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Abstract—We apply the linear embedding via Green’s operators
(LEGO) method to the scattering by large finite dielectric bodies which
contain metallic or penetrable inclusions. After modelling the body
by means of LEGO bricks, we formulate the problem via an integral
equation for the total incident currents over the boundaries of the
bricks. This equation is turned into a weak form by means of the
Method of Moments (MoM) and sub-domain basis functions. Then,
to handle possibly large MoM matrices, we employ an order-reduction
strategy based on: i) compression of the off-diagonal sub-blocks of
the system matrix by the adaptive cross approximation algorithm and
ii) subsequent compression of the whole matrix by using a basis of
orthonormal entire-domain functions generated through the Arnoldi
iteration algorithm. The latter leads to a comparatively small upper
Hessenberg matrix easily inverted by direct solvers. We validate our
approach and discuss the properties of the Arnoldi basis functions
through selected numerical examples.

1. INTRODUCTION AND OVERVIEW

Nowadays, piecewise homogeneous media are ubiquitous in electrical
engineering and physics, as they constitute a basic “ingredient” for
countless electromagnetic (EM) and optical devices. For instance,
frequency selective surfaces (FSS), electromagnetic and photonic band-
gap structures, high impedance surfaces, printed antennas and the like
are practical examples of structures which may involve a combination
either of metallic and penetrable objects or of dielectric media with
different properties, as sketched in Fig. 1.
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Figure 1. Scattering problem: A finite dielectric body (host medium)
enclosing ND (PEC or penetrable) identical objects is immersed in a
homogeneous background medium and illuminated by incident fields.

Studying and designing such structures demands efficient and
reliable numerical tools. Among these, domain decomposition methods
(DDMs) based on boundary integral equations (BIEs) [1–5] turn out
particularly efficient. In fact, when applied together with a suitable
Method of Moments (MoM) [6] scheme, DDMs can effectively reduce
the size of the resulting MoM matrix. This makes it affordable to
solve the system with direct methods (e.g., LU factorization [7]), so as
to circumvent slow convergence issues (sometimes encountered when
using iterative methods for poor- or ill-conditioned systems).

Prior to applying any numerical scheme, DDMs try and reduce
the complexity of the original EM problem by tearing the structure
apart into small (interacting) domains. We are not aware, though, of
DDMs which have been adapted to handle domains which include an
object and whose filling (i.e., host) medium may exhibit EM properties
different from the properties of the background, as shown in Fig. 2(a).
Thereby, we propose an extension of the linear embedding via Green’s
operators (LEGO) method [8] for solving the scattering from large 3-
D finite dielectric bodies which may include metallic or penetrable
objects arranged in a regular pattern (Fig. 1). We mention that
the recently proposed generalized surface integral equation (GSIE)
formulation [5] can similarly handle large composite media (and
possibly inhomogeneous at that). However, in [5] numerical examples
are given for 2-D problems only.

The key point of LEGO is to model the structure in Fig. 1 as
an aggregate of simply-shaped bricks Dk, k = 1, . . . , ND, each one
embedding (at least) one object [Fig. 2(a)]. The interior of Dk —
which we think of as immersed in the background medium — is partly
occupied by the object and partly filled with the host medium. This
definition extends the notion of brick adopted in previous scattering [8–
13] and antenna [14] problems, where, in contrast, background and
host medium had the same properties. Finally, although we restrict
our discussion to identical bricks, the approach we describe applies as
well to a collection of possibly different bricks.
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Figure 2. (a) A brick Dk = ∂DJ ∪DL carved out of the host medium
and immersed in the background. (b) SJ accounts for the scattering
by the material boundary ∂DJ. (c) SL describes the scattering by DL.
(d) Equivalent symbolic network representing the scattering from Dk.

