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Abstract—An analysis is presented of a three-layer tapered core liquid
crystal optical fiber (TLCF) having the outermost clad section made
of radially anisotropic liquid crystal. TE mode propagation through
TLCF is demonstrated with maximum distribution of power in the
liquid crystal section under the situation that the TLCF core and
the inner clad regions are constructed of homogeneous and isotropic
dielectric materials. Such a propagation feature is attributed to the
radial anisotropy of the liquid crystal outer region, and attracts useful
applications of TLCFs in evanescent field optical sensing and other
coupling devices primarily used in integrated optics.

1. INTRODUCTION

Complex optical waveguides have been in discussion owing to
their versatile technological applications including the areas of
nanophotonics and quantum communications [1–12]. Liquid crystal
optical fibers (LCFs) also fall in such category, and high optical
anisotropic properties of liquid crystals [13, 14] make LCFs attractive
for several potential applications [15, 16]. LCFs are generally
characterized by the polarization anisotropy — the feature much useful
for integrated optic applications [17–19]. As the macroscopic optical
properties of liquid crystals can be manipulated by suitably applying
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external electrical fields [1], LCFs are indispensable in optical sensing
too [20, 21]. At this point, it is noteworthy that liquid crystals yield
the largest electro-optic effect among other existing materials.

Anisotropy in LCFs may have radial and azimuthal orientations.
Reports on LCFs with azimuthal anisotropy [17–19] have appeared in
the literature. However, LCFs with radial distributions [22] are less
discussed. Thus, the present communication is devoted to the analysis
of a three-layer LCF with the outermost cladding made of radially
anisotropic liquid crystal — the feature which may be achieved by the
capillary action after inserting the liquid crystal into a capillary tube
coated with N, N-dimethyl-N-octadecyl-3-aminopropyltrimethoxysilyl
chloride [22].

It is well-known that tapered fibers find prominent use in optical
sensors and other in-line integrated optic applications [23–27]. As
such, a blend of tapered nature and radially anisotropic liquid crystal
in fibers — i.e., tapered core liquid crystal optical fibers (TLCFs)
— would yield interesting features of the guide. The analysis of
such a structure essentially remains much complicated. However, the
treatment may be performed by implementing the split-step method
wherein a tapered structure is treated in the analogy of a stack of large
number of tiny structures with increasing (or decreasing) cross-sections
with an end-to-end arrangement [27].

The present communication deals with the investigation of such a
three-layer TLCF where the outermost clad is composed of radially
anisotropic liquid crystal whereas the core and the inner clad are
constructed of dielectric materials. A rigorous analysis is made of
the relative distribution of power under the situation when the low
order transverse electric (TE) modes are excited in the guide, and the
core/clad dimensions are varied. Illustrations are made of the power
confinement factors in the three different sections of TLCF against
the taper length, and it is observed that the TE modes transport
relatively high amount of optical power through the liquid crystal
clad — the feature attributed to the tapered nature of the structure
as well as the presence of radial anisotropy in the material. It is
noticed that, with the increase in input end dimension of TLCF, the
distribution of power remains fairly uniform over the taper length —
the useful characteristics in fabricating coupling devices and optical
sensors based on evanescent field absorption. Though LCFs with
radial anisotropies have also been reported before [28], the present
communication reports an analytical investigation of a fiber having
blend of the features of LCFs and tapered natures (i.e., TLCFs), and
the obtained results seem to be rosy in technological applications. As
stated above, the use of liquid crystal fibers in optical sensing has
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been reported before. However, by making the liquid crystal fiber
with tapered structure with the liquid crystal itself in the fiber clad is
essentially a new aspect which, to the best of authors’ knowledge, not
much discussed in the literature. It is observed that a TLCF enhances
the sensitivity, as demonstrated in the present paper through rigorous
analytical treatments.

