categories of tumour, benign and malignant, while the FSFS
classifies them into four shape categories: spiculated, microlobulated,
macrolobulated and smooth in two steps.

The Direct-Fine-Shape (DFS) performs the same function as the
FS classifier, but divides the RTS into four shape categories in one step.
The Direct-Fine-Size-Fine-Shape (DFSFS) performs the same function
as the FSFS classifier, but divides the RTS into four size categories in
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one step, and similarly classifies the RTS into the four shape categories
in a single step.

4. MODEL OF THE BREAST

A 3D FDTD model of the breast was developed which incorporates
the dielectric properties within the breast. A half millimeter resolution
cubic grid was used for the FDTD model. In order to analyse the RTS
of the tumours, the backscattered data was generated by means of a
Total-Field/Scattered-Field (TF/SF) simulation [31, 46], as previously
used by Davis et al. [31].

The Scattered Field (SF) is a square geometric prism with the
square bases measuring 153.5 mm and the height measuring 137.5 mm.
The Total Field (TF) is represented by a 50mm cube and is located
at the centre of the SF, and the origin of the system (0, 0, 0) mm
corresponds to the centre of the TF. The TF/SF region is terminated
with a 6mm-layer Uniaxial Perfectly Matched Layer (UPML) which
suppresses any boundary reflections [31, 47].

The tumour is modeled with the Debye parameters for malignant
tissue whereas the normal breast tissue and the surrounding media
is modeled with the Debye parameters for homogeneous lossy adipose
tissue, as established by Lazebnik et al. [26, 27]. The Debye parameters
for malignant tissue are as follows: ε∞ = 6.749, ∆ε = 50.09 and σs =
0.794 Sm−1. The Debye parameters for homogeneous lossy adipose
tissue are as follows: ε∞ = 3.140, ∆ε = 1.592 and σs = 0.036 Sm−1.

A pulsed plane wave is transmitted towards the target from
four different equidistant angles (0, 90, 180 and 270◦) and the
resulting cross-polarized backscatter is recorded and analysed from
four observation points located at: (0, 0,−74), (−74, 0, 0), (0, 0, 74) and
(74, 0, 0)mm, in (x, y, z) axes. The incident pulse was a modulated
Gaussian pulse with center frequency at 6GHz where the 1/e full
temporal width of the Gaussian envelop was 160 ps [31]. The pulse
is linearly polarized in the y and x direction and transmitted in the z
direction. Each observation point is located in the Scattered Field at
a distance of 74 mm from the center of the tumour, which is located
at the center of the Total Field. The acquired backscattered recorded
signals are then downsampled from 1200 GHz to 75 GHz.

Figure 2 shows a representation of the TF/SF grid, with the
location of the origin of the first incident plane wave and respective
observer point (N) as well as the position of the tumour.
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Figure 2. Cross-section of the 3D FDTD space lattice partitioned into
Total Field (TF), Scattered Field (SF) and UPML regions. The target,
a spiculated tumour located at the centre of the TF, is illuminated by
a pulsed plane wave propagating in the +z direction and backscatter is
recorded at the observer location: (0, 0,−74)mm (represented by N).

5. RESULTS AND DISCUSSION

For all results, a database of 288 models was used for testing and
training the classifiers, using the cross-validation method described in
Section 3.2. For both size and shape classifiers the performance of the
classifications was observed against the number of PCA components
(data not shown) and results indicated that 30 principal components
are suitable as the classification performance starts to saturate at this
level. The use of 30 principal components offers a good compromise
between classification accuracy and computational time, which had
also been found in [31].

There are two subsections in this section: the first subsection
analyses the performance of the eight possible architectures for the
classifiers and the second subsection compares the LDA and the QDA
approaches.

5.1. Analysis of the Performance of the Eight Classification
Architectures

The results for the eight different architecture of classifiers are
presented in Table 1, which presents the groups in which models are
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classified and the corresponding accuracy results. The accuracy results
are shown in three columns:

• the first column presents the partial accuracy for the size
classification

• the second column presents the partial accuracy for the shape
classification

• the third column presents the overall accuracy for each cascade
classifier that follow the size-then-shape structure.

The accuracy of the partial size or the partial shape classifier is
expressed in terms of the proportion of tumours correctly identified in
terms of size or shape, respectively, in isolation. The overall accuracy
for the size-then-shape cascade classifier is calculated by multiplying
the partial accuracies for the size and shape classifiers and represents
the percentage of tumours correctly classified in terms of both size and
then shape.