To formulate the problem in Fig. 1 with LEGO, we describe each
brickDk by a scattering operator Skk (Section 2.1), and the interactions
between any two bricks Dk, Dn via transfer operators Tkn [8]. Then,
unlike the approach we followed in [8, 11], we state an integral equation
to be solved for the total incident current densities qi

k,tot (Section 2.2).
That equation is reduced to a weak form (Section 3.1) via the standard
MoM in Galerkin’s form — Which may results in a relatively large
matrix. Hence, to invert the system without resorting to iterative
methods, we propose an order-reduction strategy hinging on

(i) Compression of the matrices [Tkn] = [P i
kk]

−1[Pkn] [8], i.e., the
algebraic counterparts of Tkn, via the adaptive cross approx-
imation (ACA) algorithm [15, 16] applied to [Pkn] (Section 3.2).

(ii) Compression of the whole system matrix by (formally) expanding
[qi

tot] [8] on a basis of globally entire-domain basis functions
generated through the Arnoldi iteration (Sections 3.3, 3.4).

The ACA algorithm, which exploits the rank-deficient nature of
[Pkn], enables us to reduce the memory occupancy of [Tkn] as well
as to fill it faster. In the second step above we apply the Arnoldi
iteration [17] to a suitable sequence of vectors to obtain a set of NA

orthonormal vectors [ψs], which we dub Arnoldi basis functions (ABFs)
for short. Evidently, the entries of [ψs] define a function whose support
is ∪k∂Dk. Then, we use {[ψs]} to span the dominant subspace of [qi

tot]
and turn the relevant equation (Section 3.4) into the final reduced-order



308 Lancellotti, de Hon, and Tijhuis

system. The relevant matrix is upper Hessenberg and it practically
ensues from the Arnoldi iteration itself [17] — Which adds to the
efficiency of the proposed strategy. Moreover, since in practice NA is
far lower than the number of Rao-Wilton-Glisson (RWG) functions [18]
of the underlying MoM scheme, the reduced system can be inverted
through LU factorization.

Lastly, in Section 4 we discuss the validation of the numerical code
we developed, and we apply LEGO in its new form to the scattering
from a finite FSS comprised of perfectly electrically conducting (PEC)
thick square loops immersed in a host dielectric slab.

2. FORMULATION WITH LEGO

2.1. Scattering Operator of Dk

We capture the EM behavior of Dk via its scattering operator Skk,
which links equivalent incident currents qi

k to equivalent scattered
currents qs

k on ∂Dk, viz.,
qs
k = Skkq

i
k, (1)

where qs,i
k are defined in [8, Eq. (2)]. Notice that qs,i

k are located at an
infinitesimal distance from ∂Dk in the background medium [Fig. 2(a)].
One way of obtaining Skk consists of posing a set of coupled BIEs on
∂Dk and the surface of the embedded object. However, we favor an
alternative modular approach in line with the LEGO philosophy, i.e.,
we decompose Dk into the union of the material boundary ∂DJ ≡ ∂Dk

plus the inner volume DL = Dk\∂DJ. Then, we tackle two auxiliary
problems, namely:
(i) The EM scattering due to the material boundary ∂DJ with the

object inside Dk replaced by the host medium [Fig. 2(b)]. In this
instance, on allowing for sources radiating from both sides of ∂DJ,
we arrive at the scattering operator SJ of the discontinuity between
background (labelled 1) and host medium (labelled 2).

(ii) The EM scattering off DL (which does include the object) when
immersed in the host medium [Fig. 2(c)]. In this case, on placing
sources outside ∂DL we simply derive SL as in [8].