2. THEORY

Figure 1 shows the cross-sectional view of a three-layer TLCF with
radially anisotropic liquid crystal as the infinitely extended outermost
clad where the liquid crystal molecules possess radial orientation with
the ordinary and the extraordinary refractive index (RI) values as no

and ne, respectively. A comparison of the cases of radial and azimuthal
anisotropies of the liquid crystal section makes the situation much
clear as Fig. 1(b) illustrates the case when the liquid crystal molecules
assume azimuthal anisotropy. Tapered nature of the guide is illustrated
in Fig. 2. The other two sections are made of homogeneous, isotropic
and non-magnetic materials with the core RI (i.e., n1) greater than that
of the inner cladding (i.e., n2). We assume that the principal axes of the
outer clad coincide with the z-axis (the direction of wave propagation),
and the extraordinary principal axis has a radial orientation. The
outermost clad will, therefore, have the RI distributions as

nr = ne and nφ = nz with ne > n1 > n2 > no,
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Figure 1. Cross-sectional view of TLCF with the outermost section
filled with nematic liquid crystal with (a) radial anisotropy, and (b)
azimuthal anisotropy.
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Figure 2. A longitudinal view of TLCF.
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Figure 3. RI distribution pattern.

as shown in Figs. 3(a) and 3(b). Thus, it is to be pointed out that
the liquid crystal region of our structure possesses the properties of a
positive uniaxial crystal.

For a linear tapered core, we consider the taper radius r as a
function of z, defined as

r(z) = ri − z

l
(ri − ro) (1)

with ri and ro, respectively, as the radius of the input and the output
ends of TLCF, and l as the taper length.

Considering the time t-harmonic and the axis z-harmonic
electric/magnetic fields propagating through the TLCF, taper nature
of the guide will make the propagation constant β dependent on the
cross-sectional dimension. As such, β becomes a function of distance z
along the longitudinal direction. We choose the origin of the coordinate
system (r, φ, z) in a way that when z = 0, the cross-sectional radius
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is ri, and at z = l, it becomes ro. However, assuming a small variation
in cross-sectional dimension, β may be written in the form of Taylor
series expansion [25] as

β = β0 +
(

∂β

∂z

)
z (2)

where the higher order terms are suppressed as those do not affect the
results. In Eq. (2), β0 is the axial component of the propagation vector
at the origin z = 0.

Now, the coupled wave propagation equations for the transverse
field components may be written as [29, 30]
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where∇2
t is the Laplacian operator, and nr, nφ and nz are, respectively,

the RI values along the r-, φ- and z-directions. Also, k0 is the free-
space propagation constant, and the values of ρ and β are, respectively,
governed by Eqs. (1) and (2).

It is to be noted that TEmn, TMmn and hybrid modes in
anisotropic waveguides contain all the three electric field components
Er, Eφ and Ez. However, there are some special modes which do
not contain all the three components of the E-field, and for these,
the index profiles in the zero E-field directions are irrelevant to the
mode cutoff conditions. We consider the excitation of the low order
TE modes (viz. TE01) for which there is only one non-zero transverse
E-field component eφ, which is independent of φ. Thus, corresponding
to this particular mode, we will have er = 0 and ∂eφ/∂φ = 0. As such,
using the above Eq. (3b), it can be shown that the wave equation
corresponding to TE modes will have the form

∂2eφ

∂r2
+

1
r

∂eφ

∂r
+

(
k2

0n
2
φ − β2 − 1

r2

)
eφ = 0 (4)

where r and β are defined by Eqs. (1) and (2), respectively. On the
basis of the solutions to Eq. (4) and Maxwell’s field equations, we may
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derive the field components in the case of TE01 mode as

Hr = − β

ωµ0
eφ exp{j(ωt−βz)} with Hr =hr exp{j(ωt−βz)} (5a)

and Hz =
j

ωµ0

(
∂eφ

∂r
+

eφ

r

)
exp {j(ωt− βz)}

with Hz = hz exp {j(ωt− βz)} (5b)

In these equations, µ0 is the free-space permeability as we consider
all the three mediums as non-magnetic. Using these Eq. (5) and the
solutions to Eq. (4), it can be shown that the field components in the
different TLCF sections may be deduced as

Hr)I = −Aφ1
β

ωµ0
J1(γ1r) exp {j(ωt− βz)} (regionI) (6a)
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In Eqs. (6), (7) and (8), Aφ1, Aφ2, Aφ3 and Aφ4 are the arbitrary
constants to be determined by using continuity conditions at the layer
interfaces, and the quantities γ1, γ2 and γ3 are defined as follows:
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1k

2
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2
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Also, J(·), K(·) and I((·) are the usual Bessel and the modified Bessel
functions, and the prime represents the differentiation with respect to
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the argument of the function. At this stage, it must be remembered
that r and β are to be considered throughout according to as defined
by Eqs. (1) and (2), respectively.