Table 1. Accuracy for size and subsequent shape classifiers and
overall size-then-shape cascade classifier using both LDA and QDA
classifications for eight different architectures of classifiers.

Architectures
of classifiers

Partial size
classifier (%)

Partial shape
classifier (%)

Size-then-shape
classifier (%)

Coarse-Shape N/A
80.90 (LDA)
84.03 (QDA)

N/A

Fine-Shape N/A
58.33 (LDA)
55.90 (QDA)

N/A

Coarse-Size-
Coarse-Shape

93.05 (LDA)
91.32 (QDA)

87.15 (LDA)
82.29 (QDA)

81.10 (LDA)
75.13 (QDA)

Coarse-Size-
Fine-Shape

93.05 (LDA)
91.32 (QDA)

67.36 (LDA)
62.15 (QDA)

62.68 (LDA)
56.76 (QDA)

Fine-Size-
Coarse-Shape

79.86 (LDA)
72.22 (QDA)

86.80 (LDA)
84.72 (QDA)

69.32 (LDA)
61.19 (QDA)

Fine-Size-
Fine-Shape

79.86 (LDA)
72.22 (QDA)

69.44 (LDA)
64.58 (QDA)

55.46 (LDA)
46.64 (QDA)

Direct-Fine-
Shape

N/A
59.03 (LDA)
52.08 (QDA)

N/A

Direct-Fine-Size-
Fine-Shape

76.39 (LDA)
72.22 (QDA)

62.50 (LDA)
63.89 (QDA)

47.74 (LDA)
46.14 (QDA)
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Before examining the results from Table 1 in detail, the manner in
which errors propagate when a partial coarse size (or shape) classifier
is extended to a fine classifier must be considered. The implication
of the fine-size (or fine-shape) architecture is that any misclassified
tumours in the first step of the size (or shape) classification — which
also corresponds to the results of the coarse classifier — are necessarily
misclassified in the second step of size (or shape) classification, and
therefore an error propagation takes place. An example in which
this error propagation is most noticeable is for the first two classifier
architectures: CS to FS, where the increase of granularity of the shape
classification results in a decrease in the accuracy of 22.57% (LDA)
and 28.13% (QDA).

Examining the CS/FS, CSCS/CSFS and FSCS/FSFS architec-
tures in Table 1 shows that the accuracy for the partial shape classi-
fication is considerably higher when a previous size classifier is used,
in particular a fine size classifier (FSCS/FSFS architectures), for both
LDA and QDA — with an exception for the shape classifier in CSCS
when using QDA as the correspondent performance in CS is higher
by 1.74%. Even though the accuracy of the fine size classifier is lower
than the coarse classifier, the fact that the fine size classifier has higher
granularity allows for better accuracy results in the following shape
classifier.

Finally, examining the overall performance of the classifiers, there
are several significant findings:

• When considering the overall accuracy of the size-then-shape
cascade classifier, the accuracy of the cascade classifiers tends
to worsen with increasing number of steps in the partial size
and/or shape classifications, i.e., when fine-size and/or fine-shape
classifiers are used. The accuracy drops by 25.44% (LDA) and by
37.39% (QDA) from a coarse classifier with one step (CS) to a fine
classifier with four steps (FSFS).

• FS and DFS are the least accurate shape classifiers, leading to the
conclusion that a shape classifier is more accurate when preceeded
by a size classifier.

• There was very little performance difference between the FSFS
and DFSFS classifiers, the overall size-then-shape cascade
classifier accuracy of FSFS was 55.46% (LDA) and 46.64% (QDA)
whereas for DFSFS it was 46.64% (LDA) and 46.14% (QDA).

• The best classifier to simply detect whether a tumour is malignant
or benign is FSCS with QDA and CSFS with LDA, in which a fine-
size and a coarse-size classifiers are used respectively. In terms
of highest granularity in both size and shape, FSFS and DFSFS
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performed better with LDA instead of QDA. However it must also
be noted that DFSFS results do not deteriorate to the same extent
as FSFS when using the alternative discriminant analysis method.

• To obtain a clearer discrimination of the shape of tumours
beyond simply malignant and benign (spiculated, microlobulated,
macrolobulated or smooth), the FSFS, which involves a fine-size
and fine-shape classifier, performs best.