By definition SJ (a 2×2 abstract matrix of operators SJlm, l, m ∈ {1, 2})
maps scattered currents to incident currents on either side of ∂DJ, viz.[

qs
J1

qs
J2

]
=

[
SJ11 SJ12

SJ21 SJ22

] [
qi
J1

qi
J2

]
, (2)

where qs,i
Jl are defined analogously to qs,i

k . For the sake of clarity, we
defer the derivation of SJ to Appendix A.
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It is possible to associate Dk, DL, ∂DJ with (symbolic) lumped
components whereby we represent the EM problem in Fig. 2(a) with
the equivalent circuit in Fig. 2(d). In this network analogue the
currents q play the role of power waves. Pushing the analogy farther,
we can say that Dk is the cascade of ∂DJ and DL. Therefore, if we
treat SJ and SL like ordinary scattering matrices [19], we find

Skk = SJ ∗ SL = SJ11 + SJ12SL(IJ − SJ22SL)−1SJ21, (3)
where ∗ denotes the Redheffer star product [20] and IJ is the identity
operator on ∂DJ (see Table A1). In the notable case when no object
exists within Dk, then SL = 0 and (3) simplifies to Skk ≡ SJ11.

We observe that, if we were to solve a scattering problem as the
one shown in Fig. 1 with the same host medium but different inclusions
(as long as this does not entail changing the shape of ∂Dk), then we
would only have to re-compute SL and carry out the cascade (3). Dual
considerations hold if we allow the EM properties of the background
to vary, while keeping the host medium and the inclusions unchanged.

2.2. Derivation of the Integral Equations

When we take into account the multiple scattering amongst the ND

bricks modeling the structure in Fig. 1, (1) generalizes to [8]

qs
k = Skkq

i
k,tot, qi

k,tot = qi
k +

ND∑

n 6=k

Tknqs
n, (4)

where we have introduced the total incident currents qi
k,tot and the

transfer operators Tkn [8, Eq. (15)]. To state an equation for qi
k,tot, we

plug the first of (4) into the second of (4) and we eliminate qs
k. Then,

by organizing qi
k (qi

k,tot) into a column vector qi (qi
tot), we arrive at

qi
tot = qi + Tdiag{Snn}qi

tot, (5)
where the total transverse operator T is a square matrix with entries

(T)kn =
{

0, n = k,
Tkn = (P i

kk)
−1Pkn, n 6= k,

k, n = 1, . . . , ND, (6)

and the propagators P i
kk, Pkn are listed in [8, Table 1]. Eventually,

once qi
k,tot are known, we can determine qs

k from the leftmost of (4).

3. NUMERICAL SOLUTION

3.1. Reduction to Weak Form Via MoM

To solve (5) we first calculate the algebraic counterparts of Snn and
Tkn [8] through the MoM in Galerkin’s form [6]. To this purpose, we
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model ∂Dk with a regular 3-D triangular patching on which we define
two sets of RWG basis functions [18] {fkp}, {gkp}, p = 1, . . . , NF , to
represent qs,i

k . The current qo induced on the object inside Dk [Fig. 2(c)]
is represented by a suitable set of NO RWG functions: Definitions and
details can be found in [8]. Finally, the total incident currents are
expanded as

qi
k,tot =

[ √
η1J i

k,tot

−M i
k,tot/

√
η1

]
=

NF∑

p=1

[
fkpJ

i
kp,tot

−gkpM
i
kp,tot

]
, (7)

where η1 =
√

ε1/µ1 is the intrinsic impedance of the background
medium, and we have included

√
η1 within J i

kp,tot, M i
kp,tot. With these

preliminaries, the weak form of (5) and the first of (4) reads

[qi
tot] = [qi] + [T ] diag{[Snn]}[qi

tot], [qs] = diag{[Skk]}[qi
tot], (8)

with

([T ])kn =
{

[0] , n = k,

[Tkn] = [P i
kk]

−1[Pkn] , n 6= k,
k, n = 1, . . . , ND, (9)

where with transparent notation each matrix denotes the algebraic
counterpart of the corresponding operator. The rank of [T ] diag{[Snn]}
is 2NF ND.

