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Abstract—To analyze resonances in an axisymmetric inhomogeneous
cavity, a higher-order finite element method (FEM) is developed.
Mixed higher-order node-based and edge-based elements are applied
to eigenvalue analysis for the azimuthal component and meridian
components of the field, respectively. Compared with the lower-order
FEM, the higher-order FEM can improve accuracy with the same
number of unknowns and can reduce the CPU time and memory
requirement for specified accuracy. Numerical results are given to
demonstrate the validity and efficiency of the proposed method.

1. INTRODUCTION

Electromagnetic computation for bodies of revolution (BOR) of
arbitrary shape has been widely discussed for many years. BOR
objects of various types, including perfect electric conductors (PEC),
homogeneous dielectric bodies, coated conducting bodies, combined
dielectric and conducting bodies, multi-layer dielectric bodies and
resonators with axial symmetry, have been studied [1–14]. Because
of the axis-symmetry of the geometry, only the 2-D cross section that
forms the volume (i.e., the meridian plane) is needed for solving the
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scattering, radiation and resonance problems of the BOR by integral
equations (IE) [1–5], finite element method (FEM) [12–14], hybrid
finite element method and boundary integration (FEM-BI) [15], hybrid
physical optics and method of moments (PO-MoM) [16], and the other
methods. Both the memory requirement and CPU time are reduced
compared with the full three-dimensional methods [17, 19].

In a BOR solution method, the fields and currents are decomposed
into different cylindrical harmonic modes. These modes are orthogonal
with each other, so they can be solved separately. In a numerical
method for BORs, only the generatrix that forms the surface of the
BOR is needed to solve the problem. For the scattering and radiation
problem from a PEC or homogeneous BOR, it is convenient to use
integral equations without the need to use any absorbing boundary
condition (ABC). The accuracy is better than the FEM. However,
an surface integral equation solver cannot handle an inhomogeneous
BOR problem efficiently. The FEM, on the other hand, can perform
better for a complex medium [21, 22] and is a good choice especially for
inhomogeneous axisymmetric cavity problems with a PEC boundary.

In this work, we extend the higher-order FEM [19, 23] to improve
the accuracy for the computation of inhomogeneous axisymmetric
cavity problems. Although the higher-order FEM has been applied
to 3-D problems, the new contribution of this work is that it develops
and applies this method to BOR cavities. Both node- and edge-based
elements are used to discretize the azimuthal and meridian components
of the field. Numerical results are given to demonstrate the validity
and efficiency of the higher-order FEM.

2. FINITE ELEMENT METHOD FOR AXISYMMETRIC
RESONATORS

As shown in Figure 1, a BOR is in the cylindrical coordinate system
(ρ, φ, z), and the medium inside the body is inhomogeneous. Because
of the axial symmetry of the geometry, the field inside can be expressed
in a Fourier series [1]

E(ρ, φ, z) =
∞∑

m=−∞
[Et,m(ρ, z) + φ̂Eφ,m(ρ, z)]ejmφ (1)

H(ρ, φ, z) =
∞∑

m=−∞
[Ht,m(ρ, z) + φ̂Hφ,m(ρ, z)]ejmφ (2)

where Et,m, Eφ,m, Ht,m and Hφ,m are the electric and magnetic fields
in the meridian plane and the azimuthal component of the m-th Fourier
mode, respectively. Only a 2-D mesh is needed for analyzing the 3-D
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Figure 1. An arbitrary inhomogeneous axisymmetric cavity and the
coordinate system.

axisymmetric cavity. As all cylindrical modes are orthogonal to each
other, they can be treated separately.