5.2. Comparison of the LDA and the QDA Approaches

Overall, LDA and QDA output similar results for the same
architectures or, at least, they tend to output results that reflect the
same trends when comparing the different architectures.

Next, LDA and QDA are examined in the context of the best
architectures established in Section 5.1. The best classifier to simply
differentiate between a malignant and benign tumour is FSCS, which
works better when the LDA method is used, achieving a partial shape
accuracy of 86.80% (compared to 84.72% achieved with QDA). In terms
of the accuracy of the size-then-shape cascade classifier for the FSCS,
the LDA method once again offers improved performance: 69.32% (as
opposed to 61.19% with the QDA approach).

The architectures that provide higher granularity in terms of shape
are FSFS and DFSFS. FSFS has higher performance when the LDA
approach is used, as shown by the partial shape classifier which has
an accuracy of 69.44% (compared to 64.58% achieved with QDA).
On the other hand, DFSFS has higher performance when the QDA
approach is used, as shown by the partial shape classifier which has
an accuracy of 63.89% (compared to 62.50% achieved with LDA).
Similar conclusions are drawn when analysing the accuracy of the size-
then-shape cascade classifier. FSFS promises higher performance with
the LDA approach: 55.46% (as opposed to 46.64% through QDA);
similarly DFSFS promises higher performance with the LDA approach:
47.74% (as opposed to 46.14% possible through QDA).

6. CONCLUSIONS AND FUTURE WORK

In this paper, a number of different methods for diagnosing the
type (malignant or benign), and ultimately diagnosing the stage of
development (spiculated, microlobulated, macrolobulated and smooth)
of breast tumours, are analysed. The type of tumours was correctly
classified with an accuracy of 86.80% when the LDA was applied to
a FSCS architecture, under these experiment conditions. In terms of
the stage of development of the tumours, the models were correctly
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classified with an accuracy of 63.89% when the QDA was applied
to a DFSFS architecture, and the highest accuracy obtained was of
69.44% when the LDA was applied to a FSFS architecture, under these
experiment conditions. Overall, these results are very promising for
improved diagnosis and treatment of early-stage breast cancer within
the context of UWB Radar Imaging.

Future work will include the investigation of alternative
classification algorithms including Support Vector Machines (SVM)
and Spiking Neural Networks. The effects of dielectric heterogeneity
will also be addressed in future work.

ACKNOWLEDGMENT

This work is supported by Science Foundation Ireland (SFI) under
grant number 07/RFP/ENEF420.

REFERENCES

1. Meaney, P. M., et al., “Nonactive antenna compensation for fixed-
array microwave imaging: Part II — Imaging results,” IEEE
Transactions on Medical Imaging, Vol. 18, No. 6, 508–518, 1999.

2. Meaney, P. M., et al., “A clinical prototype for active microwave
imaging of the breast,” IEEE Transactions on Microwave Theory
and Techniques, Vol. 48, No. 11, 1841–1853, 2000.

3. Meaney, P. M., et al., “Initial clinical experience with microwave
breast imaging in women with normal mammography,” Academic
Radiology, Vol. 14, No. 2, 207–218, 2007.

4. Bulyshev, A. E., et al., “Computational modeling of three-
dimensional microwave tomography of breast cancer,” IEEE
Transactions on Biomedical Engineering, Vol. 48, No. 9, 1053–
1056, 2001.

5. Souvorov, A. E., et al., “Two-dimensional computer analysis of
a microwave flat antenna array for breast cancer tomography,”
IEEE Transactions on Microwave Theory and Techniques, Vol. 48,
No. 8, 1413–1415, 2000.

6. Liu, Q. H., et al., “Active microwave imaging I — 2-D forward and
inverse scattering methods,” IEEE Transactions on Microwave
Theory and Techniques, Vol. 50, No. 1, 123–133, 2002.

7. Kosmas, P. and C. M. Rappaport, “Time reversal with the
FDTD method for microwave breast cancer detection,” IEEE
Transactions on Microwave Theory and Techniques, Vol. 53, No. 7,
2317–2323, 2005.



308 Conceição et al.

8. Kosmas, P. and C. M. Rappaport, “FDTD-based time reversal
for microwave breast cancer detection — Localization in three
dimensions,” IEEE Transactions on Microwave Theory and
Techniques, Vol. 54, No. 4, 1921–1927, 2006.