3.2. Compression of [Pkn] via Adaptive Cross Approximation

The propagator [Pkn] in (9) possesses the block structure [8]

[Pkn] =
[

[0] [0]
[Pkn]HJ [Pkn]HM

]
, n 6= k, (10)

where each sub-matrix has size NF × NF . The subscripts HJ (HM)
signify that (within an immaterial normalization constant) the entries
of [Pkn]HJ ([Pkn]HM) constitute the reaction [21, 22] between the tan-
gential magnetic field — generated by the elemental current fnp (gnp)
on ∂D−n — and the elemental current fkq (gkq), q = 1, . . . , NF , on
∂D+

k . Thereby, based on the classical multipole expansion [23], the
entries of [Pkn]Hα, α = J, M, can be proven to decay to zero, when
the distance between Dk and Dn is increased. Besides, under the same
circumstances, the magnetic field should exhibit only small variations
over ∂Dk. The latter two effects combined together cause the columns
of [Pkn]Hα to become almost linearly dependent.

At any rate, in line with this, a singular value decomposition [7]
reveals that the higher-order singular values of [Pkn]Hα are practically
null. This means that we can store the “information” contained in
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[Pkn]Hα with far fewer entries than the actual 2N2
F in (10), while

preserving the accuracy of [Tkn]. To this end, we apply the ACA
algorithm [15, 16] which allows us to factorize [Pkn]Hα as

[Pkn]Hα ≈ [Ukn]Hα [Vkn]Hα , (11)

where [Ukn]Hα ([Vkn]Hα) is of size NF ×Nα(kn) (Nα(kn) ×NF ).
Now, the number of matrices [Pkn] to be computed is at most

NT,max = ND(ND − 1)/2, because [Pnk]Hα = [Pkn]THα due to
reciprocity [22]. Hence, storing the ACA decomposed matrices [Pkn]
(the null entries need not be stored) requires a grand total

NL = 2NF

ND∑

k=1

ND∑

n=k+1

(
NJ(kn) + NM(kn)

)
, (12)

complex double-precision floating-point memory locations. This
number has to be contrasted with 4N2

F × 2NT , i.e., the memory
locations needed for the full storage of [T ] (which is not symmetric).

Notice that in (12) we assume all of the [Pkn] to differ from one
another, viz., the worst case scenario — which occurs for an arbitrary
distribution of bricks in the background medium. Actually, if the bricks
are to model a dielectric body with a regular distribution of inclusions
(as in Fig. 1), then [Pkn] (and hence [Tkn]) come in clusters of equal
matrices, and hence NT ¿ NT,max. Obviously, we do not compute the
same transfer matrix more than once, nor do we store it over and over
again: This results in both time and memory saving.

3.3. Generation of the Arnoldi Basis Functions

As suggested by the first of (8), a set of vectors well suited for
expanding [qi

tot] may be the sequence
{

([T ] diag{[Snn]})s−1[qi]
}NA

s=1
, (13)

which defines a Krylov subspace KNA
[24] of order NA for the matrix

[T ] diag{[Snn]}. The vectors (13), though, are known to grow ever
more linearly dependent as NA is increased — Which renders them less
attractive as a basis. To get around this problem, from (13) we generate
an orthonormal basis {[ψs]}NA

s=1 through the Arnoldi iteration [17],
which is essentially a stabilized Gram-Schmidt algorithm [7]. For
the sake of completeness, in Table 1, we list the steps of the Arnoldi
iteration tailored to (13). The iteration also yields an upper Hessenberg
matrix [HNA

] of rank NA, which in our notation reads

[HNA
] = [ΨNA

]H [T ] diag{[Snn]} [ΨNA
] , (14)
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Table 1. Pseudo-code of the Arnoldi iteration algorithm.

1. [ 1 ] := [q i]/  [q i]| |2

2. for v = 2 , . . . , NA + 1

i. [ v] := [ T ]diag {[S nn ]} [ v −1]
ii. for u = 1 , . . . , v − 1

• hu, v −1 := [ u ]H [ v]
• [ v] := [ v] − hu, v  [ u ]

iii. h v, v −1 :=  [ v]  2

iv. [ v ] := [ v ] /h v, v 1

Notes
 ·  denotes the 2-norm in
the space spanned by the
columns of [T ]diag{[Snn ]}.
hu,v stands for the entry uv
of [HN A ].
For v = NA+1step 2.iii yields
hN A+1, NA

which is discarded,
as it does not belongto
[HN A

].