On the axis (ρ = 0), the fields must retain the continuity for any
values of φ [13, 21, 22]. Thus, there are three kinds of conditions for
different cylindrical modes: for m = 0,

Eφ,0 = (∇×E)φ,0 = 0 (3)
Eρ,0 = (∇×E)ρ,0 = 0 (4)
Ez,0 6= 0, (∇×E)z,0 6= 0 (5)

for m = ±1

Eρ,±1 = ∓jEφ,±1 (6)
(∇×E)ρ,±1 = ∓j(∇×E)φ,±1 (7)
Ez,±1 = (∇×E)z,±1 = 0 (8)

and for |m| > 1

Eφ,m = Eρ,m = Ez,m = 0 (9)
(∇×E)φ,m = (∇×E)ρ,m = (∇×E)z,m = 0 (10)

Consider the vector Helmholtz equation for the electric field E

−∇× (
µ−1

r ∇×E
)

+ k2
0εrE = jωµ0J +∇× µ−1

r M ≡ Se (11)

where µr and εr are the relative complex permeability and permittivity,
respectively. J and M are the electric and magnetic current densities,
respectively, and k0 is the wave number in free space. For a source-free
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(Se = 0) cavity Ω with a perfect electric conductor outer boundary S,
the weak form of the vector wave equation can be expressed as

−
∫

Ω
(∇×W`) · (µ−1

r ∇×E)dΩ +
∫

Ω
k2

0W` · εrEdΩ = 0 (12)

where W` is the testing function, and the outer boundary condition

n̂×E(r) = 0, r ∈ S (13)

has been utilized, where S is the boundary of the cavity Ω, and n̂ is
the unit outward normal vector.

In the general 3-D FEM, the basis functions for electromagnetic
fields are the mixed-order edge elements. However, for the BOR
FEM, when projected onto a meridian cross section, the azimuthal
component Eφ should use a nodal basis function, while the meridian
components Et should use a mixed-order edge element. Considering
the boundary conditions at ρ = 0 for different cylindrical modes
as shown in Equations (3)–(10), the m-th cylindrical mode can be
expanded as

Eφ,m=
Nn∑

i=1

eφ,iNi (14)

Et,m=δm,0

Ns∑

i=1

et,iNi+(1−δm,0)
Ns∑

i=1

et,iρNi−(1−δm,0)ρ̂
Nn∑

i=1

eφ,i
j

m
Ni(15)

where Nn is the number of nodes. Ns is the number of segments (or
edges), eφ,i. et,i are the unknown coefficients. Ni and Ni represent
the standard node-based and edge-based element basis functions,
respectively. Note that because of the Kronecker delta function, for
m = 0 the second and third terms in Et,m become zero. And the
testing function is chosen as:

W` =

(
Nn∑

i=1

Niφ̂ +
Ns∑

i=1

Ni

)
ej`φ = Wφ,`φ̂ + Wt,` (16)

After substituting the basis and testing functions into Equation (12)
and making use of the orthogonality of cylindrical modes, the wave
equation can be rewritten as

2π

∫

S

ρ

µr
(∇t ×Wt,−m) · (∇t ×Et,m) dS

+2π

∫

S

ρ

µr

(
∇tWφ,−m +

jm

ρ
Wt,−m +

ρ̂

ρ
Wφ,−m

)
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·
(
∇tEφ,m +

−jm

ρ
Et,m +

ρ̂

ρ
Eφ,m

)
dS

= 2π

∫

S
k2

0εrρ (Wt,−m ·Et,m + Wφ,−m · Eφ,m) dS (17)

a system of equations
[
Kee

m Ken
m

Kne
m Knn

m

]
·
[
Ee

En

]
= k2

0

[
M ee

m M en
m

Mne
m Mnn

m

]
·
[
Ee

En

]
(18)

can be formed, where in the stiffness matrix element Kαβ
m and mass

matrix element Mαβ
m , α and β are the choices for the testing function

and the basis function. m is the the mode index. e stands for
the edge unknowns. n stands for node-based unknowns. k2

0 is
the eigenvalue of the system, Ee = (et,1, et,2, · · · , et,Ns)T and En =
(eφ,1, eφ,2, · · · , eφ,Nn)T . Both the stiffness matrix and mass matrix are
sparse. A seven-point numerical integration is used for the impedance
matrix assembling. LAPACK routines are used to compute eigenvalues
and eigenvectors [18].

