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Abstract—Generalized band structure equation for photonic crystals
which containing dielectric rods in metals medium was derived by using
the plane wave expansion method. From the band structure, we can
study band gap of photonic crystals in both E and H polarizations.
Since metals are frequency-dependant materials, modification needs
to be done on the plane wave expansion equation to calculate the
metallic photonic crystals containing dielectric constant rods. To ease
the calculation, simple Drude model for metals are used. In this model,
the equation is without damping constant. We have plotted the band
structure for photonic crystals in metals medium. Then, we studied the
effective plasma frequency of the structure from the band graph in E
polarization mode (TM). We found that effective plasma frequency can
be tailored as we want. Detailed results are presented with different
sizes of radius. Comparison is made for different background materials.

1. INTRODUCTION

The photonic crystals have been extensively developed for the past
20 years. It is used as antenna [1–4], microstrip [1], solar cells [2, 3],
fiber optic [4, 5], waveguide [6], etc. The materials that are being
used for photonic crystals range from normal dielectric material to
superconductor. But, we would like to discuss the properties of
photonic crystals in metals medium in this article. Metals are
frequency dependant material. We have used the Drude model to
describe the dielectric constant of metal as follows:

ε(ω) = 1− ω2
p

ω (ω − iγ)
(1)
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where ωp is the plasma frequency, and γ is damping constant.
Damping constant is neglected because it is small compared to plasma
frequency [7]. So, we obtained a simple Drude model which the
imaginary part of Equation (1) is neglected.

ε(ω) = 1− ω2
p

ω2
(2)

Plasma frequency is a basic constant that characterizes a metal. It
cannot be changed. From the ordinary metallic band graph, it is
the frequency at the minimum of the lowest band in a band energy
graph. But, if the fundamental plasma frequency of metals can be
modified as desired, it can be used widely in many areas. It is known
that the plasma frequency is in the range of ∼ 1015 Hz which is in
ultraviolet region. Pendry et al. [8] showed that plasma frequency
of a periodic structure built of metallic thin wires can be depressed
into GHz region or far infrared region. The results are promising.
Brand et al. [9] reviewed previous studies and discussed the effective
plasma frequency. Here we would like to study the effective plasma
frequency of photonic crystals with dielectric rods in metals medium.
We can arrive at the value by plotting the band energy graph of the
structure. This calculation is very important but is left out by several
authors. So, we have to derive the equation and plot the band energy
graph. The effective plasma frequency is the minimum value at the
lowest band. There are many methods proposed to find the band
energy graph [1, 10–16]. Each method has its own limitation especially
when frequency dependant material is considered. But, it has been
reported that plane wave expansion method is capable to solve the
metallic-vacuum photonic crystals in E polarization [17]. However, it
is only limited in vacuum rods. Therefore, in this article we extended
the study into metallic and dielectric rods by using the plane wave
expansion method. Xu et al. [18] studied effective plasma frequency of
1-dimension metallic-dielectric photonic crystals but we studied plasma
frequency in 2-dimension with different dielectric rods, and we would
also theoretically study the effect of different cylinder materials that
were inserted into the metallic structure.

2. METHOD

2.1. Basic

The 2D structure is shown in Figure 1. We assumed that the periodic
structure is along z axis. We made assumption that the structure was
infinitely long, parallel and symmetry structure. We implied that the
structure thickness was infinite.
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Figure 1. (a) Cross section view. (b) Top view of the 2D periodic
structure.

So, we turned the Bravais lattice into vector form

x = l1a1 + l2a2 (3)

The dielectric constant of the structure along x should fulfill the
characteristics below

ε [x + x(l)] = ε (x) (4)

Therefore, we expand it into Fourier form

ε′(x) =
∑

G

ε′(G)e−iG·x (5)

where G is the reciprocal lattice, and the Fourier coefficient is

ε′(G) =
1
ac

∫

G

d2xε′(x)e−iG·x (6)

where ac is the lattice constant.
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2.2. Modification

We modified and constructed the dielectric periodic function to meet
the requirement of the metallic structure which we proposed and shown
in Figure 1. We formulated it in (7).