9. Kosmas, P. and C. M. Rappaport, “A matched-filter FDTD-based
time reversal approach for microwave breast cancer detection,”
IEEE Transactions on Antennas and Propagation, Vol. 54, No. 4,
1257–1264, 2006.

10. Joines, W. T., et al., “The measured electrical properties of
normal and malignant human tissues from 50 to 900 MHz,”
Medical Physics, Vol. 21, No. 4, 1994.

11. Surowiec, A. J., et al., “Dielectric properties of breast carcinoma
and the surrounding tissues,” IEEE Transactions on Biomedical
Engineering, Vol. 35, No. 4, 257–263, 1988.

12. Hagness, S. C., A. Taflove, and J. E. Bridges, “Two dimensional
FDTD analysis of a pulsed microwave confocal system for breast
cancer detection: Fixed-focus and antenna-array sensors,” IEEE
Transactions on Biomedical Engineering, Vol. 45, 1470–1479,
1998.

13. O’Halloran, M., M. Glavin, and E. Jones, “Channel-ranked
beamformer for the early detection of breast cancer,” Progress
In Electromagnetics Research, Vol. 103, 153–168, 2010.

14. O’Halloran, M., R. C. Conceicao, D. Byrne, M. Glavin, and
E. Jones, “FDTD modeling of the breast: A review,” Progress
In Electromagnetics Research B, Vol. 18, 1–24, 2009.

15. Li, X. and S. C. Hagness, “A confocal microwave imaging
algorithm for breast cancer detection,” IEEE Microwave and
Wireless Components Letters, Vol. 11, No. 3, 130–132, 2001.

16. Li, X., et al., “An overview of ultra-wideband microwave
imaging via space-time beamforming for early-stage breast-cancer
detection,” IEEE Antennas and Propagation Magazine, Vol. 47,
No. 1, 19–34, 2005.

17. Bond, E. J., et al., “Microwave imaging via space-time
beamforming for early detection of breast cancer,” IEEE
Transactions on Antennas and Propogation, Vol. 51, No. 8, 1690–
1705, 2003.

18. O’Halloran, M., M. Glavin, and E. Jones, “Quasi-multistatic
MIST beamforming for the early detection of breast cancer,” IEEE
Transactions on Biomedical Engineering, Vol. 57, No. 4, 830–840,
2009.

19. Lim, H. B., et al., “Confocal microwave imaging for breast



Progress In Electromagnetics Research, Vol. 105, 2010 309

cancer detection: Delay-multiply-and-sum image reconstruction
algorithm,” IEEE Transactions on Biomedical Engineering,
Vol. 55, No. 6, 1697–1704, 2008.

20. O’Halloran, M., M. Glavin, and E. Jones, “Effects of fibroglan-
dular tissue distribution on data-independent beamforming algo-
rithms,” Progress In Electromagnetics Research, Vol. 97, 141–158,
2009.

21. Conceicao, R. C., M. O’Halloran, M. Glavin, and E. Jones,
“Comparison of planar and circular antenna configurations for
breast cancer detection using microwave imaging,” Progress In
Electromagnetics Research, Vol. 99, 1–19, 2009.

22. Fear, E. C., et al., “Confocal microwave imaging for breast cancer
detection: Localization of tumors in three dimensions,” IEEE
Transactions on Biomedical Engineering, Vol. 49, No. 8, 812–822,
2002.

23. Conceicao, R. C., M. O’Halloran, M. Glavin, and E. Jones,
“Antenna configurations for Ultra Wide Band radar detection
of breast cancer,” Proceedings of the SPIE, Vol. 7169, San Jose,
California, 2009.

24. Klemm, M., et al., “Breast cancer detection using symmetrical
antenna array,” Antennas and Propagation, 2007. EuCAP 2007.
The Second European Conference, Edinburgh, UK, 2007.

25. Craddock, I. J., et al., “Development and application of a UWB
radar system for breast imaging,” 2008 Loughborough Antennas
& Propagation Conference, 2008.

26. Lazebnik, M., et al., “A large-scale study of the ultrawideband
microwave dielectric properties of normal breast tissue obtained
from reduction surgeries,” Physics in Medicine and Biology,
Vol. 52, 2637–2656, 2007.

27. Lazebnik, M., et al., “A large-scale study of the ultrawideband
microwave dielectric properties of normal, benign and malignant
breast tissues obtained from cancer surgeries,” Physics in
Medicine and Biology, Vol. 52, 6093–6115, 2007.