3. HIGHER-ORDER FINITE ELEMENT METHOD

In order to improve the accuracy from the conventional FEM with
first-order nodal basis functions and first-order edge elements, a
higher-order FEM is applied to axisymmetric inhomogeneous dielectric
resonators. As shown in Figure 2(a), each triangular element on the
meridian plane has three node-based and three edge-based vector basis
functions for the conventional lower-order basis functions. The three
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Figure 2. (a) Three-noded triangle for first-order node-based and
edge-based basis functions. (b) Six-noded triangle for second-order
node-based and edge-based basis functions. (c) Ten-noded triangle for
third-order node-based and edge-based basis functions.
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nodal basis functions are given by

N e
i = Le

i , i = 1, 2, 3 (19)

where Le
i denote the area coordinates for element e, and i is the index

of the node. The three edge-based basis functions can be expressed as

Ne
ij = leij (L

e
i∇Le

j − Le
j∇Le

i ), i, j = 1, 2, 3, (i 6= j) (20)

where leij is the length of the edge from node i to node j. And the
vector basis functions have the following properties:

∇ ·Ne
ij = 0, ∇×Ne

ij = 2leij∇Le
i ×∇Le

j (21)

The second-order node-based and edge-based basis functions are
defined on a triangular element with six nodes [19] in Cartesian
coordinates and are adapted here to the BOR problem: three of them
are corner nodes, and the rest three nodes are mid-side nodes. As
shown in Figure 2(b), each element has six nodal basis functions and
eight edge-based basis functions. Three of the nodal basis functions
are defined on the three corner nodes, while the other three nodal basis
functions are defined on the three mid-side nodes. Six of the vector
edge-based basis functions are defined at the edges of the triangular
element, while the rest two edge-based basis functions are defined inside
the triangular element.

The third-order node-based and edge-based basis functions are
defined on a triangular element with ten nodes [20] in Cartesian
coordinates and are adapted here to the BOR problem: As shown in
Figure 2(c), each element has ten nodal basis functions and fifteen edge-
based basis functions. Three of the nodal basis functions are defined
on the three corner nodes. Six nodal basis functions are defined on the
six side nodes, and the last one is defined inside the triangular element.
Nine of the vector edge-based basis functions are defined at the edges
of the triangular element, while the rest six edge-based basis functions
are defined inside the triangular element.

4. NUMERICAL RESULTS

In this section, several numerical results are presented to show the
validity of the proposed method.

4.1. An Inhomogeneous BOR Cavity

Lebaric and Kajfez [24] use the finite integration technique to analyze
the cavity shown in Figure 3. The mesh of the proposed method
contains 307 nodes and 555 triangular elements. Table 1 lists the
comparison of the resonant frequencies by measurement and two
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Figure 3. The structure of the cavity investigated by Lebaric and
Kajfez [24].

Table 1. Comparison of the resonant frequencies for the cavity
investigated by Lebaric and Kajfez [24], and the error of different
method with measured data.

Mode
Measured
[24] (GHz)

Lebaric
[24] (GHz)

Relative
Error (%)

This work
(GHz)

Relative
Error (%)

TE01 6.943 7.037 1.354 7.082 2.002
HEM11 8.694 8.742 0.552 8.847 1.760
HEM12 8.905 8.897 0.090 9.054 1.673
TM01 9.185 9.296 1.208 9.326 1.535

HEM21 10.558 10.605 0.445 10.743 1.752
TM02 10.943 11.113 1.554 11.173 2.102

HEM13 11.184 11.226 0.376 11.471 2.566
TE02 11.316 11.391 0.663 11.668 3.111

numerical methods. The first subscript represents the azimuthal mode
m, and the second subscript represents the index for the resonance
frequencies for mode m. The relative error is defined by

error =
|f0 − fRef

0 |2
|fRef

0 |2
(22)
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where fRef
0 is the measured frequency, and f0 is the resonance

frequency obtained by different numerical methods.

4.2. Convergence of the Higher-order BOR FEM

To study the convergence of the higher-order BOR FEM, a
homogeneous PEC cavity filled with air (εr = 1, µr = 1) is considered.
The cavity has a radius 1 m and a height 1 m. Thus, analytical results
can be obtained for this homogeneous cavity to show the accuracy of
the higher-order BOR FEM. The error in the numerical solution is
defined in the L2-norm as

error =

∣∣∣kBOR
0 − kRef

0

∣∣∣
2∣∣∣kRef

0

∣∣∣
2

(23)

where kRef
0 is the reference result (here obtained analytically), and

kBOR
0 is the result by the BOR FEM implemented in this work.