ψ

ψ ψ

ψ ψ

ψ ψ −1 ψ

ψ | || |

ψ ψ
−

| | | |
| |

where [ΨNA
] (of size 2NF ND ×NA) stores [ψs] columnwise.

It is worthwhile elaborating a bit on the calculation of

[ψs] = [T ] diag{[Snn]} [ψs−1] , s = 1, . . . , NA (15)

i.e., the matrix-by-vector multiplications which are instrumental to the
Arnoldi iteration (step 2.i of the algorithm in Table 1). Specifically,
upon letting ([ψs])k = [ψks] and using (10), (11), we cast (15) into

[
P i

kk

]
[ψks] ≈

ND∑

n 6=k

[
[0] [0]

[Ukn]HJ [Vkn]HJ [Ukn]HM [Vkn]HM

]
[Snn] [ψn s−1] , (16)

for k, n = 1, . . . , ND. Now, proceeding from right to left, we first
compute [Snn] [ψn s−1]. The resulting vector is then left-multiplied by
[Vkn]Hα, and the result is in turn left-multiplied by [Ukn]Hα. Thus, at
each step we just need a buffer array of length (no more than) 2NF to
store and add up the partial results. At last, when we are done with
the right hand side of (16), we get [ψks] by inverting [P i

kk] through a
UUT decomposition [25]. All of these operations are to be repeated ∀k.

3.4. Order Reduction

To proceed, we expand [qi
tot] in the basis {[ψs]}NA

s=1, viz.,

[qi
tot] = [ΨNA

] [a] , [a] = [a1, . . . , aNA
]T . (17)

By substituting (17) into the first of (8), left-multiplying both sides by
[ΨNA

]H , and taking advantage of (14), we obtain

([I]− [HNA
]) [a] = [ΨNA

]H [qi], (18)
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where the system matrix is of size NA×NA and still upper Hessenberg.
Since [HNA

] comes for free, as a by-product of the Arnoldi iteration, no
more heavy calculations are in order to fill the system matrix in (18).
Lastly, in the light of (17) and (18) the total incident currents can be
formally written as

[qi
tot] = [ΨNA

] ([I]− [HNA
])−1 [ΨNA

]H [qi], (19)

while the scattered currents ensue from the second of (8). In practice,
the required number of ABFs satisfies NA ¿ 2NF ND, and hence (19)
constitutes a notable compression of the MoM system (8).

We conclude emphasizing that the Arnoldi iteration merely serves
the purpose of generating the vectors [ψs], hence the proposed strategy
is no iterative method.

4. NUMERICAL RESULTS

We have implemented the numerical solution of (18) in a code able
to handle arbitrarily shaped bricks enclosing PEC or penetrable
inclusions. The validation campaign entails assessing 1) the calculation
of SJ and 2) the correctness and accuracy of the order reduction based
on the ACA algorithm and the ABFs.

As regards the first issue above, we have studied the scattering
by a solitary dielectric cubic brick (2NF = 1152) which embeds a
PEC sphere (NO = 588), as shown in Fig. 3. For this problem we
have derived a reference solution (qs

1,MoM) by solving a set of coupled
PMCHW equations (over ∂D1) and EFIE (over the sphere) via the
MoM. The LEGO solution relies on (1), with S11 computed via (3), and
on (A4), based on PMCHW equations. In Fig. 3, we have plotted the
radar cross section (RCS) obtained with LEGO (•) and the reference
data (−/−−). The curves are practically indistinguishable, which
confirms the validity of (3) and (A4). To shed light on the pointwise
accuracy of qs

1, for the same frequency (d = 0.5λ2) in Fig. 5, we have
plotted the local deviation with respect to the reference solution, viz.,