ε(x) = ε(ω) + [εo − ε(ω)]
∑

G′
S

[
x|| − x||(l)

]
(7)

where S(x) = 1 if x is inside the cross section of the cylinder centered
at the origin of coordinates and S(x) = 0 if x outside this cross section.

Equation (7) is modified from the work of Kuzmiak [19]. The
equation fulfills the periodic behavior of the structure.

ε(G) = ε(ω)δ0,G + [εo − ε(ω)]
1
ac

∫
d2x||S(x||)e−iG||·x|| (8)

We transformed it in below equation

ε(G) =





ε(ω) + f [εo − ε(ω)] , G = 0

f [εo − ε(ω)]
2J1(G ·R)

G ·R , G 6= 0
(9)

where f = 1
ac

∫
d2x||S(x||)e−iG||·x|| and 1

ac

∫
G

s(x)e−iG·xd2x=2f J1(|G|R)
|G|R .

2.3. Application

After the calculation of the dielectric function which is the most
important part to find the band gap, we applied Maxwell’s equation.
In this application, we considered E polarization mode and H
polarization mode.

In E polarization mode (TM):
E3(x|ω) obtained in below

E3(x|ω) =
∑

G

B(k|G)ei(k+G)·x (10)

where k is the wave vector of the wave. Then, we obtained an
Equation (11) satisfied by the coefficients B(k|G)

(k + G)2B(k|G) =
ω2

c2

∑

G′
ε
(
G−G′) B(k|G)

=
ω2

c2
ε(0)B(k|G) +

ω2

c2

∑

G′
ε
(
G−G′) B(k|G) (11)
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The results of Equation (9) is substituted into Equation (11) which
transforms latter into

µ2B(k|G) + µ2
∑

G′
(εo−1)

2fJ1 (|G−G′|R)
|G−G′|R B

(
k|G′)− ω2

p

c2
B(k|G)

−
∑

G′

ω2
p

c2

2fJ1(|G−G′|R)
|G−G′|R B

(
k|G′)− (k+G)2 B (k|G) = 0 (12)

where µ = ω
c . Equation (12) is the final equation for the E polarization

of metallic medium photonic crystals. This equation is used to plot the
band structure of the photonic crystals. This equation has the form
of a generalized eigenvalue problem. We employed the linearization
technique to transform it into linear form. So, we rewrite Equation (12)
in the form below

µ2
↔
X − ↔

Y = 0 (13)

where the elements of the NG×NG matrices
↔
A and

↔
B are given by

↔
X=

∑

G′
∂0,G′+f (εo−1)

2J1| (G−G′) |R
|(G−G′)|R B

(
k|G′) (14)

↔
Y =

∑

G′

ω2
p

c2
∂0,G′+(k+G)2∂0,G′+f

[
ω2

p

c2

]
2J1| (G−G′) |R
|(G−G′)|R B

(
k|G′) (15)

and NG is the number of plane waves used. Equation (13) represents
the second order nonlinear problem, which can be represented in the
equivalent matrix form

↔
M

↔
M =

(
0

↔
X

↔
Y 0

)
(16)

The complete solution of Equation (12) is obtained by solving for the
eigenvalues of

↔
M by the diagonalization of this non-Hermitian matrix.

In H polarization mode (TE):
H3(x|ω) obtained in below

H3(x|ω) =
∑

G

A(k|G)ei(k+G)·x (17)

where k is the wave vector. Then, we obtained Equation (18) satisfied
by the coefficients A(k|G)

∑

G′
(k + G) · (k + G′) κ̂(G−G′)A(k|G′) =

ω2

c2
A(k|G) (18)
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In H polarization, the periodic function is slightly different with the
E polarization mode. We derived it in Equation (19)

1
ε(x)

=
1

ε(ω)
+

[
1
εo
− 1

ε(ω)

] ∑

l

S [x− x(l)] (19)

we transformed in the following equation

κ̂(G)





1
ε(ω)

+
[

1
εo
− 1

ε(ω)

]
f, G = 0

[
1
εo
− 1

ε(ω)

]
2f

J1 (|G|R)
|G|R , G 6= 0

(20)

where f = 1
ac

∫
d2x||S(x||) and 1

ac

∫
G

s(x)e−iG·xd2x = 2f J1(|G|R)
|G|R .