28. Chen, Y., et al., “Effect of lesion morphology on microwave
signature in ultra-wideband breast imaging: A preliminary two-
dimensional investigation,” 2007 IEEE Antennas and Propagation
Society International Symposium, 2007.

29. Chen, Y., et al., “Effect of lesion morphology on microwave signa-
ture in 2-D ultra-wideband breast imaging,” IEEE Transactions
on Biomedical Engineering, Vol. 55, No. 8, 2011–2021, 2008.

30. Chen, Y., I. J. Craddock, and P. Kosmas, “Feasibility study



310 Conceição et al.

of lesion classification via contrast-agent-aided UWB breast
imaging,” IEEE Transactions on Biomedical Engineering, Vol. 57,
No. 5, 1003–1007, 2010.

31. Davis, S. K., et al., “Breast tumor characterization based on
ultrawideband microwave backscatter,” IEEE Transactions on
Biomedical Engineering, Vol. 55, No. 1, 237–246, 2008.

32. Muinonen, K., “Introducing the Gaussian shape hypothesis for
Asteroids and Comets,” Astronomy and Astrophysics, Vol. 332,
1087–1098, 1998.

33. Everitt, B. S. and G. Dunn, Applied Multivariate Data Analysis,
2nd edition, Arnold Publishers, New York, 2001.

34. Seber, G. A. F., Multivariate Observations, John Wiley & Sons,
Inc, Hoboken, New Jersey, 1984.

35. Krzanowski, W. J., Principles of Multivariate Analysis: A User’s
Perspective, Oxford University Press, New York, 1988.

36. Raykov, T. and G. A. Marcoulides, “An introduction to applied
multivariate analysis,” Routledge Taylor & Francis Group, New
York, 2008.

37. Conceicao, R. C., et al., “Classification of suspicious regions
within ultrawideband radar images of the breast,” 16th IET Irish
Signals and Systems Conference, ISSC 2008, Instn. Engg. & Tech.,
Galway, Ireland, UK, 2008.

38. Rangayyan, R. M., et al., “Measures of acutance and shape for
classification of breast tumors,” IEEE Transactions on Medical
Imaging, Vol. 16, No. 6, 799–810, 1997.

39. Guliato, D., et al., “Polygonal modeling of contours of breast
tumors with the preservation of spicules,” IEEE Transactions on
Biomedical Engineering, Vol. 55, No. 1, 14–20, 2008.

40. Nguyen, T. M. and R. M. Rangayyan, “Shape analysis of breast
masses in mammograms via the fractial dimension,” Engineering
in Medicine and Biology 27th Annual Conference, IEEE, Shangai,
China, 2005.

41. Muinonen, K., “Chapter 11: Light scattering by stochastically
shaped particles,” Light Scattering by Nonspherical Particles:
Theory, Measurements, and Applications, M. I. Mishchenko,
J. W. Hovenier, and L. D. Travis, Editors, Academic Press, 2000.

42. Wold, H., “Estimation of principal components and related
models by iterative least squares,” Multivariate Analysis,
K. R. Krishnaiah, Editor, 391–420, Academic Press, New York,
1996.

43. Shlens, J., “A tutorial on principal component analysis,”



Progress In Electromagnetics Research, Vol. 105, 2010 311

Mar. 25, 2003. Available: http://www.cs.princeton.edu/picasso/
mats/PCA-Tutorial-Intuition jp.pdf.

44. Bartholomew, D. J., et al., “The analysis and interpretation of
multivariate data for social scientists,” Texts in Statistical Science,
Chapman & Hall/CRC, USA, 2002.

45. Hsu, C.-W., C.-C. Chang, and C.-J. Lin, “A practical guide
to support vector classification,” Apr. 3, 2010. Available:
www.csie.ntu.edu.tw/∼cjlin/papers/guide/guide.pdf.

46. Sullivan, D. M., Electromagnetic Simulation Using the FDTD
Method, 1st Edition, IEEE Press Series on RF and Microwave
Technology, R. D. Pollard and R. Booton, Editors, Wiley-IEEE
Press, New York, 2000.

47. Taflove, A. and S. C. Hagness, Computational Electrodynamics:
The Finite-difference Time-domain Method, 2nd edition, Artech
House, Boston, 2000.