ε(1)
r

def= |([qs
1])r − ([qs

1,MoM])r|/ ‖ [qs
1,MoM] ‖2, r = 1, . . . , 2NF , (20)

with ‖ · ‖2 denoting the vector 2-norm [25] in the space spanned by
the columns of [S11]. Since ε

(1)
r does not exceed ≈ 18 · 10−4 (0.18%)

over ∂D1, the scattered currents are indeed correctly represented.
Secondly, to validate (19) we have investigated the scattering by a

dielectric slab (edge 2d, height h) which includes four infinitely-thin
PEC crosses (length a, width t) arranged in a regular rectangular
pattern, as shown in Fig. 4. We model the slab with ND = 4
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Figure 3. LEGO validation:
RCS of a cubic dielectric shell
embedding a PEC sphere; LEGO
solution (•) versus MoM solution
(−−/−). Insets: triangular-facet
models of the cubic shell and the
sphere, and incident plane wave.

t

Figure 4. LEGO validation:
RCS of a dielectric slab embed-
ding four PEC crosses; LEGO
solution (•) with ND = 4, NA =
30 versus MoM solution (−−/−).
Insets: triangular-facet models of
the bricks and the crosses, and
incident plane wave.
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1 computed
through LEGO with respect to MoM solution for the cubic shell in
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(1)
r is shown on left (right).

bricks each containing one cross. For this problem, NO = 277,
2NF = 1080, NA = 50, and the ranks of [T ] diag{Snn} and [HNA

]
are 4320 and 50, respectively. Again, we obtain a reference solution by
applying the MoM to a set of coupled PMCHW equations (over the
slab’s surface, 3360 RWG functions) and EFIE (over the crosses, 1108
RWG functions). The RCS calculated through the two methods are
superimposed in Fig. 4 as well: the results are in excellent agreement,
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Table 2. Ranks of [Ukn]Hα, [Vkn]Hα relevant to the slab in Fig. 4.

n k τkn/d [Ukn]HJ, [Vkn]HJ [Ukn]HM, [Vkn]HM

1 2 1 187 163
1 3 1 197 173
1 4 1.414 128 129
2 3 1.414 127 126

thus validating both the implementation of the ACA algorithm and
the generation of the ABFs.

Concerning this, the threshold tA for stopping the ACA [16] of
[Pnk] was conservatively set to 10−5; the corresponding ranks of the
rectangular matrices [Ukn]Hα and [Vkn]Hα are listed in Table 2 as
a function of the relative distance τkn/d among the bricks. These
numbers are remarkably lower than the actual rank of [Pkn]Hα, i.e.,
NF = 540. Moreover, the larger the separation of two bricks, the
smaller the rank of [Ukn]Hα and [Vkn]Hα — As observed in [16] for the
off-diagonal sub-blocks of the MoM matrix arising from an EFIE. Thus,
to make the most out of the ACA in terms of memory occupation, it
may be advisable to choose tA adaptively, that is, larger (smaller)
values for farther (nearer) bricks. Finally, in view of the finite
translational symmetry of the slab, we need to compute and store
only NT = 4 < NT,max = 6 propagators, as anticipated in Section 3.2.

As for the convergence of qs, in Fig. 6 we have plotted the
expansion coefficients as versus their index. It is seen that the as

drop to the threshold of numerical noise for s = 44 and that the decay
rate is exponential. To assess the global accuracy of the solution,
we have solved (18) with an increasing number of ABFs, namely,
NA ∈ {5, 10, 15, 20, 25, 30}. Then, for each test we have determined
the 2-norm relative error on [qi

tot], viz.,

δqi
tot

def= ‖ [ ‖ qi
tot]− [qref]2 / ‖ [qref] ‖2, (21)

where now ‖ · ‖2 denotes the vector 2-norm in the space spanned by
the rows of [T ] diag{[Snn]}, and [qref] ≡ [qi

tot] obtained with NA = 50
— which we reckon “exact” in view of Fig. 6. Fig. 4 shows δqi

tot
versus

the number of employed ABFs: apparently, 15 ABFs are sufficient to
compute qi

tot with an error of about 0.01%.
In the various numerical experiments conducted so far, we have

noticed that the as are mostly affected by the contrast between the
background and the host medium and by the frequency. In general,
the as oscillate until they start decaying nearly exponentially: Sharper
contrasts and higher frequencies delay the onset of the exponential
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(a)

(b)

Figure 8. Triangular-facet
model of the unit cell of a 10-
by-10 two-layer FSS: (a) two
thick PEC square loops and (b)
LEGO brick.