Now, the values of arbitrary constants in Eqs. (6)–(8) can be
determined by using the field components as stated in Eqs. (6)–(8),
and implementing the conditions of continuity. Finally, after deriving
the values of Aφ2, Aφ3 and Aφ4 in terms of Aφ1, and using the above
field components, the TE01 mode power [31] transmitted through the
different TLCF sections may be expressed as follows:
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Above Eqs. (10), (11) and (12), respectively, represent the power
transported by the TE01 mode through the TLCF core, the inner
dielectric clad and the outer liquid crystal clad. Further, in Eqs. (10)–
(14), r1 and r2 represent localized values of the TLCF core and the
inner clad radii, respectively. This is because the fiber structure has
a tapered extension (as defined by Eq. (1)) along the longitudinal
direction, which cause the radii values to vary. As such, in order to
tackle the problem, we implement the split-step method wherein r1

and r2 are the radii of a particular step. Also, as stated earlier, the
propagation constant β is to be defined by Eq. (2).

The constant Aφ1 in Eqs. (10), (11) and (12) can be determined
by a normalization condition considering the input power. If PT is the
total power transmitted through the LCTF by the TE01 mode, i.e.,

PT = PC + PIC + POC , (15)

then PC/PT (≡ ΘC), PIC/PT (≡ ΘICl), and POC/PT (≡ ΘOCl) will,
respectively, represent the relative distribution of power (or the power
confinement factor) in the fiber core, inner clad and the outer clad of
the LCTF.

3. RESULTS AND DISCUSSION

We now analyze the characteristics of TLCF in respect of the relative
distribution of power as transported by the TE modes. In our TLCF
structure, the RI values of core and the inner clad are taken as
n1 = 1.462 and n2 = 1.458, respectively. Also, for the outermost
radially anisotropic liquid crystal clad region, we used nematic liquid
crystal as BDH mixture 14616 having the respective ordinary and
extraordinary RI values as no = 1.457 and ne = 1.5037. For simplicity,
we considered the modes only with ν = 1 as the azimuthal index.
Further, the taper length l in all the computations is taken to be 5 cm
and the operating wavelength is kept fixed at 1.55µm.

It is to be stated at this point that the characteristics of TLCFs,
as reported in the presented communication, may also be illustrated
for higher order modes, i.e., ν = 2 or higher. But, in order to reduce
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the length of this communication, those results are not incorporated in
the discussion part. Corresponding to higher order modes, the authors
observed that the amount of power in the different TLCF sections
exhibits an increase, however, the trend of variation in the confinement
remains almost the same.

It is well-known that TE and TM modes are difficult to separate
in the case of isotropic guides. This is owing to the reason that the
direction independent RI values yield identical propagation constants
and field cutoffs. However, in the case of guides with anisotropic
mediums (such as liquid crystals), because of direction-dependent RI
values, TE and TM modes will yield different polarization states as well
as different values of propagation constants and field cutoffs. However,
in the present communication, we concentrate more on the relative
distribution of power in the three different sections of TLCF — a guide
having anisotropic medium in the outermost section.
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Figure 4. (a) TE mode power confinement in TLCF core. (b) TE
mode power confinement in the inner clad of TLCF. (c) TE mode
power confinement in the outermost clad of TLCF.