Equation (20) is substituted into Equation (18) which transforms latter
into:

εoµ
2A(k|G)− µ




(
εo+εo

c2

ω2
p

|k+G|2
)

A(k|G)

+ (1−εo)
c2

ω2
p

∑

G′
(k+G) · (k+G′

)
2f

J1 (|G−G′|R)

|G−G′|R A(k|G′)




+
c2

ω2
p

∑

G′
(k+G) · (k+G′)2f

J1 (|G−G′|R)
|G−G′|R A

(
k|G′) = 0 (21)

Equation (21) is the final equation for the H polarization of metallic
medium photonic crystals. This equation is used to plot the band
structure of the photonic crystals. This equation has the form of
a generalized eigenvalue problem. We employed the linearization
technique to transform it into linear form. So, we rewrite Equation (21)
in the form below

µ2
↔
J − µ

↔
K +

↔
L = 0 (22)

where the elements NG×NG matrices of D̂, Ê and F̂ are given by

↔
K =




(
εo + εo

c2

ω2
p
|k + G|2

)
A(k|G)

+ (1− εo) c2

ω2
p

∑
G′

(k + G) · (k + G′)2f J1(|G−G′|R)
|G−G′|R A(k|G′)


 (23)

↔
L =

c2

ω2
p

∑

G′
(k + G) · (k + G′)2f

J1 (|G−G′|R)
|G−G′|R A

(
k|G′) (24)

Equation (22) is the second order eigenvalue problems which can be
represented as matrix below form

↔
M =

(
0 I

↔
J

↔
K

↔
L

)
(25)
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The complete solution of Equation (25) is obtained by solving for the
eigenvalues of

↔
M by the diagonalization of this non-Hermitian matrix.

So, the band structure of the E and H polarization modes can be
plotted.

3. RESULTS AND DISCUSSION

We plotted the metallic-like photonic crystals in E polarization in
which the filling fraction of the crystals is f = 0.001. This gives
infinitesimally small spatial variation of the cylinder rods. We show
the graph in Figure 2(a).
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Figure 2. Band structure of E polarization mode for photonic crystals
of vacuum rods in copper slab at (a) f = 0.001, (b) f = 0.5, (c) f = 0.9.
(Square lattice).

We found that the graph is exhibited as a normal band energy
graph of copper. It has a minimum frequency, ωa

2πc = 1 at k = 0. This
is the plasma frequency of copper. In bulk metal, this is the minimum
frequency that wave can propagate. So, it is the same as effective
plasma frequency. We found that when the metallic slab has dielectric
material inside, the effective plasma frequency of the photonic crystals
will change. So, we assumed that an array of vacuum rods was inserted
inside the metallic slab with filling fraction f = 0.5. We have observed
that the band graph is moved down as shown in Figure 2(b). From
the graph, we found that there is a band gap in between two lowest
energy bands which is from 0.7825 to 0.9077. The size of the gap is
0.1252. When we increased the radius of the vacuum, the gap size was
reduced. At f = 0.8, the gap vanished. Figure 2(c) shows the graph
of the band gap when filling fraction, f = 0.9. The two lowest bands
are connected to each other. At the same time, the effective plasma
frequency showed a decrease when filling fraction increased. We have
theoretically depressed the effective plasma frequency into 400THz
range. We have thus reduced 80% of the copper’s plasma frequency.
The results are inspiring. But there is some limitation. One of the
interesting characteristics of photonic crystals is the scaling law [20].
Under this law, dispersion curves are the same for the crystals which
have similar dielectric functions. But, we found that scaling law is
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not true when metallic material is used. This is due to the frequency-
dependant dielectric constant of the metallic. Scaling law assumes
that the dielectric function is independent of frequency. But when
metallic is used, dielectric function of the photonic crystals changes
with frequency. This makes the analysis of band energy of photonic
crystals consist metallic or photonic crystals of metallic slab even
harder. We have carried out the theoretical study of this structure.