Figure 9. Normalized radiation
pattern of the FSS at resonance
(4w/λ2 = 1.008): (−) E-plane, (•)
H-plane. Inset: side view of the
FSS and incident plane wave.

convergence and reduce the decay rate as well. In addition, NA also
seems to be affected by ND (ultimately, the rank of [T ] diag{Snn}).

We conclude describing the application of LEGO to an FSS (e.g.,
see [26]) comprised of 200 PEC thick square loops (average edge
w = 7.75mm) embedded in a dielectric host medium (ε2 = 4ε0) and
arranged on two parallel planes (distance t = 0.232w) in a 10 × 10
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regular square lattice. As a LEGO brick we assume the unit cell
(edge d = 10 mm, height h = 0.3d), which contains two loops, as
shown in Fig. 8. For these experiments, ND = 100, NO = 672 and
2NF = 768. Hence, the rank of [T ] diag{Snn} is 76800, whereas a direct
MoM solution would require inverting a matrix size (NO +2NF )ND =
144000. In contrast, we employed just NA = 600 ABFs.

We solved (19) for 21 frequency samples evenly distributed from
4.5 to 5.25 GHz. Shown in Fig. 9 is the normalized radiation pattern
of the FSS in response to a plane wave impinging normally at the
frequency f = 4.875GHz. At such frequency the loops resonate, and
the FSS lets most of the power go through. This is confirmed by
the plot of the transmitted and back-scattered RCS versus the loops’
electric length (Fig. 10): It is seen that there is a minimum (maximum)
of reflection (transmission) for 4w = 1.008λ2, with λ2 the wavelength
in the host medium.

The calculations were carried out on a Linux-based x86 64 work-
station equipped with an Intel Xeon 2.66-GHz processor and 8-GB
RAM. We set the threshold tA for the ACA algorithm to 10−4. Then,
for a single frequency sample, the average time spent computing
NT = 180 propagator matrices [Pkn] (out of NT,max = 4950, in view
of the limited translational symmetry of the FSS) was ≈ 54 s, while
the time needed to build the ABFs was about 57 mins. The latter is
mostly affected by the ranks of [T ] diag{[Snn]} and of the ACA-reduced
matrices used to approximate [Pkn], as given by (11).

It should be noted that NA = 600 ABFs are quite an overkill for
the lower frequency values we considered, whereas they are necessary

Backscattered

Transmitted

Figure 10. RCS of the FSS.
Inset: side view of the FSS and
incident plane wave.
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to attain a reasonable level of convergence of as for the higher values.
For instance, as is evident from Fig. 11, at the resonance just 400 ABFs
would suffice to achieve values of |as| as small as ≈ 10−7|a1|. Therefore,
adaptively choosing NA would allow the computational time to be
reduced.

5. CONCLUSION AND OUTLOOK

We have discussed an order-reduction strategy which — combined with
LEGO — allows us to solve relatively large 3-D scattering problems
involving piecewise homogeneous finite bodies. The key steps are the
compression of the rank-deficient off-diagonal blocks of the relevant
system matrix and the overall reduction in size by means of ad-hoc
generated entire-domain functions (ABFs). This strategy has the
potential of reducing the computational burden also in the study of
the scattering by large dielectric bodies with no inclusions, though
possibly pointwise inhomogeneous (e.g., as in [5]), by simply “dicing”
the structure into small bricks. A detailed study of the dependence of
the ABFs on the frequency, the shape and the content of the bricks, as
well as on the number of bricks modelling a body, is still ongoing and
the results will be the subject of a forthcoming paper.