Figure 4 illustrates the situation when the input end dimension of
the tapered section is kept fixed whereas the output end dimension
is varied. Figs. 4(a), 4(b) and 4(c) correspond to the logarithmic
plots of the relative distribution of power in the core, the inner clad
and the outer clad, respectively, when the LCTF core radius at the
input end is kept fixed as 60µm, and that of the output end is
varied to be as 80µm, 100µm, 120 µm and 140µm. We observe from
Figs. 4(a) and 4(b) that, as the taper length is increased towards the
longitudinal direction (which is the direction of propagation too), the
relative distribution of power increases too. The lowest value of power
distribution corresponds to the situation when the outer core radius is
taken to be the minimum among the selected values, i.e., 80µm. This
is because, in this case, lesser amount of power is being carried by the
guide as it is having lower dimension. Further, the gradual increase
in power distribution is observed owing to the reason that, as the
wave propagates across the tapered section, there occurs a continuous
increase in the dimension of the guide. It is also noticed that the value
of power reaches a kind of saturation in the region near the output end
of the tapered section.

Apart from the trend of increasing variation in relative power
distribution, another noticeable fact may be observed in Fig. 4(a)
that, with all the selected values of TLCF dimensions, a very small
amount of power remains confined within the tapered section of the
fiber core. Corresponding to the similar values of fiber dimensions
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and other operating parameters, the power distribution is seen to be
increased in the inner clad (Fig. 4(b)). However, the trend of variation
in power remains almost same, as that observed in Fig. 4(a). The power
distribution exhibits maximum value in the outermost liquid crystal
clad, as can be noticed in Fig. 4(c). Also, the increase in the value
of power in this region becomes much pronounced. It is also observed
that, with the decrease of power in the fiber core or the inner clad, it
simultaneously increases in the outermost liquid crystal clad, indicating
thereby as if the power is leaking off the fiber core, and propagating
through the cladding regions. This phenomenon is attributed to the
presence of radially anisotropic liquid crystal medium in the outermost
clad region.
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Figure 5. (a) TE mode power confinement in TLCF core. (b) TE
mode power confinement in the inner clad of TLCF. (c) TE mode
power confinement in the outermost clad of TLCF.

Figure 5 depicts the logarithmic variations of the relative
distribution of power when the output dimension of the taper section is
kept fixed (output end radius as 100µm) whereas the input dimension
is varied. We observe these figures that the variation in power
distribution remains maximum with the minimum value of the input
core radius (10µm). With the increase in input dimension, power
distribution also becomes uniform without showing much change along
the taper length. This is very much obvious as the taper section
undergoes maximum variation in dimension along its length with
minimum value of radius of the input end.

We observe from Fig. 5(a) that the power distribution remains
almost uniform corresponding to the situation when the input core
radius is 70µm. The variation in power is seen to be the maximum
corresponding to the input core radius as 10µm, and the similar
trend is seen in Figs. 5(b) and 5(c) too. Comparison of these
three figures yields that the maximum amount of power confinement
is observed in Fig. 5(c). This is just the replica of the situation
that we observed in Fig. 4(c) — the maximum amount of power is
distributed in the outermost clad section of TLCF. This is certainly
a new feature observed for TLCFs, and reflects their pronounced
usefulness in evanescent field optical sensing. Apart from sensing
related applications, the TLCFs would also be demanding in field
coupling devices, wherein relatively high amount of power is required
to be sustained in the outermost section of the fiber.
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4. CONCLUSION

An investigation of the relative distribution of power in TLCFs
with radial anisotropy is presented with the emphasis on the power
confinement in the tapered section of the guide. The case of TE
mode excitation is considered, and it is inferred that a large amount of
power remains in the outermost liquid crystal region with substantial
difference in the power sustained in the fiber core and the inner
dielectric clad. Higher amount of clad power is attributed to the
presence of radially anisotropic liquid crystal medium used in TLCF.
Further, the tapered structure of guide also plays the role to enhance
the property of power transfer to the outermost clad. Very large
amount of TE mode power in the outermost liquid crystal clad
essentially indicates prominent use of such fibers in optical sensing and
other integrated optic applications. It is noteworthy that tapered fibers
are much promising in the area of field coupling, and the incorporation
of liquid crystal section makes the fiber more demanding.

Further work incorporating other propagation modes through
TLCFs is in progress, and will be taken up in a future communication.
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