The above discussion is for the band energy in E polarization
mode. In the next section, the discussion is continued with H
polarization. In this mode, the band energy graph is different from
the E polarization mode.

We have plotted the band structure for H polarization when the
filling fraction is extremely small which is f = 0.001 as shown in
Figure 3(a). There are two parts in this graph. The lower part consists
of straight lines, and the upper one is the ordinary energy band graph.
So, there is a big gap in between these two parts. But, this gap is not
suitable for the application in electronic devices. Straight lines in the
graph are because wave is concentrated near the wall of vacuum rods.
Although wave possesses energy, the wave is only near the surface
and cannot propagate. This is the surface plasmon polaritons. The
upper part of the band energy graph is the ordinary energy graph.
It is the same as in the E polarization mode. It has a minimum
frequency ωa

2πc = 1 at k = 0. So, from the two results we found that
the effective plasma frequency of two modes is the same if we neglect
the surface plasmon effect in H polarization mode. In Figure 3(b),
the graph represents the band energy of photonic crystals when filling
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Figure 3. Band structure of H polarization mode for photonic crystals
of vacuum rods in copper slab at (a) f = 0.001, (b) f = 0.5, (c) f = 0.9.
(Square lattice).

fraction f = 0.5, and the effective plasma frequency is zero at k = 0.
Figure 3(c) shows the band energy of photonic crystals when filling
fraction f = 0.9. It also has zero effective plasma frequency at k = 0.
But the difference between these two graphs is the first lowest band at
M . Normalized frequency in Figure 3(b) is at 0.1 but in Figure 3(c)
the normalized frequency is increased to 0.4. Then, Figure 3(b) has
several band gaps in a certain range.
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Figure 4. Effective plasma frequency versus size of dielectric rods for
copper slab. (Square lattice).

We have done the calculation for metallic slab with different
dielectric rods for E polarization mode (Equation (12)) and H
polarization mode (Equation (21)). So, we investigate the changes
of effective plasma frequencies when different sizes of materials are
inserted into the metallic slab. We make a comparison in Figure 4.
Vacuum (εo = 1), Teflon (εo = 2), FR-4 (εo = 4.9) and silicon
(εo = 13) are used. The lattice constant used is 1 mm. So, the largest
rods size is around 0.5 mm. From Figure 4, we observe that no matter
which dielectric rods is used, the effective plasma frequency of photonic
crystals with the extremely small rods in copper medium is 1. This is
the plasma frequency of the copper. When the size of rods is increased,
we find that the effective plasma frequency is decreased. As a result,
the effective plasma frequency of metals can be depressed down when
structure of copper is modified physically.

4. CONCLUSION

We successfully derived the general equation of photonic crystals
containing dielectric rods in metals medium for H and E polarizations
by using the plane wave expansion method. We have plotted the
band energy graph of photonic crystals with dielectric rods in copper
medium. We find that the effective plasma frequency of photonic
crystals with different dielectric rods in copper medium is the same as
the plasma frequency of copper when filing fraction is extremely small
for E polarization mode. Then, we make a comparison of effective
plasma frequency by vary the dielectric constant of rods. The effective
plasma frequency is decreased when the filling fraction is increased. We
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successfully depress more than 50% of the effective plasma frequency of
copper by modifying it physically. So, we have shown that the effective
plasma frequency of copper can be tailored with creating impurity in
metals medium. It can be used in different applications which use
metals medium. Our method of calculation can be extended to find
the band gap structure of defect mode and waveguide mode of photonic
crystals which is made of metals medium.
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