Figures 4–5 show the relative error of the eigenvalue for different modes
(TMm11, m = 0, 2) versus the sampling density (SD) in terms of the
number of points per wavelength (PPW) defined as

SD = λmin

√
(Nn + Ns)

2S
(PPW) (24)
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Figure 4. Relative error of the
eigenvalue (3.956360747459228)
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cylindrical mode TM011 versus
the SD.
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where S is the area of the meridian cross section, and λmin is the
wavelength corresponding to the first eigenvalue. Numerical results
show that the first-order FEM has second-order accuracy. The second-
order FEM has forth-order accuracy, and the third-order FEM has
sixth-order accuracy for all of the modes (m = 0,±1,±2, . . .). Figure 6
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Figure 6. Relative error of the
eigenvalue (3.956360747459228)
of the axisymmetric cavity for
cylindrical mode TM011 versus
the CPU time.
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shows the relative error of the eigenvalue for the mode (TM011) versus
the CPU time. Figure 7 shows the relative error of the eigenvalue for
the mode (TM011) versus the memory requirement for assembling the
impedance matrix. It is observed that with higher-order FEM, both
CPU time and memory requirement are significantly reduced from the
low-order FEM for given accuracy.

Table 2. The eigenvalue k0 (m−1) of the complex inhomogeneous
BOR resonator in Fig. 8 for cylindrical modes m = 0, 1, and 2.

m = 0 TM m = 0 TE m = 1 m = 2
0.758319467983 1.556665293282 1.100060683411 1.409270983878
1.385410832002 2.310095127483 1.367848384402 1.719496785904
1.845430933757 2.531857231466 1.715618353533 2.072418330069
2.187346916473 3.078603247897 1.955593596103 2.261525441642
2.241053842087 3.309581132676 2.159744765452 2.373896486525
2.767949199031 3.438014224975 2.343318049667 2.658461907026
2.885644692555 3.903209914022 2.459948977338 2.772251939479
3.156606620535 3.994776034044 2.669140591017 3.004470924506
3.269750790287 4.166803722899 2.735047784798 3.098721511754
3.570998532440 4.485704821550 2.906014517201 3.223265931716
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Figure 9. Relative error of the
eigenvalue (2.310095127483) of
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for the cylindrical mode m = 0
versus the SD.
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Table 3. The eigenvalue k0 (m−1) of the complex inhomogeneous
BOR resonator in Fig. 8 for cylindrical modes m = 3, 4, 5.

m = 3 m = 4 m = 5

1.741288135988 2.089327786115 2.446968521519

2.088713198590 2.470310589431 2.858386128340

2.448982140927 2.828224973396 3.127842596151

2.542311359568 2.836539544915 3.224016571322

2.655823101522 2.971791478477 3.311348574190

2.927621205386 3.222956968676 3.543834017584

3.147832453686 3.502013629732 3.847975677459

3.289801576308 3.596876181138 3.918241508939

3.460509874489 3.727092908436 4.007018370180

3.526869035357 3.893109485341 4.204014602936

4.3. A Complex Inhomogeneous Cavity
As shown in Figure 8, a complex axisymmetric cavity filled with an
inhomogeneous medium is simulated by the BOR FEM with different
orders. The cavity is filled with three different types of dielectric
materials as shown in the figure. The third-order FEM result with
a sampling density of 30 PPW (Nn = 1147, Ns = 2610) is set as the
reference result, as listed in Tables 2–3.

Figures 9–10 show the relative error for different modes. The
third-order FEM has the highest accuracy. The order of accuracy for
the eigenvalues is 2, 4, and 6 for the first-, second-, and third-order
BOR FEM.

5. CONCLUSION

In this paper, a higher-order FEM is applied to solve the eigen-
value problem for arbitrary inhomogeneous dielectric axisymmetric
resonators. The proposed method uses higher-order node-based ele-
ments for the azimuthal field component and higher-order edge-based
elements for the meridian field components. It has been observed that
the higher-order mixed basis functions can significantly improve the
accuracy with the same number of unknowns when compared with a
lower-order FEM. Furthermore, for given accuracy, higher-order FEM
can significantly reduce the memory requirement and CPU time com-
pared with a lower-order FEM.
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