APPENDIX A. CALCULATION OF SJ

Upon applying Love’s equivalence principle [27] four times, as outlined
in Fig. A1, on either side of ∂DJ we introduce the following equivalent
scattered and incident currents

qs,i
Jl =

[
Js,i

l

√
ηl

−Ms,i
l /
√

ηl

]
, l =

{
1 : background medium
2 : host medium (A1)

Figure A1. Four-fold application of Love’s EP over the material
boundary ∂DJ for defining the equivalent incident and scattered
currents (a), (b) in medium 1 and (c), (d) in medium 2.
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Table A1. Operators used for defining SJ in (A4).

Gl(R), l=1, 2, is the 3-D scalar Green’s function [22] in medium l.
The unit normal n̂J to ∂Dk ≡ ∂DJ ≡ ∂DL points inward Dk

(Fig. A1).
NOMENCLATURE
Gl(R)=exp (−jklR)/(4πR), R= |r− r′|, kl =ω

√
εlµl,

zl =1/yl =ηl/η0, I
s
= I − n̂Jn̂J, ∇s = I

s
· ∇ = ∇− n̂J(n̂J · ∇),

∇′s = −∇s

BASIC RANK-2 DYADIC OPERATORS
Ll = −j

∫
∂DJ

d2r′
[
klGl(R)I

s
+ 1

kl
∇sGl(R)∇′s

]
·, r ∈ ∂DJ

K±l = P.V.

∫
∂DJ

d2r′∇′sGl(R)× I
s
· ±1

2 n̂J × I
s
·, r ∈ ∂DJ

PMCHW equations

W =
[

z1L1 + z2L2 −(K−1 +K+
2 )

−(K−1 +K+
2 ) −(y1L1 + y2L2)

]
, Cl =

[
I

s
· 0

0 I
s
·
]
,

σ = 1

Müller equations

W=
[

ε1z1L1 − ε2z2L2 −(ε1K+
1 − ε2K−2 )

−(µ1K+
1 − µ2K−2 ) −(µ1y1L1 − µ2y2L2)

]
, Cl =

[
εlI s

· 0
0 µlI s

·
]
,

σ=−1

Π i
11 =

[√
z1L1 −√z1K+

1
−√y1K+

1 −√y1L1

]
, Π i

22 =
[√

z2L2 −√z2K−2
−√y2K−2 −√y2L2

]

Dl =
[ √

zlI s
· 0

0
√

ylI s
·

]
, IJ =

[
I

s
· 0

0 I
s
·

]

where ηl =
√

µl/εl is the intrinsic impedance in the corresponding
medium. Then, over ∂DJ we state a set of PMCHW [28] or Müller [29]
BIEs which we solve for J = −n̂J×H and M = −E×n̂J. The resulting
systems can be written succinctly as

W

[
J
√

η0

−M/
√

η0

]
= Wq = −C1D1Π

i
11q

i
J1 + σC2D1Π

i
22q

i
J2, (A2)

where η0 =
√

µ0/ε0 is the intrinsic impedance of vacuum and the rele-
vant operators are explicitly listed in Table A1. Moreover, in the light
of (A1) and the definition of q in (A2), qs

Jl are related to qi
Jl and q via

qs
J1 = qi

J1 + D1q, qs
J2 = qi

J2 − D2q. (A3)
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Finally, deriving q from (A2) and substituting it into (A3), after
a little algebra, yields the following operative expression for SJ

SJ =
[

IJ − D1W
−1C1D1Π

i
11 σD1W

−1C2D2Π
i
22

D2W
−1C1D1Π

i
11 IJ − σD2W

−1C2D2Π
i
22

]
. (A4)

The algebraic counterpart of SJ ensues by solving (A2) via MoM
after expanding q with 2NF RWG functions similarly to (7).
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